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Abstract—The performance of Convolution Neural Networks 

(CNN) is highly sensitive to the choice of the hyperparameters 

that define the structure of the network and the learning process. 

When facing a new application, tuning a deep neural network is 

a tedious and time-consuming process. As a result, the human 

expert through a slow trial and error process guided mainly by 

intuition does the choice of architecture manually. This explains 

the necessity of automating the calibration of these 

hyperparameters. In this paper, we outline and describe the use 

of hyper-parameter optimization (HPO) based algorithms in 

order to auto-design and train DL models for predicting 

individuals' vigilance states using an EEG signal. Particularly, 

we estimate the Tree Parzen Estimator (TPE) algorithm with 

Optuna framework on vigilance dataset. Experiments have 

shown that by utilizing the TPE optimization, we could achieve 

the  best hyperparameter configuration, which allows us to learn 

and predict vigilance states more precisely. The accuracy and F1 

score can reach 0.90 and 0.87, respectively, with the 1D-CNN-

LSTM model using TPE, which demonstrates the effectiveness 

of the proposed method.  

 
Keywords— Hyperparameter optimization, Vigilance, Deep 

neural networks, EEG 

 

I. INTRODUCTION  

Electroencephalography (EEG) is the main modality for 

studying the electrical activity of the brain, and it has proven 

to be very suitable for predicting vigilance states. However, 

the classification of these states from this signal requires 

sophisticated approaches in order to achieve the best 

performance. Deep Learning (DL) approaches have shown a 

good performance in learning the high-level features of 

signals [1]-[2], particularly for EEG. Their large number of 

hidden layers that provide the most efficient solutions thanks 

to massive calculations characterizes them. One of the most 

powerful models in DL approaches is the Convolutional 

Neural Network (CNN). Thus, many studies have suggested 

CNN models for analyzing the EEG signal. In [3], the authors 

utilized the concept of DL on EEG signals to predict the 

driver’s cognitive workload. A CNN model was used for 

extracting features and accurately classifying the cognitive 

workload. The conducted experimental results showed that 

the proposed system could provide an accurate classification 

of high and low cognitive workload sessions. In [5], the 

authors proposed two DL models to predict individuals’ 

vigilance states based on the study of one derivation of EEG 

signals: a 1D-UNet model and 1D-UNet-Long Short-Term 

Memory (1D-UNet-LSTM). The experimental results showed 

that the suggested models could stabilize the training process 

and well recognize the subject vigilance. For example, the 

per-class average of precision and recall could be respectively 

up to 86% with 1D-UNet and 85% with 1D-UNet-LSTM. All 

these studies have used many DL approaches to analyze EEG 

signals, but the human expert through a slow trial and error 

process guided mainly by intuition has done the choice of the 

architecture empirically. In fact, the performance of these 

models is highly sensitive to the choice of the 

hyperparameters that define the structure of the network and 

the learning process. However, the rising popularity of DL 

models and their usage for diverse applications required the 

automatization of this process to adapt to each problematic. 

Much research has been done in the field of Hyperparameter 

Optimization (HPO), which can be categorized as being either 

mono-objective or multi-objective, such as grid search, 

random search, Bayesian optimization, and gradient-based 

optimization [6]–[8]. Grid search and manual search are the 

most widely used strategies for HPO [6]. These approaches 

make reproducibility harder and are impractical when there 
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are a large number of hyperparameters. Thus, the idea of 

automating hyperparameter search has been increasingly 

researched. Thus, many authors have focused on further 

automating the calibration of hyper-parameters. In [9], a 

parallel version of the Particle Swarm Optimization (PSO) 

algorithm was proposed for the hyper-parameter optimization 

of DL models to overcome two problems: (i) the search space 

which is usually high dimensional, and (ii) the high runtime. 

The experiments have revealed that the PSO would largely 

take advantage of the rapidity offered by computational 

parallelization. Those DNN architectures that are optimized 

using parallel PSO offer a superior classification performance 

compared to those set up manually. The authors in [10] 

investigated lung nodule classification by proposing a multi-

level CNN whose hyperparameter configuration was 

optimized by using a proposed Gaussian process with 

stationary kernels. The experiments demonstrated that the 

algorithm outperformed manual tuning. The authors in [11] 

put forward a new surrogate-based multi-objective 

optimization algorithm called the multi-objective Tree Parzen 

Estimator (TPE), which was an extension of the TPE widely 

used to solve expensive single-objective optimization 

problems. The experimental results showed that the suggested 

approach converged faster than the existing methods. The 

TPE success in expensive optimization problems indicates 

that it may outperform the existing methods [11]. Therefore, 

in this paper, we describe the use of the TPE algorithm for 

automatically designing and training DL models to predict 

individuals’ vigilance states using an EEG signal. This 

algorithm is applied on the 1D-CNN-LSTM and 1D-CNN 

models to improve the classification performance. This paper 

is structured as follows: Section 2 presents the materials and 

methods and introduces the DL models successfully 

implemented for vigilance state classification. It also defines 

the TPE optimization algorithm. Section 3 presents the data 

and the experimentation setup. Moreover, this section 

describes the results of the optimized suggested model and 

elaborates the discussion based on the obtained results. The 

last section concludes the paper and gives some future 

perspectives. 

 

 

II. MATERIALS AND METHODS  

One of the most important strategies used to estimate 

vigilance consists in using physiological measures to give 

more precise data about the state of an individual. The 

sequential steps of the development of the automated 

vigilance state detection system are EEG data collection, pre-

processing and classification by DL and using 

hyperparameter optimization (Figure 1).  

A. EEG signal and preprocessing   

The EEG signal is adopted in this paper to predict the 

vigilance states. This nonlinear and non-stationary signal 

characterizes the brain activity through a weakly invasive 

acquisition process, with electrodes placed along the scalp. 

To prepare the dataset, we use the same subjects (S1, S2, and 

S3) as those collected in the experimentation of the previous 

work of our team [5] [12]. The EEG data are directly recorded 

from 28 active electrodes from the scalp at the Department of 

Functional Explorations of the Nervous System at Sahloul 

University Hospital, Tunisia. This signal is recorded during 

three 24-h periods with a 15-day interval, and it involves three 

healthy male subjects aged between 18 and 23. For each 

subject, the signal is recorded for two states: vigilance and 

drowsiness. The EEG recordings are done, reviewed and 

approved by an expert, in order to label the different levels of 

alertness. In this work, we focus on analyzing a single EEG 

signal from the right pariéto-occipital (Pz-Oz) electrode used 

to characterize analyzed vigilance states. This choice is 

justified by the fact that experts agree that this signal is the 

most appropriate to reflect the vigilance state [5] [12]-[14]. 

In the first step of preprocessing, we split the signal into 

periods of four seconds (recommended by an expert) in order 

to reduce the computation complexity. Then, we filter this 

signal to eliminate artifacts using a high-pass filter to filter out 

slow frequencies less than 0.1 Hz and a low-pass filter to filter 

out frequencies above 21Hz, for obtaining after that a good 

decision-making on the state of alertness.  

The next step of preprocessing is the spectral analysis of the 

signal, which is described and successfully implemented in 

[5] [12]:  

 

(i) The 512-point Fast Fourier Transform (FFT) is used 

to transform the acquired time-series EEG data into 

a frequency domain.  

 

 

 

 

 
 

 

 

 

 

Fig.1.  EEG signal processing steps with HPO of DL models for vigilance state classification 
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(ii) The frequency range [0.1, 21Hz], which is specific 

to the range of physiological waves is split into 

elementary frequency bands (one part for each 

frequency unit) to characterize this electrical 

activity. 

(iii) In each band, the Spectral Band Power (PBS), which 

corresponds to the sum of the spectral amplitudes 

belonging to the spectral interval concerning the 

frequency band, is calculated. 

(iv) The Percentage of the Relative Spectral Power 

(PPSR) of each band is computed, which is equal to 

the PBS divided by the total spectral power.  

Computing the PPSRs relating to intervals ui and ui + 1 is given 

by equation (1): 
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Where 𝛥𝑢the length of the frequency band (Hz), k is the 

number of bands, and TSP represents the total spectral power. 

This means that the [0.1–21 Hz] interval is discretized into k 

regular sub-intervals of length𝛥𝑢. Thereby, the PPSR will be 

the input to the classification tool for vigilance state detection 

for each four seconds. 

B. DL models and hyperparametrers  

DL models are widely applied to various areas like computer 

vision, classification and segmentation, since they have had 

great success solving many types of highly complex 

problems.  

Among the most powerful models in DL approaches are the 

CNN, in particular the 1D-CNN, which has been well adopted 

in the literature for processing EEG signals [15, 16]. Its 

architecture is usually composed by a series of 1D 

convolutional, pooling, normalization and fully connected 

layers. In this paper, we use the DL models [5] that were 

implemented for vigilance state classification: 1D-CNN and 

1D-CNN-LSTM.  

1) 1D-CNN: it uses a system that has been designed for 

reduced processing requirements through convolution layers 

that utilize a single weight assigned to the inputs in the same 

convolution filter for all neurons. The convolution layers can 

adaptively learn informative features in the input signal. The 

low-level representations of the input data are learned by the 

early layers and then passed into later layers to hierarchically 

learn the high-level representations. The CNN may be used to 

classify several dimensionalities of inputs (1D, 2D,..). The 

1D-CNN has been well adopted in the literature for the 

treatment of EEG signals. Its architecture is commonly 

composed by a series of 1D convolutional, pooling and fully 

connected layers. This architecture can include also 

normalization layers. 

 

2) 1D-CNN-LSTM: This model, presented in Figure 3, is a 

combination between 1D-CNN and LSTM. The LSTM model 

is well known for being capable of learning the problem of 

long-term dependencies in temporal data, given that it 

includes an input that depends on the previous computation. 

The 1D-CNN-LSTM architecture takes the output of 1D-

CNN (last layer) to feed in as the input of the LSTM network. 

This latter is made up of four hidden cells, where a dropout 

layer to prevent overfitting follows each cell. At the end, the 

1D-CNN-LSTM architecture integrates a batch normalization 

layer, a fully connected layer and Softmax layers to 

accomplish the classification task.  

 

3) Hyperparameters: The DL models have many 

hyperparameters, including those that specify the structure of 

the network itself and those that determine how the network 

is trained. As the training speed of these networks is slow, it 

is difficult to adjust the hyperparameters. When training a 

network, the result of the model will depend not only on the 

chosen structure but also on the training method, which itself 

has several hyperparameters such as the learning rate, the loss 

function, the mini-batch size, and the number of training 

iterations. Furthermore, the structure of the neural network 

itself involves numerous hyperparameters in its design, 

including the size of each layer, the number of hidden layers, 

the number of convolution layers, the kernel size, the filter 

size, the activation function, the weight initialization, etc. 

Table 1 summarizes the hyperparameters responsible for 

defining the structure of the network and those related to the 

optimization and training process. Tuning the 

hyperparameters of DL models is a critical and time-

consuming process that has been mainly done relying on the 

knowledge of the experts. This explains the necessity of 

automating the calibration of these hyperparameters. 

C. HPO algorithm 

DL algorithms have been used widely in various applications 

and areas. To fit a deep learning model into different 

problems, its hyperparameters must be tuned. Selecting the 

best hyperparameter configuration for deep learning models 

has a direct impact on the model performance. 
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Fig.2. 1D-CNN-LSTM architecture  

TABLE 1: HYPERPARAMETERS DEFINING ARCHITECTURE AND TRAINING PROCESS OF NEURAL NETWORK.   
 

Hyperparameters Type Scope 

Number of convolution 

layers 

Categorical {0,1,..,25} 

Number of LSTM  layers Categorical {0,1,..,25} 

Number of dense layers Categorical {0,1,..,25} 

LSTM  units Categorical {32,,..,512} 

Optimizer Categorical/Integer {Adam, Rmsprop, Adadelta } 

Filter size Integer {64,128,..,1024} 

Kernel Size Integer {0,…..,10} 

Batch size Integer {10, 32, 64,128} 

Learning rate Float {0;1} 

Dropout rate Float {0;1} 

Activation function Categorical/Integer {Relu, Sigmoid, Tanh} 

 

It often requires deep knowledge of algorithms and 

appropriate hyperparameter optimization techniques. Several 

methods have been proposed for HPO such as grid search [6], 

random search [8], simulated annealing [17] and Bayesian 

optimization [18], and TPE [11][19]. The TPE success in 

expensive optimization problems indicates that it may 

outperform existing methods [11]. This algorithm is a 

Sequential Model-Based Optimization (SMBO) approach. 

SMBO methods sequentially construct models to 

approximate the performance of hyperparameters based on 

historical measurements, and then subsequently choose new 

hyperparameters to be tested based on this model.  

Consequently, the TPE is an iterative process that uses the 

history of evaluated hyperparameters to create a probabilistic 

model, which is used to suggest the next set of 

hyperparameters to evaluate.  

Let assume a set of observations that takes {(x (1), y (1)),, (x 

(k),y(k) )}. To apply the TPE, the observation results are 

divided into good and poor results by a pre-defined  

percentile 𝑦∗. The TPE defines p(x, y) using the following 

two probability density functions given by equation (2): 

 

𝑃(𝑥|𝑦) = {
𝑙(𝑥)    𝑖𝑓 𝑦 <  𝑦∗

𝑔(𝑥) 𝑖𝑓  𝑦 ≥  𝑦∗       (2) 
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Where 𝑙(𝑥) is the probability density function formed using 

the observed variables {x (i)} such that y∗ > y (i) (= f (x (i))), 

and 𝑔(𝑥) is the probability density function using the 

remaining observations. Value y∗ is selected to be a quantile 

γ of the observed y values satisfying p (y∗ > y) = γ 

After that, the expected improvement in the acquisition 

function is reflected by the ratio between the two density 

functions, which is used to determine the new configurations 

for evaluation.  

III. EXPERIMENTS AND RESULTS 

The implementation has been done to show the effectiveness 

of the HPO algorithm used to improve the performance of 

vigilance state classification. 

A. Experiment setting 

We evaluate the hyperparameter optimization algorithm on 

the DL architectures including 1D-CNN and 1D-CNN-

LSTM. Those architectures are developed using Keras whose 

libraries are written in Python. The experiments are achieved 

with an experimental implementation on a Portable Gaming 

PC with an Intel 9th-generation Core i5-9300H processor, a 

NVIDIA GeForce GTX 1650 Graphics card and 8 GB 

Memory. 

To tackle HPO problems, we use Optuna framework [20], 

which provides many HPO algorithms including the TPE. 

B. Results and discussion  

This section describes the results obtained through our 

experimentation using the HPO TPE approach. We focus on 

three subjects [5] [12] with the same size of observations in 

order to detect the vigilance states. 

The within-subject vigilance state classification is applied to 

evaluate the performance by different models, where each 

subject is taken separately and divided into 80% and 20% of 

observations for training and testing, respectively. 

Table 2 presents the hyper-parameter values obtained by the 

implemented DL models for the three subjects. This table 

shows that Adam function is more selected as an optimizer, 

which justifies the effectiveness of this function. 

Furthermore, the ReLU function is selected for all 

implementations. We note that the hyper-parameter values 

change between the models for the same subject. This proves 

that the hyperparameters are specific to the utilized 

architectures. Furthermore, the hyperparameter values vary 

between the subjects with the same DL model. This proves 

also that the hyperparameters depend on the input data, even 

if working in the same context.  

Table 3 exposes the accuracy results obtained using HPO and 

compared with the results before the optimization process for  

the 1D-CNN, 1D-CNN-LSTM models. We note that the 

classification performance in terms of accuracy is good with 

HPO. Accuracy for subject S1 using HPO can be up to 0.89 

and 0.90 with 1D-CNN and 1D-CNN-LSTM, respectively.  

Table 4 describes the classification performance in terms of 

recall, precision and F1-score using DL architectures for 

subject S1, which has the best classification accuracy, as 

depicted in Table 3 (the per-model average is 0.89). This table 

shows that the precision can achieve 0.88 using 1D-CNN-

LSTM with HPO. The F1-score can be up to 0.85 using 1D-

CNN with HPO compared to the same model without 

optimization.  

Given Table 3 and Table 4, we note that including an 

optimization phase of hyperparameters allows to 

significantly improving the classification performance for all 

subject and for all implemented DL models. Indeed, these 

results show that the iterative process of TPE is suitable for 

our application.  

IV. CONCLUSION AND PERSPECTIVES 

In this paper, we have introduced and explored the potential 

of HPO algorithms in order to give the best configurations of 

hyperparameters and to improve the performance of vigilance 

state classification based on the analysis of cerebral activities 

using EEG signals. The HPO TPE has been applied to the 1D-

CNN and 1D-CNN-LSTM models, and the optimal hyper-

parameter configuration has been generated. The 

experimental results in the study have revealed that the 

performance of vigilance state classification has been 

improved using the HPO TPE method. 

In the future, we will add more subjects for further validation 

of the DL architectures with hyperparameter optimization. In 

addition, we will evaluate more HPO algorithms in order to 

improve the system performance.
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TABLE 3 : SUBJECT VIGILANCE STATE CLASSIFICATION ACCURACY                     
 

S1 S2 

 

S3 

Without HPO[5] HPO Without HPO [5]  HPO Without HPO [5] HPO 

1D-CNN 0.80 0.89 0,79 0.88 0.80 0.82 

1D-CNN-LSTM 0.84 0.90 0,73 0.85 0.76 0.85 

AVG/Model 0.82 0.89 0.76 0.86 0.78 0.83 
 

 

 

TABLE 4 : PERFORMANCE MEASURES OF PROPOSED MODELS FOR SUBJECT 1 
  

Recall Precision F1-Score 

Without HPO [5] HPO Without HPO [5] HPO Without HPO [5] HPO 

1D-CNN 0.77 0.84 0.86 0.87 0.77 0.85 

1D-CNN-LSTM 0.85 0.87 0.80 0.88 0.81 0.87 
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