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Abstract 
The Hough transform for detecting parameterised shapes in 

images is still today mostly applied on binary images of 

contours or connected sets, which implies pre-processing of 

the images that may be costly and fragile. However the 

simple estimation of the spatial derivatives provides in 

every pixel the local geometry that can be used for dense 

voting processes, directly applied on the gray scale image. 

For lines and circles, the local information even allows to 

perform a direct 1-to-1 projection from the image to the 

parameter space, which greatly accelerates the 

accumulation process. In this paper we advocate the use of 

direct detection on gray scale images by combining Hough 

transform and multi-scale derivatives. We present the 

algorithms and discuss their results in the case of analytical 

shapes for order one (lines), and two (circles), and then we 

present the generalised Hough transform based on 

quantised derivatives for detecting arbitrary 

(non-analytical) shapes.  

1 Introduction 
Since its introduction in one of the first applications of computer vision 

[1], the Hough transform has rapidly turned into a classical tool for 

detecting parameterised shapes in images [2, 3]. In its original form, it is 

applied on binary images of contours, which implies pre-processing of 

the images. Then, the transform on binary images is performed using 

either of the two classical dual approaches: (i) the many-to-1 projection, 

which picks n-tuples of points from the binary image and select the 

unique corresponding points in the n-dimensional parameter space, and 

(ii) the 1-to-many back-projection, which, for every point of the binary 

image, draws the corresponding (n-1)-manifold in the parameter space.  
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Remarkably, the interest for Hough transforms remained strong and 

many variations have been proposed until recently [4, 5]. But it is also 

remarkable that the proposed algorithms generally follow the original 

form in the sense that the projection -or voting process- is performed 

sparsely on contour portions or salient points, using 1-to-many 

projection (most often), or (generally decimated) many-to-1 projection. 

We believe that there is a fundamental interest in performing a dense 

projection, i.e. allowing every pixel to vote, and this can be done directly 

on the gray level image by estimating the (multi-scale) spatial 

derivatives. Although more pixels are voting, these methods must be 

much faster, first because there is no pre-processing (other than the 

computation of the derivatives), and second because -in the case of 

parameterised shapes- one can perform a direct 1-to-1 projection from 

the image to the parameter space.  

The idea of using the local derivatives to accelerate the Hough 

transform is not new, it has been proposed for lines by O’Gorman and 

Clowes [6] and for differentiable curves by Shapiro [7]. But those 

approaches were still used on curves and, to our knowledge, have not 

been densely applied on gray level images, probably because at the time 

they were proposed, the techniques for estimating the derivatives on 

discrete 2d functions, based on finite differences, were not considered 

precise enough. More recently, Valenti and Gevers [8] have proposed an 

efficient eye centre location algorithm based on a voting scheme using 

the scale space curvature estimation. However, they still reduced the 

voting pixels to a thin contour previously calculated. 

In this paper we advocate the use of dense Hough transform directly 

on the gray level signal using multi-scale derivatives, and weighting the 

votes by the strength of the derivative (gradient magnitude and 

Frobenius norm of the Hessian matrix typically). We present the 

complete algorithms and discuss their results in the case of analytical 

shapes for order one (lines), and two (circles), and we present the 

generalised Hough transform based on quantised derivatives for 

detecting arbitrary (non-analytical) shapes.  

2 Analytical shapes 
According to the scale space framework [9], the spatial derivatives are 

estimated in a digital image  relatively to a certain scale  which 

represents the level of regularity, explicitly enforced by Gaussian 

smoothing:  
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  (1) 

where  is the convolution, and  the 2d Gaussian function of 

standard deviation . When working at a given scale, we will omit the  

superscript, and denote  the first and second order 

derivatives. 

  

 

   
(a) (b) (c) 

Figure 1:  Direct detection from the spatial derivatives: Line from the 

gradient (a), and circle from the isophote positive (b) or negative (c) curvature. 

  

 

    
(a) (b) (c) (d) 

 

Figure 2:  Voting weight at order 1: the norm of the gradient (a). Estimating 

the gradient direction (b), for pixels with weight over 10.0. Voting weight at 

order 2: the Frobenius norm of the Hessian matrix (c). Estimating the position 

of centre of osculating circle (d), for pixels with weight over 1.0. The scale 

estimation here is . 
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2.1 First order: lines 
If  is the estimated gradient vector, the value of the first 

derivative along any direction represented by unit vector  can also be 

estimated as . Thus the derivative along the direction orthogonal 

to the gradient is zero (isophote direction ), and so if there is a line at 

this location, its orientation must the same as  (See Figure 1(a)). Now, 

to evaluate the significance of the location with respect to the presence 

of line, it is natural to use the strength of the first derivative, i.e. the norm 

of the gradient  (See Figure 2(a)), which must be 

normalised according to the scale  [10], if this evaluation is done at 

different scales. The multi-scale voting weight at order 1 is then 

. Following the classical  parameterisation, where  is the 

distance between the line and the origin, and  is the angle made by the 

normal to the line with the  axis, the complete algorithm is shown on 

table 1. 

 

Table 1: 1-to-1 line Hough transform based on multi-scale gradient. 

 

  

Figure 3 shows the output of the transform, compared to the 

1-to-many transform computed on a contour of the same image. The 

computation time of the 1-to-1 transform is in fact smaller than the 



5 

computation time of the contour image (which involves non local 

maxima suppression and hysteresis thresholding), while the complexity 

of the 1-to-many transform is one order of magnitude larger for each 

voting points, because every vote draws a sine curve in the parameter 

space. The 1-to-1 transform is naturally sparser, because, even if the 

number of voting pixels is significantly greater (all the pixels vote), only 

a few of them have significant vote, and more importantly, every pixel 

vote into one single point.  

  

(a) (b) 

  

(c) (d) 

 

Figure 3:  Top: 1-to-many line Hough transform (b) computed on the 

contour image (a): Canny algorithm with , hysteresis threshold with 

 and . The 20 best lines are overlaid in blue. Bottom: 1-to-1 

line Hough transform (d) computed on the grey level image (c) using 

multi-scale gradient ( .The 20 best lines are overlaid in 

yellow. 

 The sparsity, which can be a difficulty in the detection of the local 

maxima used to select the best lines, can be moderated by interpolating 

the vote over neighbouring cells according to the quantisation or by 
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explicitly smoothing the transform. But more interestingly, the 

concurrent use of multiple scales is a benefit for the detection, as 

illustrated on Figure 4: the finer scales improve the localisation of the 

main peaks while the coarser scales reduce the influence of the spurious 

structures. For the results shown on Figure 3, a non-local-maxima 

deletion was performed in the parameter space, and an exclusion 

distance of  was applied to find the best . 

 

   
(a) (b) (c) 

Figure 4:  Influence of the multi-scale: Topographic close-up around a 

maximum of the 1-to-1 line Hough transform, using 1 single fine scale (a): 

, 1 single coarse scale (b):  and 3 scales (c): 

. 

2.2 Second order: circles 

If  is the estimated Hessian matrix, the value of the 

second derivative along any couples of direction represented by unit 

vectors  and  can be estimated as . When , with 

 in the isophote direction, we get:  

 

  (2) 

This is the second derivative in the direction of the isophote, that is, the 

estimation of the curvature, which represents the inverse radius of the 

osculating circle to the isophote curve. Then, if there is a circle at 

location  with gradient  and curvature , the radius of 

this circle must be  and its centre must be  

(See Figure 1 (b) and (c)). Again, we can evaluate the significance of the 

location with respect to the presence of circle by using the strength of the 

second derivative, i.e. the Frobenius norm of the Hessian matrix 

 (See Figure 2 (c) and (d)), which must 
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be normalised by  if using different scales. See Table 2 for the 

complete algorithm. 

  

Table 2: 1-to-1 circle Hough transform based on multi-scale gradient and 

curvature. 

  

Figure 5 shows results of this algorithm, compared to the 1-to-many 

Hough transform performed on the contour of the same image. The 

computation time of the 1-to-1 transform is still smaller than the 

computation time of the contour image, whereas the computation 

complexity of the 1-to-many transform is 2 order of magnitude more per 

voting points because every point draws a surface (cone) in the 3d 

parameter space. The sparsity of the 1-to-1 transform is still more visible 

than for the lines, because of a larger parameter space. The detection of 

maxima is then more challenging. For the results shown in Figure 5, we 

have applied a 3d recursive exponential smoothing filter ( ) in the 

Hough space, followed by a non-local-maxima deletion and an 

exclusion distance of  for the detection of the best 

. 
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(a) (b) 

  
(c) (d) 

  

Figure 5: Top: One plane ( ) from the 1-to-many circle Hough 

transform (b) computed on the contour image (a): same parameters as Figure 3. 

The 7 best circles are overlaid in blue. Bottom: The same plane from the 1-to-1 

line Hough transform (d) computed on the grey level image (c) using 

multi-scale curvature ( . The 7 best circles are overlaid in 

magenta. 

3 Non analytical shapes 
The direct calculation of the Hough transform on the gray scale image 

using multi-scale derivatives can also be used for the generalised Hough 

transform to detect arbitrary objects. In the classical approach [3], the 

arbitrary shape is a closed contour indexed by the local orientation. 

Since then, many variations on implicit shape models have been 

proposed. For example Leibe et al [4] use a collection of interest points 

instead of a contour, and index every point using visual codebook 

obtained by clustering. 

In voting based representation, it is clearly important to have a 

significant number of voting points. In this sense, we believe that the use 

of the whole image instead of a collection of contour or interest points is 

a benefit. Table 3 describes the algorithm used to create the 

representation (the R-table) of a shape template  which is simply a 
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gray scale image. Every pixel of the template is indexed by a contrast 

invariant derivative of order 1: the argument of the gradient, and of order 

2: the curvature. These derivatives are quantised to limit the size of the 

R-table, and the curvature is bounded to  (the high curvatures are 

merged). Every new entry in the R-table add a new element to the list 

corresponding to the calculated index, which contains the relative 

coordinates of the voting point with respect to the centre of the template, 

and also, in conformity with the previous section, the voting weight of 

the point, corresponding to the magnitude of the gradient or to the 

Frobenius norm of the Hessian matrix according to the order of the 

index. Likewise, several scales of estimation can be used, at the cost of 

multiplying the number of R-tables. Obviously, the size of the R-tables 

can be reduced by eliminating the entries whose weight is considered too 

small.  

 

Table 3: R-Tables at order 2 calculated on a gray scale template T. 

  

The off-line calculated R-Table is then used for online detection 

using the generalised Hough transform shown in Table 4, which is 

basically the same as the classical algorithm, except that every pixel vote 

according to its orientation and curvature indexes, and its votes are 

weighted as indicated in the R-table.  
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Table 4: Generalised Hough transform on gray scale image at order 2. 

  

One example of construction of the prototype is shown on Figure 6. 

In this example, one single image template is used, and 4 R-Tables are 

constructed, corresponding to 2 orders and 2 scales of estimation. The 

corresponding labels (gradient orientation and curvature) are quantised 

to 30 values which form the number of indexes of the R-tables. The 

calculation of the general Hough transform is shown on Figure 7 on a 

composite image of side viewed cars (All images are taken from the 

image database of UIUC for car detection [11]). For selecting the best 

detections, an exclusion distance corresponding to the quarter of the 

template sizes was used. What can be seen from this experiments is that 

the general Hough transform calculated from gray scale derivatives 

keeps the good properties of the transform on contours: invariance to 

contrast changes, robustness to occlusions, while being faster to 

compute and less sensitive to poor contrast in the detection, because 

every pixel is voting according to the significance of its counterpart in 

the template. 
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( ) ( ) ( ) ( ) 

    
  

Figure 6:  Object template (top). Labels used as indexes of the R-tables 

(middle line), at order 1 and 2, for two scales, and their associated weights 

(bottom line). 

  

 

  
 

Figure 7:  General Hough transform calculated on a composite image of side 

viewed cars, using the R-tables obtained from the template of Figure 6. The 10 

best detections are shown as overlaid rectangles, numbered by order of 

detection. 

4 Concluding remarks 
Our purpose in this paper was to convince that the dense Hough 

transform on gray level images using multi-scale derivatives is 

interesting both in terms of robustness (thanks to a higher number of 
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weighted votes), and computational efficiency (thanks to lighter 

pre-processing and 1-to-1 vote). It seems hard to design a systematic 

evaluation to decide more objectively when dense derivatives should be 

preferred to sparse contours, because it hardly relies on the quality of the 

contour. Naturally, it can be said that contours will work better for 

finding curves made of discontinuous structures (e.g. finding alignments 

in plant fields). In the general case, a more thorough validation is needed 

to evaluate the influence of the chosen scales and weights. We are also 

planning to design a more general framework to apply the dense Hough 

transform for object detection based on multiple derivatives.  
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