
Mixing Hough and Color Histogram Models for
Accurate Real-Time Object Tracking

Antoine Tran and Antoine Manzanera

U2IS, ENSTA ParisTech
Université de Paris-Saclay

828, Bd des Maréchaux
91762 Palaiseau cedex - France

antoine.[tran,manzanera]@ensta-paristech.fr

Abstract. This paper presents a new object tracking algorithm, which
does not rely on offline supervised learning. We propose a very fast and
accurate tracker, exclusively based on two complementary low-level fea-
tures: gradient-based and color-based features. On the first hand, we
compute a Generalized Hough Transform, indexed by gradient orienta-
tion. On the second hand, a RGB color histogram is used as a global
rotation-invariant model. These two parts are processed independently,
then merged to estimate the object position. Then, two confidence maps
are generated and combined to estimate the object size. Experiments
made on VOT2014 and VOT2015 datasets show that our tracker is com-
petitive among all competitors (in accuracy and robustness, ranked in
the top 10 and top 15 respectively), and is one of the few trackers run-
ning at more than 100 fps on a laptop machine, with one thread. Thanks
to its low memory footprint, it can also run on embedded systems.

1 Introduction

Object tracking is a very popular task in computer vision. Basically, the goal is
to accurately localize one defined object (the target) in a video. Among difficul-
ties, we can cite object deformation, motion change, rotation, scaling or those
linked to the context (illumination change, occlusion, camouflage, camera mo-
tion). Applications such as human-computer interaction or augmented reality
require reactive algorithms, so the computational cost may be a critical issue.

For efficiency, our tracker is based on very light methods, and combines low-
level shape and color features. It is a model-free tracker, meaning that the offline
training is done only at the first frame of the sequence. The gradient orientation
is computed and used as an index of a Generalized Hough Transform (GHT) [2].
A RGB histogram is used to represent the color aspect of the target object, and
distinguish it from the background. These two parts are processed independently,
and merged to finally estimate the object location. They are complementary:
the original GHT is robust to illumination, but weak against scale and rotation,
unlike the color histogram model.

By testing and evaluating our tracker on VOT2014 and VOT2015 [15, 16],
we show that this combination leads to high performance in terms of accuracy
and robustness. Moreover, by associating low-level features and light algorithms,
our tracker can run at more than 100 fps on a laptop machine, without explicit
multithreading. It is one of the fastest among all competitors, while being ranked
second among real-time trackers in terms of accuracy and robustness criteria
from VOT2015. Its lightness also makes it suitable to embedded systems.

This paper is organized that way: after a short state-of-the-art of object
tracking, we will explain our method. Finally, we will show some results obtained
in the academic datasets.

2 Related Work

Given a sequence, object tracking consists in estimating the state of one target
object at each frame. This state can be its center, its bounding box or its silhou-
ette. Many works have addressed the tracking problem, and we refer to Yilmaz’
survey for a coverage of the task [25].

Structurally, our tracker belongs to the class of trackers combining different
methods [1,3,9,18,24]. Among recent works, STAPLE [3] is related to our tech-
nique: it combines correlation and color histogram model to provide an effective
and fast tracker. As we are using the GHT in its original form, our template-
part tracker is simpler and lighter than Bertinetto’s, as it only requires gradient
computation (instead of HOG features [5]). Duffner’s PixelTrack [9] is also close
to our tracker: it combines a GHT with a foreground/background color model
into a very fast tracking algorithm (above 100 fps).

The VOT committee annually proposes a dataset to evaluate and rank track-
ers [14–16]. In this challenge, the most accurate trackers are based on Con-
volutional Neural Network [19, 20] and correlation filters [3, 7]. If we focus on
the fastest algorithms of VOT15 challenge, Vojir’s tracker [23] based on the
Meanshift [4] proposes decent accuracy, with a speed far beyond real-time.
Maresca [18] proposes a fast tracker based on estimation of object motion, ob-
tained by the combination of several light trackers.

Our proposed tracker is based on very low-level features and lightweight
operations: color histogram and GHT. Color histogram is popular in object
tracking [4, 21, 23], since it is fast and robust to scale and in-plane rotation
changes. The GHT is an extension of the Hough Transform [8], used to detect
arbitrary shapes. It consists in considering some elements of this shape (pixels,
patches) and, according to their local appearances, make them vote for potential
positions of the shape center. The estimated center is then determined by the
location that has accumulated the highest number of votes. The GHT is robust
to illumination changes and to camouflage issue, compensating some weaknesses
of the color-based model. In tracking context, the main issue of the GHT is
the robustness to scale and rotation changes. However, several authors proposed
Hough-based trackers [9–11, 17] by modifying the original GHT, or using com-
plementary methods. Amongst Hough-based trackers, only Hua [13] outperforms

our algorithm, but is 100 times slower. However, his algorithm essentially relies
on a HOG-based detector, which estimates several candidates locations, and the
Hough Transform is only used to discard wrong candidates. PixelTrack [9] is at
a same order of magnitude in speed, but much less accurate and robust.

In the last VOT challenges [14,15], few trackers belong to the category of real-
time trackers (21 competitors among 132), with diverse performances in accuracy
and robustness. In this category, our method is one of the fastest (more than
100 fps), but also one of the most accurate and robust (only beaten by [23]).
Compared to slower tracker, ours is still competitive: ranked in the top 15 for
both criteria in VOT2015 [15] and ranked in the top 10 in VOT2014 [16].

Our state representation is based on a bounding box. Given a frame t, the
aim is to estimate the bounding box Bt = (ct, wt, ht) of an object O, where each
parameter is respectively: bounding box’s center, width and height.

3 Our contribution

First, we explain how to initialize our tracker. Second, we deal with state esti-
mation. As position is estimated before scale, we will explain these two steps in
different sections. Third, we explain the model updating process.

3.1 Initialization

Our tracker is initialized at the first frame I0, with a manually set bounding box
B0. Let I(B) be the restriction of an image I to any subset of pixels B.

First, the target RGB histogram H0 of I0(B0), with nc × nc × nc bins, is
generated (nc = 12). Ht will denote the target RGB histogram at the frame t.

Second, for the geometrical model, let M0 and Φ0 be the gradient magni-
tude and orientation of I0(B0). The goal is to initialize the R-Table R (which
will be updated over the time), indexed by no = 16 orientations. It consists
in considering all pixels p ∈ I0(B0), for which M0(p) > εM (εM = 70.0) and
whose quantified gradient orientation is θp, then to store in R(θp) the couple
(−→u = −→pc0, ω−→u), which is the displacement from p to the bounding box center c0,
and ω−→u = 1.0 a default weight value.

3.2 Estimation of position

Given an image It from a sequence, our tracker first estimates the object center,
then its scale. We will explain these two steps independently.

On the one hand, we perform a basic GHT. As during initialization, it requires
to evaluate gradient image from It, keep pixels p whose gradient magnitude is
above εM , and quantify its orientation as θp. Then, for each couple (−→u , ω−→u) ∈
R(θp), p votes for all displacements p+−→u with the weight ω−→u . More formally:

HTt(p) =
∑
q

∑
(−→u ,ω)∈R(θq)

ω · δ(p, q +−→u) (1)

Fig. 1: Position tracking diagram.

with δ the Kronecker function. Finally, when all pixels have voted, the created
map (the Hough Transform) HTt emphasizes the most probable locations of
the object center, with respect to the geometrical model. The GHT is performed
under its simplest form, unlike [9] who indexes their R-Table using gradient and
color features and [11,17] who use machine learning classifiers.

We then blur HTt (3×3 discrete Gaussian filter), in order to add robustness
to deformation. The GHT is intrinsically robust to illumination change (conser-
vation of the orientation), but not to scaling (pixels votes spread away from the
center) nor to rotation (pixels vote according to the wrong list in the R-Table).

On the other hand, to exploit the color model, we define foreground and back-
ground areas. We use the color model histogram Ht−1, and build a background
histogram Hbck

t . These features have the advantage to compensate for the GHT
weaknesses, and vice-versa. Given the last estimated bounding box Bt−1, let St
be the background area, defined by all pixels inside the bounding box of center
ct−1, and dimension (α · wt−1, α · ht−1) (α = 2.0), excluding Bt−1. From St, we
build Hbck

t . Then, for every pixel p ∈ (Bt−1∪St), let qpt be its quantified color in
It. As proposed in [21], we define the foregroundness with respect to the object
O, knowing the object color histogram Ht−1 and the background color model:

F
(Ht−1,H

bck
t)

O (p) =

{
Ht−1(qpt)

Ht−1(qpt)+Hbck
t (qpt)

if p ∈ (Bt−1 ∪ St)
0 otherwise

(2)

F
(Ht−1,H

bck
t)

O (p) indicates how probably p belongs to the target. Unlike [21], we
do not combine Eq. 2 with a distractor-aware model, as we aim to remain as
simple as possible. Compared to PixelTrack [9], this method only needs a model
histogram and no prior information about background. Then, given a bounding
box B of size (wt−1, ht−1) inside (Bt−1∪St), let Sc,t(B) be the normalized score
evaluating whether the target is inside B:

Sc,t(B) =

∑
p∈B F

(Ht−1,H
bck
t)

O (p)

wt−1 · ht−1
(3)

This formulation is simpler than Possegger’s [21], who proposed a method to
discard distractors. We also use a prediction map, that indicates the likelihood

to find ct at x, given Bt−1:

Π
Bt−1

t (x) = exp(
−(x− ct−1)2

2 ·min(wt−1, ht−1)
2) (4)

Finally, for all pixels x, we define Mt such as Mt(x) = HTt(x) · Sc,t(Bx) ·
Π
Bt−1

t (x) with Bx the rectangle centered in x of size (wt−1, ht−1). From Mt, we
finally estimate the object position ct as follows:

ct =

argmax
x

(Mt(x)) if maxx(Mt(x)) 6= 0

ct−1 +−−−−−→ct−2ct−1 otherwise
(5)

The second case of Eq. 5 assumes that, when the support of HTt and Sc,t are
disjoint, the target is translating with a vector −−−−−→ct−2ct−1. We choose a pixel-wise
multiplication to merge our two trackers, unlike STAPLE [3] who used a weighted
average. In that way, we do not have to deal with the difference of magnitude of
HTt and Sc,t, and to adjust a weight. We also differ from PixelTrack [9], where
the final position is obtained by linear combination of the centers estimated by
the GHT on one hand and the color segmentation map on the other hand. Fig. 1
describes all steps for our position estimation.

3.3 Estimation of scale

The second step consists in estimating object scale.
On the one hand, from the GHT, let us define the backprojection map BPt,

for all pixels p fulfilling conditions to be stored in the R-Table:

BPt(p) =

∑
(−→u ,ω)∈R(θp)

Mt(p+−→u)

|R(θp)|
(6)

with |R(θp)| the cardinality of R(θp). The approach is similar to Duffner’s one [9].
However, Duffner only backprojects the peak of the GHT, while we consider the
sum of the voted positions for all pixels. In both cases, the made assumption is
that the higher the backprojection is, the more likely it belongs to the target.

On the other hand, we consider F
(Ht−1,Ht

bck)
O , defined Eq. 2, as a color con-

fidence map. Then, let BFt be the final confidence map:

BFt = 0.5 · (BPt + F
(Ht−1,Ht

bck)
O) (7)

Fig. 2 illustrates these maps. Then, inspired by Posseger [21], we consider the
set of object pixels OPt = {p|BFt(p) > 0.5}∪Rt, with Rt a safe foreground area
defined as the rectangle centered on ct, of size (β · wt−1, β · ht−1) (β = 0.20).
From OPt, we only retain the connected component that contains ct, to discard
isolated pixels that could generate scale overestimation. Finally, we estimate a
potential bounding box by computing the bounding box B̄t of this connected

(a) It (b) BPt (c) F
(Ht−1,H

bck
t)

O
(d) BFt

Fig. 2: Cropped frame from car1 from VOT2015, with the ground truth in

blue. Backprojection map BPt and pixel color likelihood map F
(Ht−1,H

bck
t)

O are
complementary: while the first one indicates which border pixels are more likely
to belong to the target, the second one gives high results for pixels of car’s back.

Fig. 3: Scale estimation diagram.

component. Then, we reject bounding box sizes whose relative area variation
with respect to Bt−1 is above 5%. Otherwise, we update object’s size using the
same aspect ratio, as follows:

Xt = λt ·Xt−1 (8)

with X ∈ {w, h} and λt = min(1.05,max(0.95, A(B̄t)
A(Bt−1))) (A being the area

operator). Fig. 3 summarizes scale estimation operations. Finally, to prepare the
updating process, let SGt be the shape and color-based confidence map such
that SGt(p) = BFt(p) if p ∈ Bt, and 0 otherwise.

3.4 Model update

The last step consists in updating the model, knowing the estimated bounding
box Bt. To update the color model, let Ho

t be the color histogram of It(Bt) and

(a) Cropped
frame (glove)

(b) HTt (c) Sc, t (d) Mt

(e) Cropped
frame 1 (book)

(f) HT1 (g) Cropped
frame 2

(h) HT2

Fig. 4: The first line illustrates failures due to the transparency of the glove
(ground truth in blue, tracker output in red), making its color similar to the
chair. The GHT still performs correctly (sharp peak on the second image).
On the second line the GHT fails due to the rotation of the book: the peak
disappears from HT1 to HT2.

µc = 0.05 the color updating rate:

Ht = (1− µc) ·Ht−1 + µc ·Ho
t . (9)

To update the R-Table R, we start by reducing all displacement weights:

∀θ,∀(−→u , ω−→u) ∈ R(θ), ω−→u ← (1− µg) · ω−→u (10)

Then, considering the confidence map SGt, and the object center ct, for all pixels
p ∈ Bt with gradient orientation θp, we consider the displacement −→v = −→pct, with
a weight equal to µg · SGt(p). Then, we consider two cases:

– if −→v is in R(θp), we increment its weight by µg ·SGt(p) (µg = 0.05), in order
to reinforce the most relevant elements of the R-Table

– otherwise we add an entry into R(θp) with the weight µg · SGt(p)

Finally, for each index of the R-Table, we keep only the NR = 200 displacements
with the strongest weights, to limit computational and memory cost.

4 Experiments

Before dealing with experiments on academic datasets, we will detail our imple-
mentation setup.

4.1 Implementations details

Our algorithm is developed using C++ and the OpenCV 2.4.9 library, and tested
on a laptop at 2.4 GHz, without explicit multithreading. In terms of implemen-
tation, iterative pixel access is done using image pointers, and image histogram
computation is done using Look Up Table. At frame t, our tracker only processes
area centered in ct−1, and of size two times the last bounding box area. To eval-
uate the map Sc,t, we use integral images. Otherwise, no major algorithmic
optimization has been done.

In terms of memory footprint, target’s informations, composed of the color
histogram (nc

3 = 123 floating point numbers), the R-Table (n0 ·NR ·2 ·4 integers
for displacements and n0 · NR · 2 floats for weights) and the two last states (4
integers for coordinates and scales), resulting, with our set of parameters, in a
memory footprint of about 45 ko. This quantity is independent of target’ size. It
is however negligible compared to the number of temporary images: 2 8-bit im-
ages (gradient orientation and magnitude maps), 1 RGB image (the sub-image
in which we are tracking the target) and 5 32-bit images (float) (HTt, BPt,

Sc,t, F
(Ht−1,H

bck
t)

O and BFt), which depends on object’s size (and its associated
search window): for a 100×100 object’s size, the footprint will reach 2 Mo. Con-
sidering the speed obtained experimentally, we are convinced that our method
is suitable embedded systems. The code of our implementation will be made
available soon. All parameters have been tuned for the best trade-off between
performance and speed on VOT2015 [15]. For experiments case, we will denote
as CHT the position tracker only, and CHTs our complete tracker.

4.2 Results on VOT 2014 and VOT 2015

Each year, the VOT committee proposes a dataset to test and evaluate trackers.
Each frame from each sequence is labeled according to its difficulty (occlusion,
camera motion, size, motion or illumination change). Evaluation criteria are:

– Accuracy: based on overlap measure O(GTt, Bt) = GTt∩Bt

GTt∪Bt
, with GTt the

ground truth at the frame t
– Robustness: given by the number of failures (frames where O(GTt, Bt) = 0)
– Speed: based on a normalized speed (EFO units, see [15])

The VOT committee provides results of all competitors, and a toolkit to evaluate
and rank trackers. For all experiments, we use the function report challenge to
get weighted mean rank (based on ranks for all difficulties), pooled rank (based
on all sequences), expected overlap, and speed. We also compute ranking with
the whole set of results, but only display those of relevant trackers. Results for
VOT2014 and VOT2015 are summarized Tab. 1.

VOT2014 [16] is a dataset composed of 25 sequences, and results for 40
trackers are available. We choose to show our results compared to DSST [6]
(VOT2014 winner), Hough-based trackers [9,17,18] and real-time trackers [9,12,
18,22]. Amongst Hough-based trackers, our method is as well ranked as Matflow,

VOT2014

Tracker Weighted mean rank Pooled rank Expected Speed
Accuracy Robustness Accuracy Robustness overlap (EFO) (fps)

CHTs 8.83 4.33 6 9 0.2960 129.77 159.21
CHT 8.42 4.08 6 9 0.2916 109.75 134.65

DSST [6] 1.83 4.33 1 3 0.3693 5.80 13.07
Matrioska [17] 9.83 12 6 9 0.2671 10.20 21.88

bdf [18] 10.67 7.50 10 9 0.3097 46.82 100.45
Matflow [17,18] 8.67 3.17 6 4 0.3120 19.08 40.94

FoT [22] 7 18.17 6 22 0.2859 114.64 306.52
PTp [9] 25.33 11.17 30 9 0.2519 49.89 127.87

KCF [12] 2 4.67 1 5 0.3641 24.23 63.42

VOT2015

CHTs 12.67 13.67 13 17 0.2606 103.89 111.22
CHT 13.83 15.67 13 20 0.2615 101.91 109.10

Staple [3] 1 4.33 1 5 0.345
ASMS [23] 7.50 11 2 13 0.2353 115.09 142.26

bdf [18] 29.33 32 27 43 0.2054 200.24 78.43
FoT [22] 19.50 42.50 16 53 0.1934 143.62 177.53
DSST [6] 4.0 23.67 1 38 0.2707 3.29 4.47
DAT [21] 13.73 17.33 6 20 0.2428 9.82 14.87
HT [11] 20 28.50 13 43 0.2045 0.91 0.56

Matflow [17, 18] 22.17 27.33 23 43 0.2098 81.34 31.86
MDNET [20] 1 1.33 1 1 0.3789 0.87 0.97

sPST [13] 1.67 4.50 1 5 0.3134 1.03 1.16

Table 1: Results in VOT2014 and VOT2015 for different trackers. Real-time
trackers appear in bold.

combining Matrioska [17] and bdf [18], but is 6 times faster (in EFO units). In
the real-time trackers category, ours is the second fastest one, beaten by FoT [22]
but our method is much more robust. KCF [12] is more accurate and robust than
our method, but is slower. Globally, our tracker is well ranked (top 10 among
40 competitors) but is one of the tracker proposing the best trade-off between
effectiveness and speed. Surprisingly, our position-only tracker (CHT) and our
complete one have similar performance in terms of accuracy and robustness, but
the complete one is faster (probably due to object size reduction).

VOT2015 challenge is composed of 60 sequences and results for 62 com-
petitors are available. Compared to MDNET [20], VOT2015 winner based on
CNNs, and STAPLE [3] (results from author’s website, without speed results)
our tracker is less effective, but faster (being lighter, and knowing that the au-
thor mentioned 80 fps on a 4.0GHz CPU, we expect our method to be faster
than STAPLE). Compared to STAPLE, our shape-based tracker relies on the
GHT, with gradient computation only, while STAPLE requires a more complex
algorithm (correlation-based tracker using HOG features). Amongst real-time
trackers [18, 22, 23], our tracker is one of the few above 100 EFO, and is only
beaten by Vojir’s extension of Meanshift [23] in rankings and speed, but with

Fig. 5: Results from VOT2014 and 2015.
White bounding boxes are ground truth, red ones are obtained with our tracker.
The two first images are cropped from sphere and torus sequences from VOT2014
(PixelTrack in blue, and MatFlow in green).
The two last are cropped from birds2 and motocross sequences from VOT2015
(DAT in blue, and STAPLE in green).

slightly higher expected overlap. Otherwise, we are better ranked than other
real-time trackers. We perform better than other Hough-based trackers [11, 17],
including Matflow, which was on par with our tracker in VOT2014, but ex-
cluding sPST [13], which is 100 times slower and relies on an object detector.
Compared to Possegger [21], from which our color part tracker is inspired, we
demonstrate the usefulness of the Hough part, since, in weighted mean ranking,
our method is slightly more robust. Some results are shown Fig 4 and Fig 5.
We also used VOT2015 to see performances of each part of the tracker (Hough
and color ones). In both cases, the loss of performance is dramatic, as we can see
on Fig. 6, where we show the results of different versions in terms of expected
overlap (the higher, the better) and failures (the lower, the better) for several
difficulties, both obtained on the set of frames concerned by the difficulties.

5 Conclusion

In this paper, we proposed a tracker working without offline training and tracking
arbitrary objects. Unlike most state-of-the-art trackers, our method is based on
a very low level representation. First, our geometrical model is only based on
gradient, through a GHT. Then, an object color histogram is used to generate
a map indicating the likeliness of the pixel to belong to the object. These two
operations, done independently, are combined to estimate object center. Second,
from the two features, we generate two confidence maps, and merge them in
order to estimate the object size. The final confidence map is built from the
fusion of these two maps and used to update the object geometrical and color
models. Our whole tracker relies on computationally efficient operations, and
performs tracking task beyond real-time (about 100 fps) with a low memory
footprint. Experiments were done on recent academic dataset [15,16], for which
our tracker is ranked in the first third for accuracy and robustness. It is also one
of the fastest from VOT2014 and VOT2015 challenges. Thanks to its speed and
low memory footprint, our algorithm can be implemented on embedded systems,
combined with other trackers to improve accuracy and robustness or with object
detection or background subtraction to automatically initialize tracked regions.

Fig. 6: Expected overlap and number of failures for our complete tracker, and
for partial versions (position tracking only, Hough only and Color only)

Acknowledgments

We gratefully acknowledge financial support from the French Government De-
fense procurement and technology agency (DGA/MRIS).

References

1. Babenko, B., Yang, M.H., Belongie, S.: Robust object tracking with online multiple
instance learning. IEEE transactions on pattern analysis and machine intelligence
33(8), 1619–1632 (2011)

2. Ballard, D.H.: Generalizing the Hough transform to detect arbitrary shapes. Pat-
tern recognition 13(2), 111–122 (1981)

3. Bertinetto, L., Valmadre, J., Golodetz, S., Miksik, O., Torr, P.: Staple: Comple-
mentary learners for real-time tracking. arXiv preprint arXiv:1512.01355 (2015)

4. Comaniciu, D., Ramesh, V., Meer, P.: Real-time tracking of non-rigid objects using
mean shift. In: Computer Vision and Pattern Recognition, 2000. Proceedings. IEEE
Conference on. vol. 2, pp. 142–149. IEEE (2000)

5. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005
IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’05). vol. 1, pp. 886–893. IEEE (2005)

6. Danelljan, M., Häger, G., Khan, F., Felsberg, M.: Accurate scale estimation for ro-
bust visual tracking. In: British Machine Vision Conference, Nottingham, Septem-
ber 1-5, 2014. BMVA Press (2014)

7. Danelljan, M., Robinson, A., Khan, F.S., Felsberg, M.: Beyond correlation filters:
Learning continuous convolution operators for visual tracking. In: European Con-
ference on Computer Vision. pp. 472–488. Springer (2016)

8. Duda, R.O., Hart, P.E.: Use of the Hough transformation to detect lines and curves
in pictures. Communications of the ACM 15(1), 11–15 (1972)

9. Duffner, S., Garcia, C.: Pixeltrack: a fast adaptive algorithm for tracking non-rigid
objects. In: Computer Vision (ICCV), 2013 IEEE International Conference on. pp.
2480–2487. IEEE (2013)

10. Gall, J., Yao, A., Razavi, N., Van Gool, L., Lempitsky, V.: Hough forests for object
detection, tracking, and action recognition. Pattern Analysis and Machine Intelli-
gence, IEEE Transactions on 33(11), 2188–2202 (2011)

11. Godec, M., Roth, P.M., Bischof, H.: Hough-based tracking of non-rigid objects.
Computer Vision and Image Understanding 117(10), 1245–1256 (2013)

12. Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: High-speed tracking with
kernelized correlation filters. IEEE Transactions on Pattern Analysis and Machine
Intelligence 37(3), 583–596 (2015)

13. Hua, Y., Alahari, K., Schmid, C.: Online object tracking with proposal selection.
In: Proceedings of the IEEE International Conference on Computer Vision. pp.
3092–3100 (2015)

14. Kristan, M., Leonardis, A., Matas, J., al.: The visual object tracking VOT2016
challenge results (2016)

15. Kristan, M., Matas, J., Leonardis, A., al.: The visual object tracking VOT2015
challenge results. In: Proceedings of the IEEE International Conference on Com-
puter Vision Workshops. pp. 1–23 (2015)

16. Kristan, M., Pflugfelder, R., Leonardis, A., Matas, J., al.: The visual object track-
ing vot2014 challenge results (2014), http://www.votchallenge.net/vot2014/

program.html
17. Maresca, M.E., Petrosino, A.: Matrioska: A multi-level approach to fast tracking

by learning. In: Image Analysis and Processing–ICIAP 2013, pp. 419–428. Springer
(2013)

18. Maresca, M.E., Petrosino, A.: Clustering local motion estimates for robust and
efficient object tracking. In: European Conference on Computer Vision. pp. 244–
253. Springer (2014)

19. Nam, H., Baek, M., Han, B.: Modeling and propagating cnns in a tree structure
for visual tracking. arXiv preprint arXiv:1608.07242 (2016)

20. Nam, H., Han, B.: Learning multi-domain convolutional neural networks for visual
tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. pp. 4293–4302 (2016)

21. Possegger, H., Mauthner, T., Bischof, H.: In defense of color-based model-free
tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. pp. 2113–2120 (2015)

22. Voj́ı̌r, T., Matas, J.: The enhanced flock of trackers. In: Registration and Recog-
nition in Images and Videos, pp. 113–136. Springer (2014)

23. Vojir, T., Noskova, J., Matas, J.: Robust scale-adaptive mean-shift for tracking.
In: Scandinavian Conference on Image Analysis. pp. 652–663. Springer (2013)

24. Yang, F., Lu, H., Yang, M.H.: Robust visual tracking via multiple kernel boosting
with affinity constraints. IEEE Transactions on Circuits and Systems for Video
Technology 24(2), 242–254 (2014)

25. Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. ACM computing
surveys (CSUR) 38(4), 13 (2006)

