
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

A Novel Hybrid Grid Search and Tree Parzen

Estimator for Deep Learning Hyperparameters

Optimization

Souhir Khessiba

 Laboratoire de Technologie et

Imagerie Médicale, Faculté de

Médecine de Monastir, Université de

Monastir

Institut Supérieur d’Informatique et des

Technologies de Communication de

Hammam Sousse, Université de Sousse

U2IS, ENSTA Paris, Institut

Polytechnique de Paris,

Palaiseau, France

Sousse, Tunisie

souhir.khessiba@ensta-paris.fr

Antoine Manzanera

U2IS, ENSTA Paris, Institut

Polytechnique de Paris,

Palaiseau, France,91120

antoine.manzanera@ensta-paris.fr

Ahmed Ghazi Blaeich

 Laboratoire de Technologie et

Imagerie Médicale, Faculté de

Médecine de Monastir, Université de

Monastir

Institut Supérieur des Sciences

Appliquées et de Technologie de

Sousse, Université de Sousse

Sousse, Tunisie

ahmedghazi.blaiech@issatso.u-sousse.tn

Khaled Ben Khalifa

 Laboratoire de Technologie et

Imagerie Médicale, Faculté de

Médecine de Monastir, Université de

Monastir

Institut Supérieur des Sciences

Appliquées et de Technologie de

Sousse, Université de Sousse

Sousse, Tunisie

khaled.benkhalifa@issatso.rnu.tn

Asma Ben Abdallah

Laboratoire de Technologie et Imagerie

Médicale, Faculté de Médecine de

Monastir, Université de Monastir

Institut supérieur d’informatique et de

Mathématiques, Université de

Monastir,

 Sousse, Tunisie

assoumabab@gmail.com

Mohamed Hédi Bedoui

Laboratoire de Technologie et Imagerie

Médicale, Faculté de Médecine de

Monastir, Université de Monastir

Monastir, Tunisie

medhedi.bedoui@fmm.rnu.tn

Abstract—Hyperparameter optimization plays a crucial role

in maximizing the performance of Deep Learning (DL) models,

particularly in the medical field. In this study, we propose a

novel hybrid approach called GS-TPE, which combines Grid

Search (GS) and Tree Parzen Estimator (TPE) for optimizing

the hyperparameters of DL architectures in order to enhance the

vigilance states classification from the EEG signals. Our

experiments demonstrate that the GS-TPE approach competes

with the state of the art on multiple performance metrics, leading

to significantly improved classification results. The obtained

accuracy with combined one-Dimensional Convolutional Neural

Network and Long Short-Term Memory (1D-CNN-LSTM) and

with combined Auto-Encoder and LSTM (AE-LSTM)

architectures reach 93.74 and 93.53%, respectively. The

proposed GS-TPE approach shows great promise for advancing

the field of medical signal analysis and enhancing the accuracy

of EEG-based diagnostic systems.

Keywords—Hyperparameter Optimization, Deep Learning,

Tree Parzen Estimator (TPE), Grid Search (GS), Vigilance State

Classification.

I. INTRODUCTION

Deep neural networks (DNNs) have successfully been

applied across various data-intensive applications ranging

from computer vision, bioinformatics and biomedical

applications. Hyperparameters of a DNN are defined as

parameters that remain fixed during model training and

heavily influence the DNN performance. Hence, regardless of

application, the design-phase of constructing a DNN model

becomes critical. Framing the selection and tuning of hyper-

parameters is an expensive black-box optimization problem,

and obstacles encountered in manual by-hand tuning could be

addressed by taking instead an automated algorithmic

approach.

Recently, many researches were proposed for

Hyperparameter Optimization (HPO) using different methods

and several novel approaches were suggested. Grid Search

(GS) [1], Bayesian Optimization (BO), Random Search (RS)

[2] [3] and many heuristic algorithms have been used for HPO

of CNN, such as Particle Swarm Optimization (PSO) and Tree

Parzen Estimator (TPE) [4]. In addition to these algorithms,

there are many studies in the literature that try to improve an

existing optimization technique or develop a hybrid one by

combining some of these optimization techniques. The

simplest algorithm for HPO is GS which is used in [5], the

authors specify a finite set of values for each hyperparameter,

and GS evaluates the whole Cartesian product of these sets.

This is very inefficient because the required number of

function evaluations grows exponentially with the

dimensionality of the hyperparameter space. In [6], an

OLPSO (Orthogonal Learning Particle Swarm Optimization)

approach was presented in which hyperparameters values

were optimized for VGGNet network on plant disease

diagnosis. The batch size and the dropout rate were used as

hyperparameters. Through experiments, they proved that their

approach achieves better performance and higher accuracy

than other methods for the same data. In [7] a search approach

was proposed to find the optimal model through

hyperparameter tuning for a neural network using the uDEAS

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

method in order to minimize the cost. The proposed method

was applied on two neural networks: Auto-Encoder (AE) and

CNN, and was able to find the optimal hyperparameters

setting with higher convergence rate and lower computational

complexity than the classical random search. [8] studied a

PSO and GS hybrid method for parameter optimization of

SVM. They used GS to narrow down the search space and

used PSO for detailed research in this confined search space.

In [9], a hybrid optimization approach of Genetic Algorithm

(GA) and PSO using Random Forest (RF), called GAPSO-

RF, was developed in order to select optimized

hyperparameters that improve the accuracy of cardiac disease

prediction. In [10], the TPE algorithm has been proposed

through the Hyperas tool in order to optimize CNN

hyperparameters for classifying pulmonary nodules at an

early stage.

In order to improve the performance of DL models, our

study presents an innovative contribution by introducing a

new hybrid method called Grid Search-Tree Parzen Estimator

(GS-TPE) that combines GS and TPE, inheriting their

strengths and compensating their weaknesses. The primary

contribution of our research is to demonstrate the efficacy of

GS-TPE in improving the classification performance of DL

models on EEG signals. To validate this claim, the study

compares the impact of the proposed GS-TPE approach with

that of GS, Random Search (RS) or TPE alone on the same

dataset. Furthermore, the study evaluates the performance of

the DL models in their default state (i.e. with empirically

defined hyperparameters), in order to highlight the added

value of the GS-TPE hybrid approach.

The remainder of this paper is organized as follows.

Section 2 introduces the DL architectures implemented for

vigilance state classification, their hyperparameters and the

HPO algorithms used. In Section 3, we describe the proposed

new approach for hyperparameter optimization. Section 4

presents the dataset and the theoretical background describing

EEG signal preprocessing for vigilance state detection and

then provides experiments focusing on vigilance

classification and performs a comparative study, comparing

our approach with the baseline HPO algorithms namely GS,

RS and TPE. The last section concludes the paper and gives

some perspectives.

II. THEORETICAL BACKGROUND

 In this section, we focus on the theoretical bases of our

study. We first introduce the DL algorithms employed,

providing a brief overview in terms of architecture and

functionality. Next, we will detail the hyperparameters,

highlighting the ones to be optimized. We will also present

the HPO techniques used in our study.

A. DL algorithms

 DL is a powerful subset of Machine Learning (ML) that is

inspired by the structure and function of the human brain. It

involves training artificial neural networks with multiple

layers to learn complex patterns and make accurate

predictions or decisions. DL models have shown exceptional

performance in various domains. In this study, three neural

network models were used for vigilance classification: an

LSTM-based model, a 1D-CNN-LSTM model and an AE-

LSTM model.

1) LSTM Architecture

 In this study, we used a stacked four-layer LSTM network to

process temporal data. The choice of using four LSTM layers is

empirical. More specifically, we feed features vectors of size 21.

These features vectors are derived from pre-processing

applied to each 4-second segment of the raw signal. Each

feature represents a frequency band. The network in Fig. 1

illustrates the details. Each feature vector is fed into the first

LSTM layer (LSTM-1). This layer processes the data by

calculating activations based on the current inputs and the

hidden state of this layer, which is initialized to zero. The

activations generated by LSTM-1 are then passed on to the

second LSTM layer (LSTM-2). The LSTM-2 layer carries on

this processing, using the activations received from LSTM-1

as well as the hidden state from the previous time step for its

calculations. This process is repeated for the third (LSTM-3)

and fourth layers (LSTM-4). At each time step, a decision is

made. To classify the data, we use a fully connected layer

(FC). In addition, between the LSTM-2 and LSTM-3 layers,

we have added a dropout layer. This helps prevent overfitting.

To process subsequent vectors, the same process is

performed, but this time the hidden states of the LSTM layers

are those calculated from the previous vector. That means that

the relevant information extracted from the feature vector in

step 𝑛 − 1 is used to process the feature vector at step 𝑛. By

transferring hidden states from one step to another, we can

capture temporal dependencies. The HPs selected for

optimization are the number of units in the LSTM layers for

the LSTM network and the Dropout rate. Also, the HPs

related in particular to the network training process such as

learning rate and batch size.

Fig. 1: LSTM Architecture

2) 1D-CNN-LSTM Architecture

 The hybrid 1D-CNN-LSTM architecture is an interesting

choice for vigilance state classification, by combining the

advantages of CNN and LSTM networks [11] (Fig. 2). Firstly,

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

CNNs are used to identify and extract specific features from

input data. Feature vectors are processed by a CNN made up

of three blocks, each one integrating convolution-1D and

pooling layers. The first two blocks also contain Dropout

layers to prevent overfitting and enhance model

generalization. The features extracted by the CNN are then

fed into a stacked LSTM network, composed of three layers.

LSTM are particularly effective in the capture of temporal

dependencies in EEG data sequences, due to their ability to

memorize information over long periods and to handle

sequences with long-term dependencies. Such networks use

memory cells and gate mechanisms to prevent the problem of

vanishing gradients, allowing better storage of pertinent

information over time. The main HPs selected for

optimization are the number of filters in each of three

convolution layers for the CNN, and the number of units in

the LSTM layers for the LSTM network.

Fig. 2: 1D-CNN-LSTM Architecture

3) AE-LSTM Architecture

 The AE-LSTM architecture combines the encoder element

of an auto-encoder with an LSTM network. First, the auto-

encoder is trained to learn a latent representation of the EEG

signals. Where each vector within this representation has 6

features. The encoder output (the latent space) then serves as

input to the LSTM network, which is composed of four layers

(Fig.3).

Fig. 3: AE-LSTM Architecture

One of the interesting aspects of this combination is that auto-

encoders are designed to learn latent representations from

input data. The size of the input data can be considerably

reduced, while relevant information is retained. On the other

hand, the use of LSTM enables the temporal dependencies

within the EEG signal to be captured.

The HPs to be adjusted are mainly related to the LSTM

network. They include the number of units in each LSTM

layer and the HPs related in particular to the network training

process such as learning rate and batch size.

B. Hyperparameters (HP)

 HP are key variables that impact the behavior and

performance of a ML algorithm. They are set before the

training process and influence the learning process and the

resulting model's capacity and complexity. Finding the

optimal values of HP helps to improve performance and avoid

problems such as overfitting. Hence, HPO is critical for the

performance gain of any ML technique, particularly in DL, in

which the number of HP is extremely large according to the

number of layers. Therefore, the goal of HPO is to find out

the best values of HP in any of the DL techniques as well as

the best architecture size to reach the best performance in a

test set. This optimization can be formalized as equation (1):

 𝑣 = 𝑎𝑟𝑔 𝑚𝑖𝑛 𝑓(𝑥)𝑥∈𝑇 (1)

where 𝑓(𝑥) represents an “objective function” that is

precisely one or more metrics that we want to minimize (such

as error rate) or maximize (such as accuracy) evaluated in the

validation set, 𝑣 represents the set of HP that will fetch the

optimal value from the objective function, and x can be any

value in the domain 𝑇, which covers the range of values

defined for the specified HP to be explored.

In this paper, we will use several optimization algorithms,

notably GS, RS and TPE, in order to achieve HPO across

different architectures. Table I details the HPs that need to be

optimized for the three architectures presented above, as well

as the defined search space used for GS, RS and TPE

independently, and for GS-TPE and RS-TPE. It also shows

the step size for GS, as well as the bounds used for each HP

to create new search spaces for TPE while using TPE as part

of the GS-TPE and RS-TPE approaches. The setting of the

search space was based essentially on the assumption that

empirical parameters used in the non-optimization versions

were in the middle of each range. Among the HPs chosen for

all architectures is the learning rate, the number of filters for

convolution network architectures such as 1D-CNN-LSTM,

and the number of units in LSTM layers for LSTM, AE-

LSTM and 1D-CNN-LSTM. The batch size was also selected.

C. Hyperparameters optimization algorithms

 In this section, we will present the hyperparameter

optimization (HPO) algorithms employed in our study: Grid

Search (GS), Random Search (RS) and Tree-structured

Parzen Estimator (TPE).

1) Grid Search algorithm (GS)

The first algorithm used is Grid search (GS) which is an

optimization method used in machine learning to optimize

hyperparameters. It systematically explores all possible

combinations of hyperparameter values within defined ranges

to find the optimal configuration.

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

2) Random Search algorithm (RS)

Random search is also a method for optimizing

hyperparameters in machine learning. But unlike grid search,

it randomly selects and evaluates different combinations of

hyperparameters within the search space [2].

3) Tree Parzen Estimator algorithm (TPE)

 TPE is an enhanced version of the Bayesian Optimisation

(BO) algorithm that addresses the limitations of traditional

BO in handling classification and conditional parameters,

resulting in improved efficiency. It is widely used for HPO in

DL models, including CNN [4].

[12]. The primary procedure of the TPE algorithm involves

initially transforming the HP space into a non-parametric

density distribution and subsequently modeling the process

𝑝(𝑥|𝑦). As shown in equation (2), TPE uses two density

distributions of Equation to define 𝑝(𝑥|𝑦), 𝑦 < 𝑦 ∗, indicates

that the value of the objective function is less than the

threshold, and 𝑦 ≥ 𝑦 ∗ denotes that the value of the objective

function is greater than or equal to the threshold.

 𝑝(𝑥|𝑦) = 𝑙(𝑥) 𝑖𝑓 𝑦 < 𝑦 ∗ (2)

 𝑔(𝑥) 𝑖𝑓 𝑦 ≥ 𝑦 ∗

The calculation of Expected Improvement (EI) is shown in

Equations (3–5).

𝐸(𝑥) = ∫ (𝑦 ∗ −𝑦)
𝑝(𝑥|𝑦) 𝑝(𝑦)

𝑝(𝑥)
 𝑑𝑦

𝑦∗

−∞
 (3)

𝛼 = 𝑝(𝑦 < 𝑦 ∗) (4)

𝑃(𝑥) = ∫ 𝑃(𝑥|𝑦) 𝑃(𝑦) 𝑑𝑦 (5)

Substitute (4), (5) into (3) to get the final (6)

 𝐸𝐼𝑦∗(𝑥) = (𝛼 +
𝑔(𝑥)

𝑙(𝑥)
 (1 − 𝛼))−1 (6)

It can be seen from (6) that point 𝑥∗ with the largest 𝐸𝐼 is the

point with the smallest 𝑔(𝑥)/𝑙(𝑥). The TPE algorithm

evaluates the improvement points according to 𝑔(𝑥)/𝑙(𝑥) in

each iteration, and finally returns a point 𝑥∗ with the largest

EI.

III. PROPOSED METHODOLOGY

 This section demonstrates a novel approach to building

automated DL models using a metaheuristic algorithm for

classification problems. We will detail the conceptual

foundations and motivations that guided its design.

We propose a novel approach named GS-TPE based on a

hierarchical combination of GS and TPE, which exploits the

advantages of both. Initially, GS is used for a coarse grid

exploration in hyperparameter space, in which a set of values

is defined for each HP that needs to be optimized, and then a

grid is generated that covers all possible combinations. Each

combination is then evaluated on a validation set using a

predefined metric, such as accuracy. Once all the

combinations are evaluated, the 5 best configurations are

selected. This number was selected taking into account

computational time constraints to maintain the optimization

process within a reasonable resource limit. Then, each one of

these 5 HP configurations is used as initialization of a TPE

algorithm, that refine the optimization by searching a better

solution around each candidate HP. The HPs space, denoted

by x in the flowchart, is then divided into five subspaces that

will be explored independently by TPE. Basically, the TPE

search strategy is divided into two phases: The first phase,

called "warm-up", is a random exploration of a given space of

hyperparameters (HPs), performing 20 iterations (n_init).

Each HP combination builds a model which is then evaluated

on a validation set to determine its performance in terms of

accuracy. A function based on the Bayesian rule 𝑝(𝑥∣𝑦) is then

constructed, where 𝑦 denotes the validation accuracy and 𝑥

the HP set. These HP sets are divided into two categories:

good 𝑙(𝑥) and bad 𝑔(𝑥), based on a parameter 𝛾 fixed at 0.25,

meaning that 25% of the combinations are considered as

good.

Architectures HP Search Space Step for GS HP bounds

used by TPE

LSTM

LSTM_1_unit {32,128} 2𝑛, n∈{5,6,7} ± 20

LSTM_2_unit {32,128} 2𝑛, n∈{5,6,7} ± 20

LSTM_3_unit {16,64} 2𝑛, n∈{4,5,6} ± 20

LSTM_4_unit {8, 32} 2𝑛, n∈{3,4,5} ± 10

Dropout {0.1, 0.5} 0.2 ± 0.1

Batch size {32,128} 2𝑛, n ∈{4,5,6,7} ± 16

Learning rate ℝ[10−2, 10−4] 10−1 ± 10−5

1D-CNN-

LSTM

Conv_1D-1 filters {32,128} 2n , n∈ {5,6,7} ± 12

Conv_1D-2 filters {32,128} 2n , n∈ {5,6,7} ± 12

Conv_1D-3 filters {64,256} 2n , n∈ {6,7,8} ± 12

LSTM_1 unit {10,50} 20 ± 5

LSTM_2 unit {10,50} 20 ± 5

LSTM_3 unit {5,25} 10 ± 3

Learning rate ℝ[10−2, 10−4] 10−1 ± 10−5

AE-LSTM

LSTM_1 unit {30, 50} 10 ± 6

LSTM_2 unit {30, 50} 10 ± 6

LSTM_3 unit {30,50} 10 ± 6

LSTM_4 unit {5, 25} 10 ± 3

Batch size {16,128} 2n, n∈{4,5,6,7} ± 10

Learning rate ℝ[10−2, 10−4] 10−1 ± 10−5

TABLE I. HYPERPARAMETERS AND EXPLORATION RANGES BASED ON GS-TPE OPTIMIZATION APPROACH

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Fig. 4: Flowchart of the proposed GS-TPE approach

The aim of the second phase is to maximize the expected

improvement (EI) ratio by selecting HPs 𝑥 with high

probability under 𝑙(𝑥) and low probability under 𝑔(𝑥). This is

done by sampling n_EI combinations of HP values (n_EI =24)

and the one offering the greatest EI improvement is selected,

then the process is repeated, including all previous

combinations, until the specified number of tests is reached.

The process is repeated for the 5 HP search spaces defined in

the study, and the optimum configuration is selected for

evaluation on test data. The default TPE parameters used are:

n_init = 20, 𝛾=0.25, n_EI =24.

IV. EXPERIMENT AND RESULTS

 The primary goal of this section is to illustrate the

effectiveness of the proposed GS-TPE in enhancing the

accuracy and effectiveness of vigilance state classification.

We first describe the database we used, as well as how we

prepared the data, the experimental setting and the results

obtained.

A. EEG: Data and pre-processing

 In this study, we focus on EEG signals. Such signals are

highly relevant in the medical field. The traditional

acquisition techniques are based on measuring the potential

variation of the cerebral cortex activity on the scalp surface.

The intensity and the shape of the EEG electrical activity

depend strongly on the level of brain activity. This signal is a

dynamic, stochastic and non-stationary electrical activity

whose recording depends essentially on the position of the

electrodes and also on the vigilance or sleep state of the

subject. The EEG data are collected at the center of vigilance

and sleep at the Faculty of Medicine of Monastir. We started

from a collected set of six healthy subjects aged 18–23 which

were used in previous work of our team [12] [13] [14]. For

each subject, we carried out three 24-h recordings with a 15-

day interval. Recordings are done for two states: vigilance

state (VS) and drowsiness state (DS). Expert labeling of the

EEG recordings is performed, reviewed and approved. In the

preprocessing phase, we were interested mainly in achieving

a size-reduced acquisition system: Only one EEG signal

derivation was analyzed [the right parieto–occipital (Pz–Oz)].

For each 4s portion from an EEG signal, the spectral power

was calculated by the Fast Fourier Transform (FFT) with a

Hamming window and a 512-point resolution. From this

spectrum, only the frequencies included in the interval [0.1–

21 Hz] were conserved. This interval corresponds to the field

of adherence of the physiological waves (lower than 21 Hz)

while eliminating the continuous component (0 Hz

frequency). Then, the power spectrum was subdivided into

elementary frequency bands. Each band represents the sum of

the spectral amplitudes included in the spectral interval

corresponding to a frequency band. For each frequency band,

we calculated the percentage of its relative spectral power

(PRSP), which is equal to the spectral band power (SBP)

divided by the total spectral power (TSP). Computing these

PRSPs is done by equation (7):

 𝑃𝑅𝑆𝑃𝑖=
𝑆𝐵𝑃[𝑈𝑖+𝑈𝑖+1]

𝑇𝑆𝑃
*100 (7)

where 𝑢𝑖 = 0.1 + (𝑖 −1) *△ 𝑢; 𝑖 ∈ [1, . . . , 𝑘]

and △ 𝑢 =
(21−0.1)

𝑘

where △ 𝑢 is the length of the frequency band and 𝑘 the

number of bands. Actually, the [0.1-21 Hz] interval was

discretized into k regular sub-intervals of △ 𝑢 length.

Thereby, the 𝑃𝑅𝑆𝑃 will be the input to the classification tool

for vigilance state detection using DL architectures.

B. Database processing

 In the case study, LSTM models require sequences as input,

since they are designed to deal specifically with temporal

dependencies within temporal sequences. In order to be able to

train our LSTM-based models, i.e., LSTM, CNN-LSTM and

AE-LSTM, it is important to generate sequences based on

extracted EEG features. We therefore adopted the sliding

window technique. A fixed sequence size of 5 was used for

each patient. Table II describes the sequence creation process.

We have 1494 feature vectors of 21 length, from which 1470

sequences were created. Next, these sequences were divided

into training, validation and test sets.

TABLE II. SEQUENCE CREATION AND DISTRIBUTION OF EEG DATA

Number

of

samples

Sequence

length

Total

sequen

ces

Training

sequence

s (60%)

Validation

sequences

(20%)

Test

Sequenc

es (20%)

1494 5 1470 882 294 294

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

C. Experimental setting

1) Working environment

 We have evaluated HPO algorithms using different

architectures. That were implemented using Keras, whose

libraries are written in Python. The hardware configuration

included an NVIDIA GeForce RTX 3090 GPU with 32 GB

and an 11th Gen Intel® core™ i9-11900F processor. In order

to deal with HP optimization problems, we used the Optuna

Framework, which provides a variety of algorithms including

TPE.

2) Experimental setup for HP optimization

 In this section, we describe the settings used in the

optimization experiments for the different architectures. Each

architecture was associated with a given set of GS

combinations and a specified set of RS and TPE iterations. In

order to provide a balanced and meaningful comparison

between the different optimization methods, we established

standardized criteria for each of them. For example, we

decided to set the number of iterations for RS to be one-third

of the total number of GS combinations. Similarly, we opted

for 350 iterations for the TPE algorithm (Table III). We used

the same settings for the GS-TPE algorithm.

TABLE III. EXPERIMENTAL CONFIGURATION

D. Discussion and results

 In the context of HPO, we opted to evaluate the different

baseline optimization algorithms, i.e., RS, GS, TPE, as well

as our novel GS-TPE approach. Table IV presents the results

obtained in terms of accuracy, which was evaluated on both

validation and test data.

To further evaluate the effectiveness of RS and GS, we have

compared the results obtained with these two algorithms

across all models. The results show that, overall, GS performs

slightly better than RS. As an example, for LSTM, GS

achieved a validation accuracy of 92.99% and a test accuracy

of 89.38%, compared to 91.16% and 87.55% for RS. For

CNN-LSTM, significant differences were observed between

the different optimization methods. Using RS, we achieved a

validation accuracy of 94.56% and a test accuracy of 91.02%.

Comparatively, GS improved on this, achieving a validation

accuracy of 95.03% and a test accuracy of 92.38%

As for the TPE algorithm, we noticed that its use yielded

better results. For 1D-CNN-LSTM architecture, the best

performance reached 95.37% on validation set and 93.12% on

test set compared to 89.79% with no optimization process.

These results underline the effectiveness of TPE in refining

HPs and improving model performance. The table clearly

shows the positive impact of TPE integration on model

performance for GS-TPE approach. When comparing GS

with GS-TPE, it is clear that TPE integration significantly

improves results by refining the HPs search. For the LSTM

model, the improvement is more marked, with test accuracy

increasing from 89.38% to 91.15% for GS and GS-TPE

respectively. Also, for 1D-CNN-LSTM, there is an

improvement (from 92.38% to 93.74%).

 Table V shows the validation results for the different

architectures using the GS-TPE approach, detailed for the 5

different configurations pre-selected by GS. The results

demonstrate that integrating TPE systematically improves the

performance obtained by GS.

For the LSTM model, the best accuracy performance is

achieved in configuration 4, rising from 92.78% to 94.01%

after TPE integration. Similarly, for the CNN-LSTM model,

the best performance is obtained in configuration 3, reaching

97.48% (Fig.5). And for the AE-LSTM model, configuration

4 registered the best performance, upgrading to 95.31% from

94.76%.

Architectures

GS

combinations

RS

iterations

TPE

iterations

LSTM 2187 729 350

CNN-LSTM 2187 729 350

AE-LSTM 972 324 350

TABLE IV. SUBJECTS VIGILANCE STATE CLASSIFICATION ACCURACY

SUBJECTS VIGILANCE STATE CLASSIFICATION ACCURACY

Without

HPO

RS GS TPE GS-TPE

Test

Acc

Validation

ACC

Test

Acc

Validation

ACC

Test

Acc

Validation

ACC

Test

Acc

Validation

ACC

Test

Acc

LSTM 86.39 91.16 87.55 92.99 89.38 92.45 90.20 94.01 91.15

1D-CNN-LSTM 89.79 94.56 91.02 95.03 92.38 95.37 93.12 97.48 93.74

AE-LSTM 88.43 94.76 91.97 95.24 92.58 90.07 88.37 95.31 93.53

TABLE V. PERFORMANCE OF GS-TPE CONFIGURATIONS IN TERMS OF ACCURACY ON VALIDATION DATA FOR LSTM, CNN-
LSTM, AND AE-LSTM ARCHITECTURES

SUBJECTS VIGILANCE STATE CLASSIFICATION ACCURACY
 LSTM CNN-LSTM AE-LSTM

Accuracy/Validation_data (%) Accuracy/Validation_ data (%) Accuracy/Validation_data (%)

GS TPE GS TPE GS TPE

Configuration-1 92.99 93.74 95.03 96.73 95.24 95.24

Configuration-2 92.85 93.19 94.89 97.00 94.89 95.17

Configuration-3 92.78 93.67 94.76 97.48 94.89 95.10

Configuration-4 92.78 94.01 94.62 96.32 94.76 95.31

Configuration-5 92.78 93.67 94.28 96.80 94.76 95.17

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Table VI presents a comparison of performance metrics

between LSTM and 1DCNN-LSTM, evaluated in terms of

Recall, Precision, and F1-Score. The 1DCNN-LSTM model

outperforms the LSTM with a Recall of 93.56% compared to

89.88%, a Precision of 94.30% versus 92.80%, and an F1-

Score of 93.92% against 91.31%. Despite these

improvements, GSTPE further boosts performance,

enhancing these metrics even more for both models.

Table VII presents the best HP configurations found using the
GS-TPE approach for the 1D-CNN-LSTM architecture. It is
divided into two parts: the first presents the initial
configurations found by GS, and the second demonstrates the
optimal configurations after TPE fine-tuning. the five best
initial GS configurations were optimized and improved
Among them, the initial configuration 3 (config 4), identified
by the GS approach, was optimized into a new configuration
(config 3') using the TPE algorithm, giving the best results.
The improvements resulting from the TPE consist in re-
evaluating and adjusting the units in the various LSTM layers.
This change improves the results.

CONCLUSION AND PERSPECTIVES

This study proposed a novel hybrid approach GS-TPE that

combines GS and TPE for optimizing hyperparameters in DL

models. The results obtained from this approach clearly

demonstrate its effectiveness in improving models

performance. The results also demonstrate its superiority over

non-optimized models and its improvement over both TPE

and the basic GS algorithm. As a result, this study highlights

the importance of advanced optimization techniques in

maximizing the performance of DL models. Moving forward,

future research can explore several perspectives to build upon

the findings of this study. Firstly, investigating the scalability

of the hybrid GS-TPE approach to more subjects and more

complex DL architectures would provide valuable insights

into its adaptability and generalizability.

REFERENCES

[1] D. Belete et M. D H, « Grid search in hyperparameter

optimization of machine learning models for prediction of

HIV/AIDS test results », Int. J. Comput. Appl., vol. 44, p.

1‑12, sept. 2021, doi: 10.1080/1206212X.2021.1974663.

[2] J. Bergstra et Y. Bengio, « Random search for hyper-

parameter optimization », J Mach Learn Res, vol. 13, no null,

p. 281‑305, févr. 2012.

[3] R. Andonie et A.-C. Florea, « Weighted Random Search for

CNN Hyperparameter Optimization », Int. J. Comput.

Commun. CONTROL, vol. 15, no 2, mars 2020, doi:

10.15837/ijccc.2020.2.3868.

[4] S. Watanabe, « Tree-Structured Parzen Estimator:

Understanding Its Algorithm Components and Their Roles

for Better Empirical Performance », 2023, doi:

10.48550/ARXIV.2304.11127.

[5] B. H. Shekar et G. Dagnew, « Grid Search-Based

Hyperparameter Tuning and Classification of Microarray

Fig. 5: Accuracy evolution of top 5 configurations with TPE iterations on validation data for 1D-CNN-LSTM (GS-TPE)

 Recall (%) Precision (%) F1-Score (%)

LSTM 89.88 92.80 91.31

1DCNN-LSTM 93.56 94.30 93.92

TABLE VI. PERFORMANCE METRICS COMPARISON BETWEEN

LSTM AND 1DCNN-LSTM MODELS

TABLE VII. OPTIMUM HP CONFIGURATIONS ACHIEVED WITH THE

GS-TPE APPROACH FOR 1D CNN-LSTM ARCHITECTURE

 Best configuration found by GS

Config-

1

Config-

2

Config-

3

Config-

4

Config-

5

Conv_1D-1 filters 128 128 128 128 128

Conv_1D-2 filters 64 64 32 32 128

Conv_1D-3 filters 128 128 128 64 128

LSTM_1 unit 30 50 30 50 10

LSTM_2 unit 50 50 10 30 50

LSTM_3 unit 25 25 15 25 15

Learning rate 0.001 0.001 0.001 0.001 0.001

 Optimal new configurations resulting from TPE

Config-

1’

Config-

2’

Config-

3’

Config-

4’

Config-

5’

Conv_1D-1 filters 131 127 131 119 131

Conv_1D-2 filters 52 63 42 27 137

Conv_1D-3 filters 116 129 130 70 124

LSTM_1 unit 34 54 28 55 9

LSTM_2 unit 52 45 10 26 48

LSTM_3 unit 24 25 14 26 14

Learning rate 0.001 0.001 0.0009 0.0009 0.0009

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Cancer Data », in 2019 Second International Conference on

Advanced Computational and Communication Paradigms

(ICACCP), févr. 2019, p. 1‑8. doi:

10.1109/ICACCP.2019.8882943.

[6] A. Darwish, D. Ezzat, et A. E. Hassanien, « An optimized

model based on convolutional neural networks and

orthogonal learning particle swarm optimization algorithm

for plant diseases diagnosis », Swarm Evol. Comput., vol. 52,

p. 100616, févr. 2020, doi: 10.1016/j.swevo.2019.100616.

[7] Y. Yoo, « Hyperparameter optimization of deep neural

network using univariate dynamic encoding algorithm for

searches », Knowl.-Based Syst., vol. 178, p. 74‑83, août 2019,

doi: 10.1016/j.knosys.2019.04.019.

[8] T. Xiao, D. Ren, S. Lei, J. Zhang, et X. Liu, « Based on grid-

search and PSO parameter optimization for Support Vector

Machine », in Proceeding of the 11th World Congress on

Intelligent Control and Automation, juin 2014, p. 1529‑1533.

doi: 10.1109/WCICA.2014.7052946.

[9] M. G. El-Shafiey, A. Hagag, E.-S. A. El-Dahshan, et M. A.

Ismail, « A hybrid GA and PSO optimized approach for

heart-disease prediction based on random forest », Multimed.

Tools Appl., vol. 81, no 13, p. 18155‑18179, mai 2022, doi:

10.1007/s11042-022-12425-x.

[10] J. Konar, P. Khandelwal, et R. Tripathi, Comparison of

Various Learning Rate Scheduling Techniques on

Convolutional Neural Network. 2020, p. 5. doi:

10.1109/SCEECS48394.2020.94.

[11] S. Khessiba, A. Blaiech, K. Ben Khalifa, A. Ben Abdallah, et

M. H. Bedoui, « Correction to: Innovative deep learning

models for EEG-based vigilance detection », Neural Comput.

Appl., vol. 34, janv. 2022, doi: 10.1007/s00521-021-06187-

0.

[12] S. Khessiba, A. G. Blaiech, A. Manzanera, K. Ben Khalifa,

A. Ben Abdallah, et M. H. Bedoui, « Hyperparameter

Optimization of Deep Learning Models for EEG-Based

Vigilance Detection », in Advances in Computational

Collective Intelligence, vol. 1653, C. Bădică, J. Treur, D.

Benslimane, B. Hnatkowska, et M. Krótkiewicz, Éd., in

Communications in Computer and Information Science, vol.

1653. , Cham: Springer International Publishing, 2022, p.

200‑210. doi: 10.1007/978-3-031-16210-7_16.

[13] B. K. Khalifa, M. H. Bedoui, M. Dogui, et F. Alexandre,

« Analysis of vigilance states by neural networks », in

Proceedings. 2004 International Conference on Information

and Communication Technologies: From Theory to

Applications, 2004., avr. 2004, p. 429‑430. doi:

10.1109/ICTTA.2004.1307815.

[14] A. G. Blaiech, K. Ben Khalifa, M. Boubaker, et M. H.

Bedoui, « LVQ neural network optimized implementation on

FPGA devices with multiple-wordlength operations for real-

time systems », Neural Comput. Appl., vol. 29, no 2, p.

509‑528, janv. 2018, doi: 10.1007/s00521-016-2465-7.

