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Abstract. The Σ-∆ background estimation is a simple non linear me-
thod of background subtraction based on comparison and elementary
increment/decrement. We propose here some elements of justification of
this method with respect to statistical estimation, compared to other re-
cursive methods: exponential smoothing, Gaussian estimation. We point
out the relation between the Σ-∆ estimation and a probabilistic model:
the Zipf law. A new algorithm is proposed for computing the back-
ground/foreground classification as the pixel-level part of a motion de-
tection algorithm. Comparative results and computational advantages of
the method are commented.
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1 Introduction

Background subtraction is a very popular class of methods for detecting moving
objects in a scene observed by a stationary camera [1] [2] [3] [4] [5]. In every pixel
p of the image, the observed data is a time series It(p), corresponding to the val-
ues taken by p in the video I, as a function of time t. As only temporal processing
will be considered in this paper, the argument p will be discarded. The princi-
ple of background subtraction methods is to discriminate the pixels of moving
objects (the foreground) from those of the static scene (the background), by de-
tecting samples which are significantly deviating from the statistical behaviour
of the time series. To do this, one needs to estimate the graylevel distribution
with respect to time, i.e. ft(x) = P (It = x). As the conditions of the static scene
are subject to changes (lighting conditions typically), ft is not stationary, and
must be constantly re-estimated. For the sake of computational efficiency, which
is particularly critical for video processing, it is desirable that ft should be rep-
resented by a small number of estimates which can be computed recursively. In
this paper, we focus on recursive estimation of mono-modal distributions, which
means that we assume that the time series corresponding to the different values
possibly taken by the background along time, presents one single mode. This
may not be a valid assumption for every pixel, but it does not affect the interest
of the principle since the technique presented can be extended to multi-modal
background estimation.
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The Σ-∆ background estimation [6] [7] [8] is a simple and powerful non linear
background subtraction technique, which consists in incrementing (resp. decre-
menting) the current estimate by an constant value if it is smaller (resp greater)
than the current sample. Our objective is to discuss the foundations of this
method, with regards to statistical estimation. We show the relation between
the Σ-∆ estimation and the probabilistic model of Zipf-Mandelbrot, and com-
pare it with two other recursive methods: exponential smoothing and Gaussian
estimation. Section 2 presents the general framework of recursive estimation.
Section 3 presents the particular case of Σ-∆ estimation, and provides the full
numerical algorithm to compute it in the mono-modal case. Section 4 shows
some results and discuss the computational advantages of Σ-∆ background sub-
traction, proposing in particular a complete vector data parallel implementa-
tion adapted to the SIMD-within-register framework. Section 5 concludes and
presents the possible extension of the primitive algorithm.

2 Recursive estimation

If one should represent ft by one single scalar estimate, one of the most natural
would be the average Mt of the time series It. The naive recursive computation:
Mt = 1

t
It + t−1

t
Mt−1 can be used as initialisation for the small values of t,

but is not numerically realisable for long series. So one common solution is
to use a constant weight (or learning rate) α ∈]0, 1[ for the current sample:
Mt = αIt + (1− α)Mt−1. This is sometimes referred to as running average, and
corresponds to the recursive implementation of exponential smoothing.

One way of generalising this is to write the updating equation in an incre-
mental form: Mt = Mt−1 + δt(It), where δt is the increment function, depending
on the current sample It. In the case of exponential smoothing, δt is the affine
function α(It−Mt−1) (Fig. 1(1)). This linear dependence is not satisfying, since,
in most cases, a sample which is far from the average is out of the background
model and should have little effect on the estimate updating. This problem can
still be addressed in the exponential smoothing framework, by using two distinct
constants α1 and α2 such that α1 > α2, and by defining δt(It) = α1(It−Mt−1) if
It is in the background model, and δt(It) = α2(It−Mt−1) if It is foreground. This
results in a discontinuous increment function δt, as shown in Fig. 1(2), where
the decision background/foreground is done by simply thresholding the absolute
difference: The pixel is foreground if |It −Mt−1| > Th. It appears however, that
the discontinuity of δt makes the choice of Th critical.

To get a more continuous behaviour, we shall follow [9], who suggests that
the weight α attached to the current sample It should depend on its probability
ft(It). But, as noted by [10], the mere product δt(It) = ft(It) × α(It − Mt−1)
suggested by [9] is not usable in practise because of increments too small in
general to be numerically operative. A proper way to achieve this, if αmax is the
maximal desired weight, and as Mt−1 is the mode of the current distribution ft,
is to use:

δt =
αmaxft(It)

ft(Mt−1)
× (It − Mt−1). (1)
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If we use a Gaussian distribution as density model like in [9], we get the
following increment function:

δt = αmax × exp(
−(It − Mt−1)

2

2Vt−1
) × (It − Mt−1). (2)

The model needs the temporal variance Vt. In [9], it is computed as the Gaus-
sian estimation of the series (It−Mt)

2. But this leads to a double auto-reference
in the definitions of Mt and Vt, which is prejudicial to the adaptation capabil-
ity of the algorithm. We recommend rather to compute Vt as the exponential
smoothing of (It − Mt)

2, using a fixed learning rate αV .
One of the interest of computing Vt is that it provides a natural criterion

of decision background/foreground through the condition |It −Mt| > N ×
√

Vt,
with N typically between 2 and 4. Note that the increment function (Fig. 1(3))
is very different from the previous ones, and has a derivative-of-Gaussian shape.

This Gaussian estimation provides some attractive features compared to the
exponential smoothing: the update of the estimates depends on the probability
of the current sample, and the increment values are globally higher when the
background density is more dispersed. Nevertheless, it is less used than expo-
nential smoothing because of the computational load much higher. Now, what
does the increment function look like if we take the Zipf law as the probabilistic
model ?

3 Zipfian background estimation

Originally the Zipf law is an empirical principle [11] at the crossroads of linguistic
and information theory, stating that, in any sense-making text, the probability of
occurrence of the nth most frequent word is 1/n the probability of occurrence of
the (first) most frequent word. So the Zipf distribution is a hyperbolic decreasing
function. Recently, it has been used in several applications of image processing
[12], in particular as a model for the distribution of local spatial features. We
use it here as a model for (pixel-wise) temporal distribution.

Because of the divergence of the sum 1/n, the Zipf density function includes
a power factor: 1/ns, with s > 1. The general expression of the continuous
symmetric Zipf-Mandelbrot distribution can be written:

Z(µ,k,s)(x) =
(s − 1)ks−1

2(|x − µ| + k)s
. (3)

In this expression, the parameter µ represents the mode of the distribution,
and k determines its dispersion. The remarkable property of Z, taken as the
density model ft of the time series It (and then, replacing eq. 3 in eq. 1), is the
shape of the increment function δt (Fig. 1(3)), which is close to the Heaviside
shaped function: H(µ,κ)(x) = −κ if x < µ, +κ if x > µ, with κ = αmaxks.
Thus it is naturally related to the Σ-∆ modulation, classically used in Analog
to Digital Conversion:
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Fig. 1. The different increment functions δt associated to the different distribution
models: (X axis: graylevel It, Y axis: increment value δt(It)). (1) Exponential smoothing
(plain: α = 1/32; dashed: α = 1/16) (1) Bi-level exponential smoothing (m = 100,
Th = 30, α1 = 1/16, α2 = 1/32) (3) Gaussian laws, αmax = 1/4 (plain: µ = 100,
σ = 30; dashed: µ = 150, σ = 50) (4) Zipf laws, αmax = 1/4 (plain: µ = 100, k = 1,
s = 1.1; dashed: µ = 150, k = 5, s = 1.1).
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For every time step ∆t:
If Mt−∆t > It then Mt = Mt−∆t − ε ;
If Mt−∆t < It then Mt = Mt−∆t + ε ;
Here, the average increment per time unit is κ = ε

∆t
. Digitally, the elemen-

tary increment ε is the least significant bit of the representation, i.e. 1 if the
values are integer-coded. Adaptation to the dispersion of the model can then be
done by tuning the updating period ∆t: the greater the variance, the smaller ∆t
should be. The following algorithm reproduces such behaviour. The principle is
to attach to every pixel, in addition to the mode estimator Mt, a dispersion es-
timator Vt. Suppose that Vt ∈]0, 2m−1[, which means that it is coded on m bits:

For every frame t: {
rank = t % 2m ; pow2 = 1 ;
do { pow2 = 2× pow2 ; } while ((rank % pow2 == 0) && (pow2 < 2m))

If (Vt−1 > 2m

pow2 ) {
If Mt−1 > It then Mt = Mt−1 − 1 ;
If Mt−1 < It then Mt = Mt−1 + 1 ;
}

Dt = |It − Mt| ;
If (t % TV == 0) {

If Vt−1 > max(Vmin, N × Dt) then Vt = Vt−1 − 1 ;
If Vt−1 < min(Vmax, N × Dt) then Vt = Vt−1 + 1 ;
}

}

Here x%y is x modulo y. The purpose of the two first lines of the algorithm
(which are computed once for all the pixels at every frame) is to find the greatest
power of two (pow2) that divides the time index modulo 2m (rank). Once this
has been determined, it is used to compute the minimal value of Vt−1 for which
the Σ-∆ estimate Mt will be updated. Thus the (log-)period of update of Mt is
inversely proportional to the (log-)dispersion: if Vt > 2m−1, Mt will be updated
every frame, if 2m−2 ≤ Vt < 2m−1, Mt will be updated every 2 frames, and so
on.

The dispersion factor Vt is computed here as the Σ-∆ estimation of the ab-
solute differences Dt, amplified by a parameter N . Like in Gaussian estimation,
we avoid double auto-reference by updating Vt at a fixed period TV . Vt can be
used as a foreground criterion directly: the sample It is considered foreground if
Dt > Vt. Vmin and Vmax are simply used to control the overflows ; 2 and 2m − 1
are their typical values.

Note that the time constants, which represent the period response of the
background estimation algorithm, are related here to the dynamics (the number
of significant bits) of Vt, and to its updating period TV . For the other methods,
the time constants were associated to the inverse of the learning rates: 1/αi for
the exponential smoothing and 1/αmax and 1/αV for Gaussian estimation.
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4 Results

Figure 2 shows the background estimation for all the time indexes, and one par-
ticular pixel. This is a difficult case for pixel-level motion detection: an outdoor
scene where the background signal (high grass meadow with wind) is corrupted
by the passage of two foreground objects. The Boolean condition ”Dt > Vt” is
used as foreground classification.
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Fig. 2. Σ-∆ background estimation running on a given pixel. (X axis: time index,
Y axis: graylevel). All values are 8-bit coded. Amplification factor N is 2. Variance
updating period TV is 1. Plain line: It, Dotted line: Mt, Impulses: Dt, Dashed line: Vt.

Figure 3 shows the result for all the pixels, at 4 different time indexes of the
classical Hall sequence, in which two people are moving in radial motion, i.e. in
the direction of the optical axis. This is a difficult case too, since the values in
the centre of the moving objects do not change much (aperture problem). For
reference, the last row of Figure 3 displays the hand drawn ground truth for the
4 frames.

This ground truth is used for the quantitative evaluation (detection and false
alarm rates are averaged on these 4 key frames) shown on Table 1, for different
values of the amplification constant N, and of the updating period TV . Those
results are resumed on Figure 4, where the 9 Σ-∆ algorithms are compared
with 6 different Gaussian algorithms. Note that these figures relate to pixel-
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level methods, and should not be interpreted in absolute, since a simple spatial
regularisation appreciably improves the two measures, in all cases.

Fig. 3. Background subtraction shown at different frames of the Hall image sequence.
Row 1: Original sequence, frames 38, 90, 170 and 250. Rows 2 and 3: Σ-∆ Background
and foreground, with N=2, and TV = 8. Row 4: (Fore)ground truth.

N=1 N=2 N=4

TV = 1 (0.74,0.25) (0.62,0.10) (0.53,0.02)

TV = 8 (0.91,0.38) (0.87,0.23) (0.85,0.12)

TV = 32 (0.95,0.45) (0.94,0.38) (0.94,0.33)
Table 1. (Detection, False alarm) rates for 9 Σ-∆ background subtraction algorithms.
Measures are averaged on the 4 key frames of the Hall sequence.

The relevance and power of the Σ-∆ estimation, as a pixel-level temporal
filter, is comparable to that of the Gaussian estimation, whereas its computa-
tional cost is even inferior to that of exponential smoothing. Indeed, the algo-
rithm proposed in Section 3 is straightforward to compute in any fixed-point
arithmetic, using an instruction set limited to: absolute difference, comparison,
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Fig. 4. Detection / false alarm rates diagram, for 9 Σ-∆ and 6 Gaussian background
subtraction algorithms. Measures are averaged on the 4 key frames of the Hall sequence.

increment/decrement. Thus, it is well adapted to real-time implementation using
dedicated or programmable hardware.

Another important computational property of Σ-∆ background subtraction,
is that, once chosen the number of bits used to represent the estimates Mt and
Vt, every computation can be made at full precision without increasing the data
width. This allows in particular to make the most of the data parallelism pro-
vided by the SIMD-WAR (Single Instruction Multiple Data Within A Register)
paradigm, which consists in concatenating many short operands in one single
very long variable, and then applying scalar operations on the long variables.
This implementation is available on most personal computers, using for exam-
ple the SSE-2 (Streaming SIMD Extensions 2) instructions of the Intel R©C++
compiler [13]. We provide hereunder the vectorised pseudo-code of the Σ-∆ back-
ground subtraction. Here, a 16-times acceleration is achieved by performing the
operations on a 128-bit register made of 16 8-bit data.

vmin = 2; vmax = 255; logN = 1; Tv = 4;// Scalar constants definition

// Vector constants definition: creates 128-bit constants

// by concatenating 16 8-bit constants

VMIN = vector16_define(vmin);

VMAX = vector16_define(vmax);

// Sigma-Delta initializations

for(i=0; i<height; i++) {

| for(j=0; j<width/16; j++) {

| | I = I(0);// I(0): first image

| | M = I; // M(0) = I(0)

| | V = VMIN; // V(0) = vmin

| }

}
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for(t=1; t<=tstop; t+=1) {// Time loop*********************************

| // Computation of the update threshold according to the time index

| rank = (t%256); pow2 = 1; thres = 256;

| do { pow2 = pow2*2; thres = thres/2;

| } while (((rank%pow2)==0)&&(thres>1));

| TH = vector16_define(thres);// vector variable

| for(i=0; i<height; i++) {// Space loop------------------------------

| | for(j=0; j<width/16; j++) {

| | | // (1) Update of Background M(t)

| | | I = I(t);//loading I(t)

| | | UPDATE = vector16_compare_greater(V,TH);// Comparison (>)

| | | //if V(t-1)>th, update= FF (-1), else update = 0

| | | C1 = vector16_compare_greater(I,M);

| | | //if I(t)>M(t-1), c1= FF (-1), else c1 = 0

| | | C2 = vector16_compare_less(I,M);// Comparison (<)

| | | //if M(t-1)>I(t), c2= FF (-1), else c2 = 0

| | | C1 = vector128_and(C1,UPDATE);// Bit-wise logical AND: Update is

| | | C2 = vector128_and(C2,UPDATE);// effective only if V(t-1) > th

| | | M = vector16_sub(M,C1);//M(t) = M(t-1) - c1

| | | M = vector16_add(M,C2);//M(t) = M(t-1) + c2

| | | // (2) Computation of absolute difference D(t)

| | | MAX = vector16_max(I,M); // max(I(t),M(t))

| | | MIN = vector16_min(I,M); // min(I(t),M(t))

| | | D = vector16_sub(MAX,MIN); // d = |I(t) - M(t)|

| | | // (3) Update of variance V(t): one over Tv frames

| | | if (t % Tv == 0) {

| | | | ND = D; // Difference amplification (Saturated addition)

| | | | for (k=1;k<=logN;k++) ND = vector16_add_sat(ND,ND);

| | | | BDEC = vector16_max(ND,VMIN);// Variance is bounded

| | | | BINC = vector16_min(ND,VMAX);// between Vmin and Vmax

| | | | C1 = vector16_compare_greater(V,BDEC);

| | | | //if V(t-1)>max(D(t),Vmin) c1= FF (-1), else c1 = 0

| | | | C2 = vector16_compare_less(V,BINC);

| | | | //if V(t-1)<min(D(t),Vmax) c2= FF (-1), else c2 = 0

| | | | V = vector16_add(V,C1);//V(t) = V(t-1) + c1

| | | | V = vector16_sub(V,C2);//V(t) = V(t-1) - c2

| | | }

| | | // (4) Computation of Foreground label L(t)

| | | L = vector16_compare_greater(D,V);

| | | //if D(t)>V(t) L(t)= FF, else L(t) = 0

| | }

| }// end of space loop------------------------------------------

}// end of time loop**********************************************

5 Conclusion and extensions

We have proposed a justification of using the Σ-∆ estimation as a background
subtraction method, based on the use of the Zipf law as a density model. We
have proposed an algorithm implementing this method and allowing to adapt
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the background updating to the temporal dispersion. We have shown the com-
putational advantages of the Σ-∆ estimation, illustrated by the vector SIMD
implementation.

The limitations of this algorithm - used ”as is” in a motion detection system -
are inherent to its mono-modal nature: first, one single mode in the density model
can be inefficient to discriminate moving objects over a complicated background,
and second, one single dispersion estimate, related to one time constant, may not
be sufficient for certain kind of motion such as remote objects with radial velocity
w.r.t. the optical centre. Nevertheless the basic model can be enriched, either
by using a multi-modal Zipfian distribution like it is done in [9] for Gaussian
estimation, or by using several time magnitudes, as shown in [8].
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