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Abstract—Hyperparameter optimization plays a crucial role 

in maximizing the performance of Deep Learning (DL) models, 

particularly in the medical field. In this study, we propose a 

novel hybrid approach called GS-TPE, which combines Grid 

Search (GS) and Tree Parzen Estimator (TPE) for optimizing 

the hyperparameters of DL architectures in order to enhance the 

vigilance states classification from the EEG signals. Our 

experiments demonstrate that the GS-TPE approach competes 

with the state of the art on multiple performance metrics, leading 

to significantly improved classification results. The obtained 

accuracy with combined one-Dimensional Convolutional Neural 

Network and Long Short-Term Memory (1D-CNN-LSTM) and 

with combined Auto-Encoder and LSTM (AE-LSTM) 

architectures reach 93.74 and 93.53%, respectively. The 

proposed GS-TPE approach shows great promise for advancing 

the field of medical signal analysis and enhancing the accuracy 

of EEG-based diagnostic systems. 

Keywords—Hyperparameter Optimization, Deep Learning, 

Tree Parzen Estimator (TPE), Grid Search (GS), Vigilance State 

Classification. 

I. INTRODUCTION  

Deep neural networks (DNNs) have successfully been 

applied across various data-intensive applications ranging 

from computer vision, bioinformatics and biomedical 

applications. Hyperparameters of a DNN are defined as 

parameters that remain fixed during model training and 

heavily influence the DNN performance. Hence, regardless of 

application, the design-phase of constructing a DNN model 

becomes critical. Framing the selection and tuning of hyper-

parameters is an expensive black-box optimization problem, 

and obstacles encountered in manual by-hand tuning could be 

addressed by taking instead an automated algorithmic 

approach.  

Recently, many researches were proposed for 

Hyperparameter Optimization (HPO) using different methods 

and several novel approaches were suggested. Grid Search 

(GS) [1], Bayesian Optimization (BO), Random Search (RS) 

[2] [3] and many heuristic algorithms have been used for HPO 

of CNN, such as Particle Swarm Optimization (PSO) and Tree 

Parzen Estimator (TPE) [4]. In addition to these algorithms, 

there are many studies in the literature that try to improve an 

existing optimization technique or develop a hybrid one by 

combining some of these optimization techniques. The 

simplest algorithm for HPO is GS which is used in [5], the 

authors specify a finite set of values for each hyperparameter, 

and GS evaluates the whole Cartesian product of these sets. 

This is very inefficient because the required number of 

function evaluations grows exponentially with the 

dimensionality of the hyperparameter space. In [6], an 

OLPSO (Orthogonal Learning Particle Swarm Optimization) 

approach was presented in which hyperparameters values 

were optimized for VGGNet network on plant disease 

diagnosis. The batch size and the dropout rate were used as 

hyperparameters. Through experiments, they proved that their 

approach achieves better performance and higher accuracy 

than other methods for the same data. In [7] a search approach 

was proposed to find the optimal model through 

hyperparameter tuning for a neural network using the uDEAS 
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method in order to minimize the cost. The proposed method 

was applied on two neural networks:  Auto-Encoder (AE) and 

CNN, and was able to find the optimal hyperparameters 

setting with higher convergence rate and lower computational 

complexity than the classical random search. [8] studied a 

PSO and GS hybrid method for parameter optimization of 

SVM. They used GS to narrow down the search space and 

used PSO for detailed research in this confined search space. 

In [9], a hybrid optimization approach of Genetic Algorithm 

(GA) and PSO using Random Forest (RF), called GAPSO-

RF, was developed in order to select optimized 

hyperparameters that improve the accuracy of cardiac disease 

prediction. In [10], the TPE algorithm has been proposed 

through the Hyperas tool in order to optimize CNN 

hyperparameters for classifying pulmonary nodules at an 

early stage.  

In order to improve the performance of DL models, our 

study presents an innovative contribution by introducing a 

new hybrid method called Grid Search-Tree Parzen Estimator 

(GS-TPE) that combines GS and TPE, inheriting their 

strengths and compensating their weaknesses. The primary 

contribution of our research is to demonstrate the efficacy of 

GS-TPE in improving the classification performance of DL 

models on EEG signals. To validate this claim, the study 

compares the impact of the proposed GS-TPE approach with 

that of GS, Random Search (RS) or TPE alone on the same 

dataset. Furthermore, the study evaluates the performance of 

the DL models in their default state (i.e. with empirically 

defined hyperparameters), in order to highlight the added 

value of the GS-TPE hybrid approach.  

The remainder of this paper is organized as follows. 

Section 2 introduces the DL architectures implemented for 

vigilance state classification, their hyperparameters and the 

HPO algorithms used. In Section 3, we describe the proposed 

new approach for hyperparameter optimization. Section 4 

presents the dataset and the theoretical background describing 

EEG signal preprocessing for vigilance state detection and 

then provides experiments focusing on vigilance 

classification and performs a comparative study, comparing 

our approach with the baseline HPO algorithms namely GS, 

RS and TPE. The last section concludes the paper and gives 

some perspectives. 

II. THEORETICAL BACKGROUND 

    In this section, we focus on the theoretical bases of our 

study. We first introduce the DL algorithms employed, 

providing a brief overview in terms of architecture and 

functionality. Next, we will detail the hyperparameters, 

highlighting the ones to be optimized. We will also present 

the HPO techniques used in our study. 

 

A. DL algorithms  

     DL is a powerful subset of Machine Learning (ML) that is 

inspired by the structure and function of the human brain. It 

involves training artificial neural networks with multiple 

layers to learn complex patterns and make accurate 

predictions or decisions. DL models have shown exceptional 

performance in various domains. In this study, three neural 

network models were used for vigilance classification: an 

LSTM-based model, a 1D-CNN-LSTM model and an AE-

LSTM model.  

 

1) LSTM Architecture 

      In this study, we used a stacked four-layer LSTM network to 

process temporal data. The choice of using four LSTM layers is 

empirical. More specifically, we feed features vectors of size 21. 

These features vectors are derived from pre-processing 

applied to each 4-second segment of the raw signal. Each 

feature represents a frequency band. The network in Fig. 1 

illustrates the details. Each feature vector is fed into the first 

LSTM layer (LSTM-1). This layer processes the data by 

calculating activations based on the current inputs and the 

hidden state of this layer, which is initialized to zero. The 

activations generated by LSTM-1 are then passed on to the 

second LSTM layer (LSTM-2). The LSTM-2 layer carries on 

this processing, using the activations received from LSTM-1 

as well as the hidden state from the previous time step for its 

calculations. This process is repeated for the third (LSTM-3) 

and fourth layers (LSTM-4). At each time step, a decision is 

made. To classify the data, we use a fully connected layer 

(FC). In addition, between the LSTM-2 and LSTM-3 layers, 

we have added a dropout layer. This helps prevent overfitting. 

To process subsequent vectors, the same process is 

performed, but this time the hidden states of the LSTM layers 

are those calculated from the previous vector. That means that 

the relevant information extracted from the feature vector in 

step 𝑛 − 1 is used to process the feature vector at step 𝑛. By 

transferring hidden states from one step to another, we can 

capture temporal dependencies. The HPs selected for 

optimization are the number of units in the LSTM layers for 

the LSTM network and the Dropout rate. Also, the HPs 

related in particular to the network training process such as 

learning rate and batch size. 

 

 

Fig. 1: LSTM Architecture 

2) 1D-CNN-LSTM Architecture 

 

      The hybrid 1D-CNN-LSTM architecture is an interesting 

choice for vigilance state classification, by combining the 

advantages of CNN and LSTM networks [11] (Fig. 2). Firstly, 
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CNNs are used to identify and extract specific features from 

input data.  Feature vectors are processed by a CNN made up 

of three blocks, each one integrating convolution-1D and 

pooling layers. The first two blocks also contain Dropout 

layers to prevent overfitting and enhance model 

generalization. The features extracted by the CNN are then 

fed into a stacked LSTM network, composed of three layers. 

LSTM are particularly effective in the capture of temporal 

dependencies in EEG data sequences, due to their ability to 

memorize information over long periods and to handle 

sequences with long-term dependencies. Such networks use 

memory cells and gate mechanisms to prevent the problem of 

vanishing gradients, allowing better storage of pertinent 

information over time. The main HPs selected for 

optimization are the number of filters in each of three 

convolution layers for the CNN, and the number of units in 

the LSTM layers for the LSTM network. 

 

 
Fig. 2: 1D-CNN-LSTM Architecture 

 

3) AE-LSTM Architecture 

 

     The AE-LSTM architecture combines the encoder element 

of an auto-encoder with an LSTM network. First, the auto-

encoder is trained to learn a latent representation of the EEG 

signals. Where each vector within this representation has 6 

features. The encoder output (the latent space) then serves as 

input to the LSTM network, which is composed of four layers 

(Fig.3).  

 

  
Fig. 3: AE-LSTM Architecture 

One of the interesting aspects of this combination is that auto-

encoders are designed to learn latent representations from 

input data. The size of the input data can be considerably 

reduced, while relevant information is retained. On the other 

hand, the use of LSTM enables the temporal dependencies 

within the EEG signal to be captured.  

The HPs to be adjusted are mainly related to the LSTM 

network. They include the number of units in each LSTM 

layer and the HPs related in particular to the network training 

process such as learning rate and batch size. 

 

B. Hyperparameters (HP) 

 

      HP are key variables that impact the behavior and 

performance of a ML algorithm. They are set before the 

training process and influence the learning process and the 

resulting model's capacity and complexity. Finding the 

optimal values of HP helps to improve performance and avoid 

problems such as overfitting. Hence, HPO is critical for the 

performance gain of any ML technique, particularly in DL, in 

which the number of HP is extremely large according to the 

number of layers. Therefore, the goal of HPO is to find out 

the best values of HP in any of the DL techniques as well as 

the best architecture size to reach the best performance in a 

test set. This optimization can be formalized as equation (1): 

                               𝑣 =  𝑎𝑟𝑔 𝑚𝑖𝑛 𝑓(𝑥)𝑥∈𝑇                (1)  

where 𝑓(𝑥) represents an “objective function” that is 

precisely one or more metrics that we want to minimize (such 

as error rate) or maximize (such as accuracy) evaluated in the 

validation set, 𝑣  represents the set of HP that will fetch the 

optimal value from the objective function, and x can be any 

value in the domain 𝑇, which covers the range of values 

defined for the specified HP to be explored.  

In this paper, we will use several optimization algorithms, 

notably GS, RS and TPE, in order to achieve HPO across 

different architectures. Table I details the HPs that need to be 

optimized for the three architectures presented above, as well 

as the defined search space used for GS, RS and TPE 

independently, and for GS-TPE and RS-TPE. It also shows 

the step size for GS, as well as the bounds used for each HP 

to create new search spaces for TPE while using TPE as part 

of the GS-TPE and RS-TPE approaches. The setting of the 

search space was based essentially on the assumption that 

empirical parameters used in the non-optimization versions 

were in the middle of each range. Among the HPs chosen for 

all architectures is the learning rate, the number of filters for 

convolution network architectures such as 1D-CNN-LSTM, 

and the number of units in LSTM layers for LSTM, AE-

LSTM and 1D-CNN-LSTM. The batch size was also selected. 

C. Hyperparameters optimization algorithms 

     In this section, we will present the hyperparameter 

optimization (HPO) algorithms employed in our study: Grid 

Search (GS), Random Search (RS) and Tree-structured 

Parzen Estimator (TPE). 

1) Grid Search algorithm (GS) 

The first algorithm used is Grid search (GS) which is an 

optimization method used in machine learning to optimize 

hyperparameters. It systematically explores all possible 

combinations of hyperparameter values within defined ranges 

to find the optimal configuration. 
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2) Random Search algorithm (RS) 

Random search is also a method for optimizing 

hyperparameters in machine learning. But unlike grid search, 

it randomly selects and evaluates different combinations of 

hyperparameters within the search space [2]. 

3) Tree Parzen Estimator algorithm (TPE) 

    TPE is an enhanced version of the Bayesian Optimisation 

(BO) algorithm that addresses the limitations of traditional 

BO in handling classification and conditional parameters, 

resulting in improved efficiency. It is widely used for HPO in 

DL models, including CNN [4]. 

[12]. The primary procedure of the TPE algorithm involves 

initially transforming the HP space into a non-parametric 

density distribution and subsequently modeling the process 

𝑝(𝑥|𝑦).  As shown in equation (2), TPE uses two density 

distributions of Equation to define 𝑝(𝑥|𝑦), 𝑦 < 𝑦 ∗, indicates 

that the value of the objective function is less than the 

threshold, and 𝑦 ≥ 𝑦 ∗ denotes that the value of the objective 

function is greater than or equal to the threshold. 

 

          𝑝(𝑥|𝑦) =   𝑙(𝑥)         𝑖𝑓    𝑦 < 𝑦 ∗                   (2) 

                             𝑔(𝑥)        𝑖𝑓    𝑦 ≥  𝑦 ∗ 

 

The calculation of Expected Improvement (EI) is shown in 

Equations (3–5).  

 

𝐸(𝑥) =  ∫ (𝑦 ∗ −𝑦)
𝑝(𝑥|𝑦) 𝑝(𝑦)

𝑝(𝑥)
 𝑑𝑦

𝑦∗

−∞
         (3) 

 

𝛼 = 𝑝(𝑦 < 𝑦 ∗)                    (4) 

 

 

𝑃(𝑥) = ∫ 𝑃(𝑥|𝑦)  𝑃(𝑦) 𝑑𝑦     (5) 

 

Substitute (4), (5) into (3) to get the final (6) 

 

     𝐸𝐼𝑦∗(𝑥) =  ( 𝛼 +
𝑔(𝑥)

𝑙(𝑥)
 (1 − 𝛼))−1       (6) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       

 

It can be seen from (6) that point 𝑥∗ with the largest 𝐸𝐼 is the 

point with the smallest 𝑔(𝑥)/𝑙(𝑥). The TPE algorithm 

evaluates the improvement points according to 𝑔(𝑥)/𝑙(𝑥) in 

each iteration, and finally returns a point 𝑥∗ with the largest 

EI.  

III. PROPOSED METHODOLOGY 

    This section demonstrates a novel approach to building 

automated DL models using a metaheuristic algorithm for 

classification problems. We will detail the conceptual 

foundations and motivations that guided its design.  

We propose a novel approach named GS-TPE based on a 

hierarchical combination of GS and TPE, which exploits the 

advantages of both. Initially, GS is used for a coarse grid 

exploration in hyperparameter space, in which a set of values 

is defined for each HP that needs to be optimized, and then a 

grid is generated that covers all possible combinations. Each 

combination is then evaluated on a validation set using a 

predefined metric, such as accuracy. Once all the 

combinations are evaluated, the 5 best configurations are 

selected. This number was selected taking into account 

computational time constraints to maintain the optimization 

process within a reasonable resource limit. Then, each one of 

these 5 HP configurations is used as initialization of a TPE 

algorithm, that refine the optimization by searching a better 

solution around each candidate HP. The HPs space, denoted 

by x in the flowchart, is then divided into five subspaces that 

will be explored independently by TPE.   Basically, the TPE 

search strategy is divided into two phases: The first phase, 

called "warm-up", is a random exploration of a given space of 

hyperparameters (HPs), performing 20 iterations (n_init). 

Each HP combination builds a model which is then evaluated 

on a validation set to determine its performance in terms of 

accuracy. A function based on the Bayesian rule 𝑝(𝑥∣𝑦) is then 

constructed, where 𝑦 denotes the validation accuracy and 𝑥 

the HP set. These HP sets are divided into two categories: 

good 𝑙(𝑥) and bad 𝑔(𝑥), based on a parameter 𝛾 fixed at 0.25, 

meaning that 25% of the combinations are considered as 

good. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       

Architectures HP Search Space Step for GS HP bounds 

used by TPE 

 

 

 

LSTM 

LSTM_1_unit {32,128} 2𝑛, n∈{5,6,7} ± 20 

LSTM_2_unit {32,128} 2𝑛, n∈{5,6,7} ± 20 

LSTM_3_unit {16,64} 2𝑛, n∈{4,5,6} ± 20 

LSTM_4_unit {8, 32} 2𝑛, n∈{3,4,5} ± 10 

Dropout {0.1, 0.5} 0.2 ± 0.1 

Batch size {32,128} 2𝑛, n ∈{4,5,6,7} ± 16 

Learning rate ℝ[10−2, 10−4] 10−1 ± 10−5 

 

 

 

1D-CNN-

LSTM 

Conv_1D-1 filters {32,128} 2n , n∈ {5,6,7} ± 12 

Conv_1D-2 filters {32,128} 2n , n∈ {5,6,7} ± 12 

Conv_1D-3 filters {64,256} 2n , n∈ {6,7,8} ± 12 

LSTM_1 unit {10,50} 20 ± 5 

LSTM_2 unit {10,50} 20 ± 5 

LSTM_3 unit {5,25} 10 ± 3 

Learning rate ℝ[10−2, 10−4] 10−1 ± 10−5 

 

 

 

AE-LSTM 

LSTM_1 unit {30, 50} 10 ± 6 

LSTM_2 unit {30, 50} 10 ± 6 

LSTM_3 unit {30,50} 10 ± 6 

LSTM_4 unit {5, 25} 10 ± 3 

Batch size {16,128} 2n, n∈{4,5,6,7} ± 10 

Learning rate ℝ[10−2, 10−4] 10−1 ± 10−5 

TABLE I.  HYPERPARAMETERS AND EXPLORATION RANGES BASED ON GS-TPE OPTIMIZATION APPROACH 
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Fig. 4: Flowchart of the proposed GS-TPE approach  

          

The aim of the second phase is to maximize the expected 

improvement (EI) ratio by selecting HPs 𝑥 with high 

probability under 𝑙(𝑥) and low probability under 𝑔(𝑥). This is 

done by sampling n_EI combinations of HP values (n_EI =24) 

and the one offering the greatest EI improvement is selected, 

then the process is repeated, including all previous 

combinations, until the specified number of tests is reached. 

The process is repeated for the 5 HP search spaces defined in 

the study, and the optimum configuration is selected for 

evaluation on test data. The default TPE parameters used are: 

n_init = 20, 𝛾=0.25, n_EI =24. 

 

IV.   EXPERIMENT AND RESULTS 

      The primary goal of this section is to illustrate the 

effectiveness of the proposed GS-TPE in enhancing the 

accuracy and effectiveness of vigilance state classification. 

We first describe the database we used, as well as how we 

prepared the data, the experimental setting and the results 

obtained. 

A. EEG: Data and pre-processing 

     In this study, we focus on EEG signals. Such signals are 

highly relevant in the medical field. The traditional 

acquisition techniques are based on measuring the potential 

variation of the cerebral cortex activity on the scalp surface. 

The intensity and the shape of the EEG electrical activity 

depend strongly on the level of brain activity. This signal is a 

dynamic, stochastic and non-stationary electrical activity 

whose recording depends essentially on the position of the 

electrodes and also on the vigilance or sleep state of the 

subject. The EEG data are collected at the center of vigilance 

and sleep at the Faculty of Medicine of Monastir. We started 

from a collected set of six healthy subjects aged 18–23 which 

were used in previous work of our team  [12] [13] [14]. For 

each subject, we carried out three 24-h recordings with a 15-

day interval. Recordings are done for two states: vigilance 

state (VS) and drowsiness state (DS). Expert labeling of the 

EEG recordings is performed, reviewed and approved. In the 

preprocessing phase, we were interested mainly in achieving 

a size-reduced acquisition system: Only one EEG signal 

derivation was analyzed [the right parieto–occipital (Pz–Oz)]. 

For each 4s portion from an EEG signal, the spectral power 

was calculated by the Fast Fourier Transform (FFT) with a 

Hamming window and a 512-point resolution. From this 

spectrum, only the frequencies included in the interval [0.1–

21 Hz] were conserved. This interval corresponds to the field 

of adherence of the physiological waves (lower than 21 Hz) 

while eliminating the continuous component (0 Hz 

frequency). Then, the power spectrum was subdivided into 

elementary frequency bands. Each band represents the sum of 

the spectral amplitudes included in the spectral interval 

corresponding to a frequency band. For each frequency band, 

we calculated the percentage of its relative spectral power 

(PRSP), which is equal to the spectral band power (SBP) 

divided by the total spectral power (TSP). Computing these 

PRSPs is done by equation (7):     

                                                                                

       𝑃𝑅𝑆𝑃𝑖=
𝑆𝐵𝑃[𝑈𝑖+𝑈𝑖+1]

𝑇𝑆𝑃
*100                  (7) 

where 𝑢𝑖 = 0.1 + (𝑖 −1) *△ 𝑢;   𝑖 ∈ [1, . . . , 𝑘] 

and △ 𝑢 =
(21−0.1)

𝑘
                                                     

where △ 𝑢 is the length of the frequency band and 𝑘 the 

number of bands. Actually, the [0.1-21 Hz] interval was 

discretized into k regular sub-intervals of △ 𝑢 length. 

Thereby, the 𝑃𝑅𝑆𝑃 will be the input to the classification tool 

for vigilance state detection using DL architectures. 

B. Database processing 

 

     In the case study, LSTM models require sequences as input, 

since they are designed to deal specifically with temporal 

dependencies within temporal sequences. In order to be able to 

train our LSTM-based models, i.e., LSTM, CNN-LSTM and 

AE-LSTM, it is important to generate sequences based on 

extracted EEG features. We therefore adopted the sliding 

window technique. A fixed sequence size of 5 was used for 

each patient. Table II describes the sequence creation process. 

We have 1494 feature vectors of 21 length, from which 1470 

sequences were created. Next, these sequences were divided 

into training, validation and test sets. 

 

TABLE II.  SEQUENCE CREATION AND DISTRIBUTION OF EEG DATA 

 

Number 

of 

samples 

Sequence 

length 

Total 

sequen

ces 

Training 

sequence

s (60%) 

Validation 

sequences 

(20%) 

Test 

Sequenc

es (20%) 

1494 5 1470 882 294 294 
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C. Experimental setting   

1)  Working environment 

     We have evaluated HPO algorithms using different 

architectures. That were implemented using Keras, whose 

libraries are written in Python. The hardware configuration 

included an NVIDIA GeForce RTX 3090 GPU with 32 GB 

and an 11th Gen Intel® core™ i9-11900F processor. In order 

to deal with HP optimization problems, we used the Optuna 

Framework, which provides a variety of algorithms including 

TPE. 

2) Experimental setup for HP optimization  

     In this section, we describe the settings used in the 

optimization experiments for the different architectures. Each 

architecture was associated with a given set of GS 

combinations and a specified set of RS and TPE iterations. In 

order to provide a balanced and meaningful comparison 

between the different optimization methods, we established 

standardized criteria for each of them. For example, we 

decided to set the number of iterations for RS to be one-third 

of the total number of GS combinations. Similarly, we opted 

for 350 iterations for the TPE algorithm (Table III). We used 

the same settings for the GS-TPE algorithm. 

TABLE III.  EXPERIMENTAL CONFIGURATION 

 

D. Discussion and results 

     In the context of HPO, we opted to evaluate the different 

baseline optimization algorithms, i.e., RS, GS, TPE, as well 

as our novel GS-TPE approach. Table IV presents the results 

obtained in terms of accuracy, which was evaluated on both 

validation and test data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To further evaluate the effectiveness of RS and GS, we have 

compared the results obtained with these two algorithms 

across all models. The results show that, overall, GS performs 

slightly better than RS. As an example, for LSTM, GS 

achieved a validation accuracy of 92.99% and a test accuracy 

of 89.38%, compared to 91.16% and 87.55% for RS. For 

CNN-LSTM, significant differences were observed between 

the different optimization methods. Using RS, we achieved a 

validation accuracy of 94.56% and a test accuracy of 91.02%. 

Comparatively, GS improved on this, achieving a validation 

accuracy of 95.03% and a test accuracy of 92.38% 

As for the TPE algorithm, we noticed that its use yielded 

better results. For 1D-CNN-LSTM architecture, the best 

performance reached 95.37% on validation set and 93.12% on 

test set compared to 89.79% with no optimization process.  

These results underline the effectiveness of TPE in refining 

HPs and improving model performance. The table clearly 

shows the positive impact of TPE integration on model 

performance for GS-TPE approach. When comparing GS 

with GS-TPE, it is clear that TPE integration significantly 

improves results by refining the HPs search. For the LSTM 

model, the improvement is more marked, with test accuracy 

increasing from 89.38% to 91.15% for GS and GS-TPE 

respectively. Also, for 1D-CNN-LSTM, there is an 

improvement (from 92.38% to 93.74%). 

 Table V shows the validation results for the different 

architectures using the GS-TPE approach, detailed for the 5 

different configurations pre-selected by GS. The results 

demonstrate that integrating TPE systematically improves the 

performance obtained by GS.  

For the LSTM model, the best accuracy performance is 

achieved in configuration 4, rising from 92.78% to 94.01% 

after TPE integration. Similarly, for the CNN-LSTM model, 

the best performance is obtained in configuration 3, reaching 

97.48% (Fig.5). And for the AE-LSTM model, configuration 

4 registered the best performance, upgrading to 95.31% from 

94.76%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Architectures 

GS 

combinations 

RS 

iterations 

TPE 

iterations 

LSTM 2187 729 350 

CNN-LSTM 2187 729 350 

AE-LSTM 972 324 350 

TABLE IV.  SUBJECTS VIGILANCE STATE CLASSIFICATION ACCURACY 

SUBJECTS VIGILANCE STATE CLASSIFICATION ACCURACY 
 

Without 

HPO 

RS GS TPE GS-TPE 

Test  

Acc 

Validation

ACC 

Test 

Acc 

Validation

ACC 

Test 

Acc 

Validation

ACC 

Test 

Acc 

Validation 

ACC 

Test 

Acc 

LSTM 86.39 91.16 87.55 92.99 89.38 92.45 90.20 94.01 91.15 

1D-CNN-LSTM 89.79 94.56 91.02 95.03 92.38 95.37 93.12 97.48 93.74 

AE-LSTM 88.43 94.76 91.97 95.24 92.58 90.07 88.37 95.31 93.53 

TABLE V.  PERFORMANCE OF GS-TPE CONFIGURATIONS IN TERMS OF ACCURACY ON VALIDATION DATA FOR LSTM, CNN-
LSTM, AND AE-LSTM ARCHITECTURES 

SUBJECTS VIGILANCE STATE CLASSIFICATION ACCURACY 
 LSTM CNN-LSTM AE-LSTM 

Accuracy/Validation_data (%)  Accuracy/Validation_ data (%) Accuracy/Validation_data (%) 

GS TPE GS TPE GS TPE 

Configuration-1 92.99 93.74 95.03 96.73 95.24 95.24 

Configuration-2 92.85 93.19 94.89 97.00 94.89 95.17 

Configuration-3 92.78 93.67 94.76 97.48 94.89 95.10 

Configuration-4 92.78 94.01 94.62 96.32 94.76 95.31 

Configuration-5 92.78 93.67 94.28 96.80 94.76 95.17 
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Table VI presents a comparison of performance metrics 

between LSTM and 1DCNN-LSTM, evaluated in terms of 

Recall, Precision, and F1-Score. The 1DCNN-LSTM model 

outperforms the LSTM with a Recall of 93.56% compared to 

89.88%, a Precision of 94.30% versus 92.80%, and an F1-

Score of 93.92% against 91.31%. Despite these 

improvements, GSTPE further boosts performance, 

enhancing these metrics even more for both models. 

 

Table VII presents the best HP configurations found using the 
GS-TPE approach for the 1D-CNN-LSTM architecture. It is 
divided into two parts: the first presents the initial 
configurations found by GS, and the second demonstrates the 
optimal configurations after TPE fine-tuning. the five best 
initial GS configurations were optimized and improved 
Among them, the initial configuration 3 (config 4), identified 
by the GS approach, was optimized into a new configuration 
(config 3') using the TPE algorithm, giving the best results. 
The improvements resulting from the TPE consist in re-
evaluating and adjusting the units in the various LSTM layers. 
This change improves the results. 

CONCLUSION AND PERSPECTIVES 

This study proposed a novel hybrid approach GS-TPE that 

combines GS and TPE for optimizing hyperparameters in DL 

models. The results obtained from this approach clearly 

demonstrate its effectiveness in improving models 

performance. The results also demonstrate its superiority over 

non-optimized models and its improvement over both TPE 

and the basic GS algorithm. As a result, this study highlights 

the importance of advanced optimization techniques in 

maximizing the performance of DL models. Moving forward, 

future research can explore several perspectives to build upon 

the findings of this study. Firstly, investigating the scalability 

of the hybrid GS-TPE approach to more subjects and more 

complex DL architectures would provide valuable insights 

into its adaptability and generalizability. 
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