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Abstract—The detection of vascular bifurcation in X-ray
images is important for several medical applications. They are
used as landmarks for image registration, vessel segmentation
and tracking. Although many bifurcation extraction methods
have been proposed in recent years, very few work deals
with coronary bifurcation in X-ray images. In this paper, we
present a new bifurcation detector based on the multiscale
Hessian analysis. It can be seen as a scale specific Histogram
of Eigenvectors weighted by the vesselness measure. Pixels with
three peaks in their immediate neighbourhood are considered
as bifurcation candidates. Based on this detector, a novel
bifurcationness measure is proposed. The method is tested on
real coronary artery angiographies and shows better results
compared to other bifurcation detectors.
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I. INTRODUCTION

Cardiovascular diseases are the leading cause of deaths
all over the world and therefore, researches in modern
medical image processing aim at developing reliable and
robust medical tools to assist clinicians in data analysis and
assistance during diagnostic and interventional procedures.
Nowadays, X-ray Coronary Angiography (XCA) is the
gold standard for the assessment of cardiovascular diseases
(CVD). The angiograms obtained by the XCA enable to
reveal the initial CVD symptoms by the morphological
features of the coronary arteries such as diameter, length,
branching angle, and tortuosity.

The detection of vascular bifurcations in X-ray images
is particularly important since these branching points can be
used as landmarks for image registration and vessel tracking
[1]. Although several methods deal with vascular bifurcation
detection [2]–[9], little work has been devoted to coronary
bifurcations in X-ray images.
In many blood vessel images such as retinal images, branch-
ing point detection generally focuses on binary images.
Thus, the original structures are reduced to one-pixel-wide
vascular trees through segmentation and thinning. The bi-
furcations and crossovers are then obtained by counting
the pixels local connectivity in the skeleton image [2], [3],

[5]. Such approaches are usually affected by the thinning
artifacts like tailing, necking, spurs or staircase artifact [9].
Other methods estimate initial bifurcation candidates by the
classic Harris corner detector [10] based on the first image
derivatives. However, in coronary angiographic images, the
first-derivative information is usually too noisy and many
false detections occur.
Hence many detectors rely on the second image derivative,
presented by the Hessian matrix, which have strong response
on blobs and ridges [11]. General Hessian-based features de-
tectors such as difference of Gaussian (DOG) [12], Hessian-
affine [11], speeded up robust features (SURF) [13], smallest
Hessian eigenvalue [7], Determinant of Hessian [7] and the
Laplacian were proposed for blob detection in the computer
vision field. The major limit of such detectors is the large
rate of false positives since blob points, high curved vessel
location, and even some noise artifacts are often confused
with branching points.

In [14] a novel bifurcation detector named Histogram
of Eigenvectors (HOE) is proposed by analogy to the
Histogram of Gradient (HOG) feature [15]. The HOE is
combined with other features in order to define a random
forest classifier for bifurcation detection in 3D vascular
images [14]. The essential thought behind the HOE is that
bifurcation can be detected thanks to the observation of local
vessel orientation provided by the eigenvector corresponding
to the smaller Hessian eigenvalues. Thus, for each pixel, an
HOE is computed in a local neighbourhood and pixels with
three peaks are most likely to be branching points.
However, it is unclear how the considered local neighbour-
hood is selected, though its size is critical since the images
often present a wide range of vessel width and a fixed
window may lead to underestimate a large bifurcation or
combine two nearby vessels in the same window.

In this work, we propose a novel scale specific Histogram
of Eigenvector detector, where the local neighbourhood of
each pixel is taken as the optimal vesselness scale, yielding
a more accurate branching detection and a better bifurcation
size estimation. We also propose a novel bifurcationness
measure on the basis of this descriptor.



The remaining part of the paper is organized as follows: in
section 2 we present the proposed method by describing the
different Hessian features and the HOE calculation steps.
The experiments and results are presented in section 3.
Section 4 summarizes our paper and discusses the possible
ways for future works.

II. METHOD

The overview of our proposed vessel bifurcation detector
is shown in Fig.1. First, the eigenvalues and eigenvectors
of the Hessian matrix are obtained in multiple scales to
provide the structural and directional information. Then, the
maximum response with the corresponding optimal scale
is retained for each pixel of the image using the Frangi
vesselness filter which is built on the Hessian eigenvalues.
Finally, for each pixel, the Histogram of Eigenvectors is
computed in an appropriate local neighborhood given by the
optimal scale of the pixel.

A. Multiscale Hessian Feature extraction

The idea behind multiscale image analysis is to add a
new dimension to the analysis which is the image scale.
The image is transformed into a set of blurred images, each
representing the original image, but at a different scale [16].
These blurred images are obtained by convolving the initial
image I0(p) = I0(x, y) with a Gaussian kernel to represent
the information at a certain scale.

Iσ(p) = Iσ(x, y) = I0(x, y)⊗Gσ(x, y) (1)

where Iσ is an image of the scale space, p = (x, y) is a
pixel location, ⊗ represents the convolution operation and
Gσ(x, y) is the 2D Gaussian kernel with standard deviation
σ defined as:

Gσ(p) = Gσ(x, y) =
1√

2πσ2
exp− (x2 + y2)

2σ2
(2)

where σ ∈ Σ = {σmin, .., σmax}, σmin and σmax are
set according to the approximate width of the smallest and
largest vessel to be detected [16].
The 2-by-2 Hessian matrix at a given pixel is composed of
the second-order derivatives of an image intensity function
Thus, in the scale space, it can be obtained at each point by
Eq.3:

Hσ(p) =

(
∂2Iσ(x,y)

∂x2
∂2Iσ(x,y)
∂y∂x

∂2Iσ(x,y)
∂x∂y

∂2Iσ(x,y)
∂y2

)
. (3)

The Hessian matrix is symmetric, therefore has two real
eigenvalues λ1 and λ2 and two associated eigenvectors
e1 and e2. The signs as well as the relative and absolute
magnitudes of eigenvalues characterize the local shape of
the intensity in the image. If we assume that we seek to
characterize black vessels on a white background, which is
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Figure 1. Overview of the multiscale bifurcation detection method.

the case of the angiographic images, a pixel belonging to
a vessel region will be given by small (ideally 0) λ1 and a
high positive value of λ2 (|λ1| < |λ2|)

B. Multiscale Vesselness Filter

The filter of Frangi [17] is often considered as the current
gold-standard due to its simplicity, intuitive formulation
and good vascular structure enhancement of medical angio-
graphic images [18], [19]. The thought behind this filter is
that the Hessian eigenvalues are geometrically interpreted as
principal vessel curvatures. Generally, vessels have strong
variation perpendicular to the vessel centreline (high λ2)
and weak variation along it (weak λ1). On the basis of
these observations, Frangi et al. introduce two measures
to describe structures in images: Rb = λ1

λ2
is the blob-

like structure measure and S = ‖H‖F =
√
λ2

1 + λ2
2, the

Frobenius norm of the Hessian matrix, is the second-order
structureness measure. These measures were combined in a
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Figure 2. Hessian-based features: (a) original image; (b) Frangi vesselness
response; (c) a small part of the original image; (d) corresponding first
eigenvector field superimposed to the vesselness response.

vesselness function as given by Eq.4.

Vσ(p) =

{
0 if λ2 < 0

exp(− R2
b

2β2 )(1− exp(− S2

2c2 )) otherwise.
(4)

Where parameters β and c are thresholds which control
the filter’s sensitivity to Rb and S respectively. According
to scale space theory, Vσ(p) will be maximum up to a
normalisation factor when the width of the vessel in pixel p
matches a suitable scale factor σ. Thus, In the multi-scale
vessel enhancement algorithm, Vσ is computed for different
scales, then the largest one is taken as the final filter output.

Vopt(p) = max
σ∈Σ

Vσ(p) (5)

The optimal scale σ∗ corresponding to the maximum of
vesselness is given by Eq.6.

σ∗(p) = arg max
σ∈Σ

Vσ(p) (6)

C. Vessel Direction Information

The eigenvectors e1 and e2 of the Hessian matrix charac-
terize the local shape of the intensity. e1 gives the direction
of lower second derivative, i.e. the direction of a potential
linear structure, while e2 gives the direction of the stronger
second derivative, i.e. the normal direction to a potential

linear structure. Thus the proposed direction information Dσ

can be simply given by the following expression:

Dσ(p) =

{
0 if λ2 < 0

e1 otherwise.
(7)

The final vessel direction is given by the direction Dσ at
the scale σ that provided the optimal response of the filter
Vopt(p) as given by Eq.8.

Dopt(p) = Dσ∗(p) (8)

Fig.2 shows the vesselness and direction features of an X-ray
angiogram where Fig.2(b) is the vesselness Map obtained by
the Frangi filter and Fig.2(d) is the final eigenvector field of
the region of interest shown in Fig.2(c).

D. Histogram of Eigenvectors

Once the vesselness and local orientation features are
computed, the Histogram of Eigenvectors (HoE) is obtained
through the following steps:

1) For each pixel p, estimate the optimal scale σ∗(p)
using the equation Eq.6.

2) Construct a circular histogram by casting a vote for
each direction vector on the circle centred on p with
radius σ∗(p) and weight it by the corresponding opti-
mal vesselness (Eq.5).

3) Normalize each bin count on the circle so that the total
count adds up to 1;

4) Sort the histogram bins and save the three largest peaks
and their corresponding angles.

Fig.3 illustrates circular histograms of a tubular region in
(a) and junction location in (b). One can see that the
eigenvectors at neighbouring points inside the vessel are
oriented in the same direction. Thus, in this region, the
histogram of neighbourhood orientation has only one peak.
Meanwhile, at the bifurcation, where the vessel splits into
two smaller vessels, there are three principal directions and
the histogram has three peaks.

E. Bifurcationness measure

According to the HoE feature, a junction candidate has
at least three peaks in the histogram. Thus, the proposed
bifurcationness measure is set as the height of the third peak
in this histogram: it will have a significant value at bifur-
cations only. The higher the third peak is and the stronger
the bifurcationnes will be. Fig.4 shows the bifurcationness
of two different images.

III. EXPERIMENTAL RESULTS

The method has been tested on five real clinical X-ray
angiograms acquired during routine cardiac catheter exam-
inations performed in the Cardiology Department of The
University Hospital Fattouma Bourguiba, Monastir, Tunisia.
The images have different levels of difficulty in terms of
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Figure 3. Illustration of Histogram of eigenvectors. (a) Eigenvector field
of a tubular part and its corresponding circular Histogram. (a) Eigenvector
field of a junction location and its corresponding circular Histogram.
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Figure 4. Bifurcationness measure superimposed to two original images.

vessel illumination and noise. All the results presented in
this work use β = 0.5 and half the value of the maximum
Hessian norm for c (c = 1

2max‖H(x)‖F ) as proposed in
[17].
Scales were set according to the approximate width of the
smallest and largest vessel to be detected. The largest radii
(σmax) was measured and provided by the user whereas
σmin was set to 1 since vessels with smaller radii aren’t of
interest. Four scales between σmin and σmax are generated
using a logarithmic progressing.

For the HoE method, only candidates with a bifurcationness
measure greater than 0.1 are retained.
In terms of absolute time consuming, the Matlab code of
the whole procedure on a Core i7 computer of 2.6GHz and
8GB spends an average of 5 seconds per image
We have compared the HoE detector with the classic de-
terminant of Hessian detector (DoH). Only pixels with
DoH ratio higher than 40th percentile of the accumulated
histogram of the DOH image were retained.
Both HoE and DoH candidates are grouped into different
connected components using a labelling algorithm assuming
the 8-connectivity. Then, the centre of each component is
identified as the most suitable point to be centre of the
junction.
The set of junction candidates is further refined through
a non maximal-suppression (NMS) step based on a set of
hypothesis related to the nature of images observed on our
dataset. For example, the minimum distance between two
junction was set to 15 pixels, thus a window of 30-by-
30 pixel was used for NMS and the number of points
in each connected component was used as the score of
the corresponding junction point. The minimum size of a
retained component has been set to 5 pixels.The yellow
circles in Fig.5(a) and Fig.5(b) show the final bifurcation
points obtained by DoH while the HoE candidates are
represented by the red color in Fig.5(c) and Fig.5(d).
The quantitative results of the five images for the efficiency
of the junction detection process are shown in Table.I. Both
DoH and HoE methods can tackle with principal bifurcations
however the rate of false positives produced by DoH is very
high (10.8 against 4.4 for HoE). The wrong detection in our
method is due to background artifacts and noise. The HoE
detector also gives less false negatives. The missed junctions
are generally located on the crossing between very thin and
noisy vessels.

IV. CONCLUSION

In this paper, we presented a novel method for the
detection of junctions in coronary X-ray angiograms. This
method is based on the multiscale Hessian analysis. The
Hessian eigenvectors, which are a good marker of local
vessel orientation have been used to design an Histogram of
Eigenvectors detector whereas its eigenvalues were used to
weight this histogram and estimate the size of the junction.
This leads to an adaptive HoE which behaviour is better
than the classic fixed-size version. Based on this detector,
the bifurcationness measure is set to the height of the third
peak in the histogram. The method has been tested on
real coronary artery angiographies and shows better results
compared to the classic DoH detector. Overall, the proposed
landmark detector approach has potential for application
with other 2D and 3D vascular images.
In the future work, we would like to refine the bifurcation
location and accurately detect its branches.



Table I
COMPARISON BETWEEN DOH AND HOE IN TERMS OF NUMBER OF

FALSE POSITIVES AND NUMBER OF FALSE NEGATIVES.

Image
DoH HoE

FP FN FP FN

Image 1 6 5 4 3

Image 2 7 3 3 2

Image 3 23 5 8 5

Image 4 10 5 4 4

Image 5 8 5 3 2

mean 10.8 4.6 4.4 3.2

(a) (b)

(c) (d)

Figure 5. Comparison between DoH (yellow) and HoE (red) on two
different images. The first image is Image 1 in the table. The second image
(Image 3) in the table is more difficult than the first due to the low contrast
and non-uniform illumination of the background.
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