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Abstract

Movement analysis is the principle of any interaction with the world and the survival

of living beings completely depends on the efficiency of such analysis. Visual systems

have remarkably developed efficient mechanisms that analyze motion at different lev-

els, allowing to recognize objects in dynamical and cluttered environments. In artificial

vision, there exist a wide spectrum of applications for which the study of complex move-

ments is crucial to recover salient information. Yet each domain may be different in

terms of scenarios, complexity and relationships, a common denominator is that all of

them require a dynamic understanding that captures the relevant information. Overall,

current strategies are highly dependent on the appearance characterization and usually

they are restricted to controlled scenarios. This thesis proposes a computational frame-

work that is inspired in known motion perception mechanisms and structured as a set

of modules. Each module is in due turn composed of a set of computational strategies

that provide qualitative and quantitative descriptions of the dynamic associated to a

particular movement. Diverse applications were herein considered and an extensive

validation was performed for each of them. Each of the proposed strategies has shown

to be reliable at capturing the dynamic patterns of different tasks, identifying, recog-

nizing, tracking and even segmenting objects in sequences of video.

Keywords: motion analysis, dense Optical Flow, background substraction, action recog-

nition, Tracking, gait analysis, polyp detection, hummingbird flight patterns, cardiac

MRI analysis, video-surveillance.



Resumen

El análisis del movimiento es el principio de cualquier interacción con el mundo y la

supervivencia de los seres vivos depende completamente de la eficiencia de este tipo

de análisis. Los sistemas visuales notablemente han desarrollado mecanismos eficientes

que analizan el movimiento en diferentes niveles, lo cual permite reconocer objetos

en entornos dinámicos y saturados. En visión artificial existe un amplio espectro de

aplicaciones para las cuales el estudio de los movimientos complejos es crucial para

recuperar información saliente. A pesar de que cada dominio puede ser diferente en

terminos de los escenarios, la complejidad y las relaciones de los objetos en movimiento,

un común denominador es que todos ellos requieren una comprensión dinámica para

capturar información relevante. En general, las estrategias actuales son altamente de-

pendientes de la caracterización de la apariencia y por lo general están restringidos

a escenarios controlados. Esta tesis propone un marco computacional que se inspira

en los mecanismos de percepción de movimiento conocidas y esta estructurado como

un conjunto de módulos. Cada módulo esta a su vez compuesto por un conjunto de

estrategias computacionales que proporcionan descripciones cualitativas y cuantitati-

vas de la dinámica asociada a un movimiento particular. Diversas aplicaciones fueron

consideradas en este trabajo y una extensa validación se llevó a cabo para cada uno de

ellas. Cada una de las estrategias propuestas ha demostrado ser fiable en la captura

de los patrones dinámicos de diferentes tareas identificando, reconociendo, seguiendo e

incluso segmentando objetos en secuencias de video.

Palabras clave: análisis de movimiento, flujo optico denso, extracción de fondo, re-

conocimiento de acciones, seguimiento, análisis de marcha, detección de polipos, pa-

trones de vuelo del colibŕı, análisis de sequencias cardiacas MRI, video-vigilancia.
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1 Introduction

Visual systems interact with their environment by developing models that transform an

over-fragmented external world into semantic internal clusters of coherent information.

The world is basically parsed by analysing dynamic information, usually using a set of

captors or receptors that can be though as a bank of filters that segment the original

information in terms of very basic primitives [112,253]. The world is then perceived by

coherently grouping such primitives under a metric that is learned when these systems

are forced to analyse motion. A dynamic framework results then crucial for the visual

system to be part of the world. Upon such analysis, living beings build the rest of

the complexity of the visual processing, achieving visual integration and of course

recognition [8]. Interestingly enough, this information is also used to predict events

or future actions that follow a certain coherency, learned from those complex motion

analyses.

This central role of the motion analysis, at representing the world, has shaped the

different functions of visual systems during the evolution process. Different types of

biological specialization have improved the robustness to noise and the time processing,

basically searching to optimally respond to any external stimulus. Overall, the human

visual system provides a large set of adaptive mechanisms that decompose specific

information, which is projected onto different representations at low level and then in-

tegrated at the upper structures of brain analysis, as illustrated in Figure 1-1. Firstly,

the temporal change of luminance is captured and transformed by the retina, deeply

encoded in the nuclei of the brain-stem and mapped towards the primary visual cortex

(V1) (blue region in Figure 1-1). In this primary cortex, a spatio-temporal correlation

of the encoded information is performed, perceiving at this level global shapes with

a very short history, that is to say, nearly instantaneous motion. The inner mech-

anism passes by specialized neurons that act as spatio-temporal filters of low level

features, composing a first low frequency approximation of the global scene organiza-

tion [148, 210]. The primary visual cortex is also responsible for transmission of the

encoded information onto the two higher-level pathways: the dorsal and ventral stream

paths, entailed with larger and more complex receptive fields that facilitate a further

specialized processing. The former, the dorsal stream path (associated to the green

region in Figure 1-1) comprises several cortical regions, such as the V6 and the Middle
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Temporal (MT) areas. This path is responsible for capturing the oriented coherent

motion associated to high temporal frequencies [129,179]. The regions associated with

the dorsal path accounts for the 3D perception of the scene and early identification of

objects in motion [179]. The latter, the ventral stream path (the purple region in Fig-

ure 1-1) includes the V2, the V4 and the inferior temporal lobe. This path is charged

of associating the captured temporal visual features with semantic concepts learned as

a prior model, classically known as the visual work memory [42]. Visual analysis in the

dorsal stream follows an egocentric motion perspective, i.e., the viewer is established

as reference of scene. In contrast, regions related with the ventral pathway follow an

allocentric frame, for which the object in motion is the reference.

Figure 1-1: Motion perception in human visual systems. Three main region are re-

sponsible for perceiving motion information. The primary visual cortex

is represented in blue, a structure charged of temporally correlating mo-

tion information. In the second level, the dorsal stream is responsible for

characterizing dynamic patterns, as performed by an optical flow repre-

sentation. Finally, in the third level, the ventral stream is responsible to

match semantic concepts with a set of motion observations. Each module

can independently perceive motion or interact with the other regions.

Finally, The information processed in these regions is sent to the other regions and

then fed back, at different temporal cycles, optimizing the general information process
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and obtaining at the end a very accurate map of the visual world.

From an engineer perspective, a proper understanding of such mechanisms opens up

new perspectives, and not only because it facilitates the introduction of new techniques,

but above all since it allows to organize smart pipelines of new methods to attack any

problem. This statement is at the very base of this thesis and has guided us during this

research. Different applications, in several domains, highly depend on motion analysis,

for instance the robotic area at understanding both the human locomotion and par-

ticular dynamics of some animals. In the rehabilitation domain, diagnosis, treatment

and follow-up depend on a strong objective support at studying the dynamics of the

human body, or a particular movement in a specific disease such as certain abnormal

gait patterns in brain palsy or musculo-skeletal disorders [224]. Many surveillance ap-

plications require of spatio-temporal characterization of human movements to facilitate

classification and recognition of abnormal activities. In some cases, motion analyses

of organs such as the heart might potentially change our comprehension of the disease

and therefore the patient management.

1.1 Research Problem

So far the limited understanding of complex motion patterns has prevented a natu-

ral representation of the dynamics of different objects in different contexts. Emerging

areas have compelled researchers to objectively analyze complex recorded movements.

Nonetheless, these techniques, highly dependent on the appearance, are typically re-

stricted to controlled scenarios. Likewise, these complex movements are usually mea-

sured with specific devices that alter natural gestures and introduce noise during the

the acquisition. Usually, motion analysis uses very simple prior hypotheses with very

few generality and little extension of such methods to other contexts, thereby consider-

ably restricting a proper understanding and characterization of the different conditions

in many dynamic systems.

1.1.1 Research Question

In spite of the variability of complex motion patterns, the visual system is capable

of capturing very different processes while understanding the underlying mechanism,

using essentially the same mechanism. This consideration has led us to the main

research question in this work: how to learn a computational framework from

visual systems to perform complex motion tasks in different artificial vision problems.
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1.2 A computational framework for motion analysis

Motion is perceived under an analysis framework that integrates information captured

by a set of specialized components, filtering out different types of noise and structuring

visual concepts. These systems are very adaptable, they balance holistic or part-based

representations when needed if the interaction circumstance demands understanding

of complex scenarios. The remarkable point is that such simple mechanisms are apt to

cover a practically infinite number of visual perceptions.

In this thesis we have proposed a computational framework that emulates the primary

motion analysis of the human visual system, constructed upon a set of computational

tools and mathematical formulations that provide qualitative and quantitative descrip-

tions of the dynamics. This framework locally characterizes moving objects and permits

a global understanding of their fundamental relationships. As the visual system, three

components are at the base of three complementary levels of processing. A first module

emulates the primary visual cortex function at computing the temporal change coher-

ence among consecutive frames, recovering a coarse shape representation. A temporal

anaysis of variance follows those temporal changes with a certain level of statistical

dependence, since no changes are observed at any scene during a short time interval.

A second module of the proposed framework aims to simulate the motion characteriza-

tion of the secondary pathways, the dorsal stream, as the obtained optical flow pattern

that would correspond, in such case, to the orientation maps of the motion flow defined

at this visual processing level. Visual systems compute a vector field as the distribution

of apparent velocities, allowing an analysis of the relative motion of objects w.r.t the

observer. These bottom-up patterns result decisive for visual learning, perception of

structure, self-localization and even for stereo vision. In this work, a set of statistical

descriptors of a dense optical flow map, were successfully evaluated in classification

and recognition tasks under uncontrolled conditions.

Finally, a third module includes the integration of visual motion patterns with learned

semantic concepts, accomplishing the track of complex objects under very noisy con-

ditions. Overall, visual systems associate learned motion patterns or even raw obser-

vations with prior belief, i.e., learned knowledge of the world. This association can be

seen as a set of likelihood mappings which allow a probabilistic description of learned

concepts with spatio-temporal observations. This prior belief is recreated in visual

systems as knowledge models that are able to efficiently interact with the environment

using a restricted set of salient points. The proposed module, a probabilistic standpoint

of the motion problem, has been devoted to the development of appropriate priors that

adapt different types of problems, coupled with a tracking strategy that imitates the

visual system motion perception. This module has been extensively proven in different



1.3 Complex motion patterns in diverse scenarios 5

types of gait problems.

1.3 Complex motion patterns in diverse scenarios

There exists a wide spectrum of problems for which the quantitative and qualitative

motion analyses are crucial and many intractable problems result better approached

from this perspective, even if they are different in terms of their sources of noise,

scenarios or levels of non-linearity. This thesis has been devoted to globally understand

the essence of the motion analysis and to use such proposal as a different angle in

classical research problems. Hereafter we introduce the different applications for which

such motion analysis was applied, even though some of them look completely different.

On the contrary, as we will discuss later, these problems share fundamental challenges

such as the identification of abnormal patterns or discovering of hidden relationships

among a set of objects of interest.

1.3.1 Clinical Gait Analysis

Distortion of gait patterns are one of the main clinical manifestations of many diseases,

among others diabetes, parkinson, brain palsy or accident sequelae. The analysis of

human gait attempts to objectively assess pathologies by following up the hidden gait

dynamic variables. The set of techniques dedicated to perform this analysis is what

is currently known as the gait laboratory, a tool devised to quantify a disease and to

compare the gait with normal patterns [224]. Conventional gait analysis is invasive and

alters the natural movement gestures, necessitating strong variations to achieve diag-

nosis, i.e., this approach is hardly useful in early stages. In this thesis, the gait analysis

has been addressed from a markerless perspective to analyze normal and pathological

motion patterns. From this standpoint, the gait analysis is extended to classifying,

tracking and recognizing tasks. Since the gait is the result of complex relationships

among different subsystems, an original model herein formulated and developed served

to emulate complex motion patterns.

1.3.2 Human Action Recognition for Surveillance Applications

Human action recognition is a challenging task in many surveillance applications [4,

229]. The challenge is to automatically detect normal and abnormal actions, occurring

in ordinary visual scenes and to classify actions. The challenge is related to the huge

variability, in terms of relationships between the scene components, people appear-

ance and poorly controlled conditions. In this work, the human action recognition is
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aimed to analyze normal and abnormal human motion patterns in real scenarios. This

video-processing analysis attempts to automatically classify and recognize of human

activities.

1.3.3 MRI-based Motion Analysis

one of the principal causes of death and disability [213]. Magnetic Resonance Cine

(MRC) is a non invasive video technique that provides cardiac anatomic information,

allowing the analysis of the heart to globally estimate the myocardial function [135].

Overall, these analyses are carried out by expert physicians, whereby results are highly

subjective. In this thesis the heart motion characterization is addressed towards the

automation of this analysis, especially useful in early disease detection, case in which

the boundary between normal and abnormal is quite diffuse, even for expert physicians.

1.3.4 Polyp shape and size estimation from spatio-temporal

patterns

Digestive diseases constitute worldwide one of the most common public health prob-

lems. Polyp size quantification results crucial to determine the surgical procedure,

either by immediately extracting the polyp or just by increasing the patient follow up.

Currently, the video endoscopy estimation is the gold standard procedure to determine

the polyp size. However, estimation with this method is highly subjective, among

others because the large variability due to the capturing device and the specialist ex-

perience. Automatic approaches may help to overcome such problem by obtaining

more repeatable estimations, reducing the measure subjectivity and allowing better

predictions of the pathology evolution.

1.3.5 Discovering Hummingbird motion patterns in

video-sequences

The emulation of flying animal movements would allow micro air vehicles (MAVs) to

perform complex maneuvers and to expend less energy [198]. Among these MAVs,

hovering machines have the ability to perform accurate maneuvers within a limited

space [198]. The design of hovering MAVs can be approached by observing animals such

as Hummingbirds [130]. Their maneuverability is based on their ability to suddenly

turn at any direction. However, crucial hummingbird flight issues are yet not fully

understood. The only available information about these turns comes from other species

like gliding or flapping birds, and hovering insects [130,132], but these animals are very
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different since the hummingbird is entailed with simple wings that operate over a larger

range of speeds [11]. Typical devices that capture information are very limited and

generally based on few reference points that must be superimposed with the animal

structure. These devices usually introduce artefacts that alter natural gestures of the

hummingbird movement since markers need to be placed on the bird, markers that can

be easily occluded like the shoulder joint.

1.4 Contributions and Academic Products

The main contribution of this work is a computational framework, as a set of tools,

that analyzes and characterizes complex motion patterns. Three different scalable and

complementary motion analysis phases were herein proposed. Hereafter we present the

main applications covered by the proposed methods along with the achieved academic

products.

1.4.1 Locally estimating temporal shape patterns

The motion analysis in this phase allows to recover those moving objects in a sequence

of video. From this analysis it was possible for instance to recover human silhouettes

during walking and to perform automatic markerless classification and recognition of

pathological patterns. This analysis module was also used in segmentation tasks, in

which a set of target structures were recovered by characterizing them with motion

strategies. Two different applications were tested in classification tasks: Right ventricle

on MRI sequences and Polyps on endoscopy. This work was published in:

• Fabio Mart́ınez, Josué Ruano, Mart́ın Gómez, Eduardo Romero. Estimating

the size of polyps during actual endoscopy procedures using a spatio-temporal

characterization. Submitted to Journal of the Computerized Medical Imaging

and Graphics. 2014.

• Josué Ruano, Fabio Mart́ınez, Eduardo Romero.A 3D endoscopy reconstruction

as a saliency map for analysis of polyp shapes. Submitted in SIPAIM 2014.

• Josué Ruano, Fabio Mart́ınez, Eduardo Romero.Shape estimation of gastroin-

testinal polyps using motion information. International Seminar on Medical In-

formation Processing and Analysis, SIPAIM -2013. Mexico

• Fabio Mart́ınez, Juan Carlos León, Eduardo Romero. Pathology Classification

of Gait Human Gestures. International Conference on Computer Vision Theory

and Applications (Visapp). Algarve - Portugal (2011).
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• Juan Carlos León,Fabio Mart́ınez, Eduardo Romero. A robust background sub-

traction algorithm using a Σ- ∆ estimation. International Conference on Com-

puter Vision Theory and Applications (Visapp). Italy. (2012)

• Juan Carlos León, Fabio Mart́ınez, Eduardo Romero. Classification of Patho-

logical Gait Markerless Pattern. SIPAIM: VI Seminario Internacional de Proce-

samiento y Análisis de Imágenes Médicas. Bogotá. Colombia (2010).

• Juan Carlos León, Fabio Mart́ınez, Eduardo Romero. A Comparison of Σ- ∆

Background Substraction Algorithms for Gait Analysis. SIPAIM: VII Seminario

Internacional de Procesamiento y Análisis de Imágenes Médicas. Bucaramanga.

Colombia (2011).

• David Trujillo, Fabio Mart́ınez, Eduardo Romero.Characterizing the eye tra-

jectory during the gait towards Parkinson stage identification. Submitted in

SIPAIM 2014.

• Angélica Atehortúa, Fabio Mart́ınez, Eduardo Romero. A Novel Right Ven-

tricle Segmentation Approach from Local Spatio-Temporal MRI Information..

Iberoamerican Congress on Pattern, CIARP -2013. Cuba -2013.

• Angélica Atehortúa, Fabio Mart́ınez, Eduardo Romero. A novel right ventricle

segmentation strategy using local spatio-temporal MRI information with a prior

regularizer term.International Seminar on Medical Information Processing and

Analysis, SIPAIM -2013. México.

• Angélica Atehortúa, Fabio Mart́ınez, Eduardo Romero. Automatic right ven-

tricle (RV) segmentation by propagating a basal spatio-temporal characteriza-

tion.International Seminar on Medical Information Processing and Analysis, sub-

mitted SIPAIM -2014

1.4.2 Spatio-temporal descriptors from optical flow patterns

A second proposed module includes a set of spatio-temporal descriptors that capture

motion patterns from the computed optical flow. These descriptors are mainly used to

capture the dynamic of targets captured in noisy conditions. These descriptors were

used in surveillance applications for recognition and classification of normal and ab-

normal human activities. Also, the characterization of optical flow patterns allowed

to characterize normal and pathological cardiac trajectories. In addition, the compu-

tation of biomechanical hummingbird flight patterns was calculated during hovering
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trajectories using a fully markerless strategy. The academic products of this module

are:

• Fabio Mart́ınez, Antoine Manzanera, Eduardo Romero. An overcomplete spatio-

temporal multi-scale motion descriptor for human action recognition in video-

surveillance from an optical flow characterization. Submitted to IEEE Transac-

tions on Pattern Analysis and Machine Intelligence (TPAMI). 2014.

• Fabio Mart́ınez, Antoine Manzanera, Eduardo Romero. Representing activities

with layers of velocity statistics for multiple human action recognition in surveil-

lance applications. SPIE Electronic Imaging. San Francisco. USA. February

2014.

• Fabio Mart́ınez, Antoine Manzanera, Eduardo Romero. A motion descriptor

based on statistics of optical flow orientations for action classification in video-

surveillance. Int. Conf. on Multimedia and Signal Processing (CMSP1́2). Shang-

hai, China. 2012

• Fabio Mart́ınez, Antoine Manzanera, Eduardo Romero. Automatic Analysis

and Characterization of the hummingbird flight using dense optical flow features.

Submitted to Journal of Bioinspiration & Biomimetics. 2014.

• Fabio Mart́ınez, Antoine Manzanera, Eduardo Romero. Analysing the hovering

flight of the hummingbird using statistics of the optical flow field. ICPR Workshop

on Visual observation and analysis of animal and insect behavior. Tsukuba,

Japan (VAIB 2012)

• Fabio Mart́ınez, Antoine Manzanera, Cristina Santa Marta, Eduardo Romero.

Characterization of Motion Cardiac Patterns in Magnetic Resonance Cine. In-

ternational conference on Image Information Processing. INDIA (2011)

1.4.3 Dynamic Analysis by integrating prior knowledge

Complex motions such as the human gait have been widely studied, aiming to under-

stand the underlying gait mechanisms and the relations that produce optimal energy

consumption. Several studies have proposed dynamical models that, under some re-

strictive conditions, can recreate these phenomena. The proposed framework may

naturally includes prior gait models, which potentially may be fused with a set of ob-

servations to analyze pathological gait patterns. In addition, some prior models have

been extended to include additional relationships of complex motion and emulate more

realistic trajectories. The academic products obtained in this module are:
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• Fabio Mart́ınez, Francisco Gómez, Eduardo Romero. A kinematic method

for computing the motion of the body centre-of-mass (CoM) during walking: a

Bayesian approach. Journal of Computer Methods in Biomechanics and Biomed-

ical Engineering. 14(6):561-72, 2011

• Fabio Mart́ınez, Christian Cifuentes, Eduardo Romero. Simulation of normal

and pathological gaits using a fusion knowledge strategy. J Neuroeng Rehabil.

10(1):73, 2013.

• Christian Cifuentes, Fabio Mart́ınez, Eduardo Romero. Physics-based model to

simulate the Parkinsonian gait. SIPAIM: VII Seminario Internacional de Proce-

samiento y Análisis de Imágenes Médicas. Bucaramanga. Colombia (2011)

• Christian Cifuentes, Fabio Mart́ınez, Eduardo Romero. A 3D physics-based

model to simulate normal and pathological gait patterns. International Confer-

ence on Computer Graphics Theory and Applications (GRAPP). Rome - Italy.

(2012)

• Fernanda Sarmiento, Fabio Mart́ınez, Eduardo Romero. Automatic Charac-

terization of the Parkinson Disease by Classifying the ipsilateral coordination and

spatiotemporal gait patterns. submittted to SIPAIM 2014

• Luisa Fernanda Cardenas, Fabio Mart́ınez, Eduardo Romero. Simulation of

parkinsonian gait by fusing a physical model and trunk learned patterns. sub-

mittted to SIPAIM 2014

On the other hand, a bottleneck of the modern prostate radiotherapy treatments is the

accurate delineation of the prostate, a procedure usually performed by delineating this

organ. The problem of segmenting the prostate and the neighboring organs was herein

approached from a dynamical standpoint. Yet this problem is static, the notion of

movement allows to evolve towards the true shape. In this case, the learned temporal

evolution amounts to a shape deformation analysis, for which a set of prostate shapes

is arranged according to the probability of occurrence. This vector of learned shapes

encodes the variance of the perceived objects. The objects, in this case the prostates,

are mapped to a feature space that facilitates to dynamically find the most similar

shape. Academic products obtained from this perspective were:

• Fabio Mart́ınez, Eduardo Romero, Gael Dreán, Antoine Simon, Pascal Haigron,

Renaud de Crevoisier, Oscar Acosta. Segmentation of pelvic structures for plan-

ning CT using a geometrical shape model tuned by a multi-scale edge detector.

Accepted for publication in Journal of Physics in Medicine and Biology.(2014)



1.5 Thesis Outline 11

• Charlens Álvarez, Fabio Mart́ınez and Eduardo Romero. A novel atlas-based

approach for MRI prostate segmentation using multiscale points of interest. In-

ternational Seminar on Medical Information Processing and Analysis, SIPAIM

-2013. Mexico.

• Fabio Mart́ınez, Eduardo Romero, Gael DrÃ�án, Antoine Simon, Pascal Haigron,

Renaud de Crevoisier, Oscar Acosta.Segmentation of pelvic structures from plan-

ning CT based on a statistical shape model with a multiscale edge detector and

geometrical likelihood measures. Image-Guidance and Multimodal Dose Planning

in Radiation Therapy. InternationalWorkshop in MICCAI 2012.

• Carlos Mosquera, Fabio Mart́ınez, Oscar Acosta, Renaud de Crevoisier, Ed-
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1.5 Thesis Outline

The remaining chapters of the thesis are organized as follows:

• Chapter 2: Locally estimating temporal shape patterns

This chapter presents the first level of the proposed computational framework.

This module introduces a set of strategies that capture dynamic patterns by

computing a temporal correlation between consecutive frames. Such computed

motion history allows to follow shapes in motion and analyze their temporal

changes. Diverse applications were approached, namely, the automatic classifica-

tion of gait pathologies, the measure of polyps in endoscopy and the analysis of

the heart ventricle.

• Chapter 3: Spatio-temporal descriptors from optical flow patterns

This chapter presents a second level of motion analysis from an optical flow

field representation. The developed descriptors capture the velocity orientation

and characterize actions of objects in motion. Contributions were carried out

in different applications such as recognition of human activities in surveillance
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applications, computation of the hummingbird dynamic patterns during flight

and also global heart trajectories analysis to classify normal and pathological

movements.

• Chapter 4: Dynamic Analysis by integrating prior knowledge

This chapter presents the third module of the proposed framework, in which a set

of prior semantic concepts were associated with dynamic patterns. In particular,

for the analysis of pathological gait, it was proposed a sophisticated physical

prior that emulates normal and pathological patterns, while an original strategy

for tracking the center of mass was also proposed.

Likewise, these dynamical analysis strategies were applied for delineating the

prostate and neighboring organs in the context of a radiotheraphy treatment.

For this purpose, a set of learned organ shapes were arranged according to the

probability occurrence and then were iteratively mapped to a common space,

together with the captured observations, and then to establised the most likely

shapes.

• Chapter 5: Conclusions and Perspectives. This final chapter presents

the main conclusions of the proposed work, highlighting the main contributions

and their impact. In addition, some main issues were discussed as well as future

research directions and perspectives.



2 Locally estimating temporal shape

patterns

At a first level of motion perception, the primary visual cortex temporally correlates

visual information, resulting in a perception of moving shapes. Such analysis ends

up by capturing dynamic object patterns. This chapter presents a set of applications,

for which the analysis consists basically in correlating consecutive frames to recover

the main regions during motion. The analysis has allowed to characterize pathological

gaits (see in section 2.1, and 2.2), to identify and measure polyps in routine endoscopy

procedures (see in section 2.3) and to track the right ventricle on cine-MRI sequences

(see in section 2.4 and 2.5).

2.1 Classification of Pathological Gait Markerless

Patterns

Gait patterns may be distorted in a large set of pathologies. In the clinical practice, the

gait is studied using a set of measurements which allow identification of pathological

disorders, thereby facilitating diagnosis, treatment and follow up. These measure-

ments are obtained from a set of markers, carefully placed in some specific anatomical

locations. This conventional procedure is obviously invasive and alters the natural

movement gestures, a great drawback for diagnosis and management of the early dis-

ease stages. Instead, markerless approaches attempt to capture the very nature of

the movement with practically no intervention on the movement patterns. This arti-

cle introduces a novel markerless strategy for classification of normal and pathological

gaits, using view-based video descriptor of the sagital trajectory, stored in a tempo-

ral summarization. The strategy was evaluated in three groups of patients: normal,

musculoskeletal disorders and parkinson’s disease, obtaining a sensitivity around 80%.

The complete content of this section has been published as a research article in the

proceedings of SIPAIM-2010 (see [94]).
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2.1.1 Introduction

Distortion of gait patterns are the first clinical manifestation of many diseases, among

others diabetes, brain palsy, cerebral vascular accidents, neuromuscular dystrophies or

accident sequelae. The analysis of human gait attempts to objectively assess patholo-

gies by following up the hidden gait dynamic variables. The set of techniques dedicated

to perform this analysis is what is currently known as the gait laboratory, a modern

tool devised to quantify a disease, to compare the gait with normal patterns and to

efficiently perform the dynamic alignment of lower member prostheses [163,224]. Most

of this gait analysis is carried out with a set of markers, carefully placed in some specific

anatomical locations. This conventional procedure is invasive and alters the natural

movement gestures leading to wrong pattern measures.

On the other hand, gait dynamic patterns are by nature highly variable and can be

easily contaminated with noise. In early stages, most of these diseases differ by very

little from what is considered a normal pattern so that classification is a very chal-

lenging problem, even for the expert clinicians. This picture may be worsen if one

considers that the basic examination tool, the markers, can move very easily or even

be unobservable, contaminating the resulting measurement. These factors together

lead to subjective clinical analyses with the consequent limitation in the reproduction

of the clinic management of the patient [158,288].

Ultimately, this problem has undergone a fundamental transformation since the objec-

tive is not anymore the movement reconstruction from the anatomical markers, but the

accurate tracking of the movement pattern i.e. the markerless strategy. Research areas

as computer vision, automatic surveillance, animation and image processing have al-

ready developed some markerless strategies for diverse applications, namely, biometric

identification, abnormal motion detection, scene reconstruction and activity classifica-

tion [166, 266, 277]. These methods attempt an interpretation of human movements

using nothing but the shape and dynamics of the body. From the medical application

standpoint, marker strategies have demonstrated their limitations and new procedures

are required. This article presents a precise and efficient markerless framework to iden-

tify and classify different kinds of normal and pathological movements. This approach

uses as input a sagital view video of a patient walking. Every frame is processed to

extract the human silhouette, with which we build a view-based video descriptors that

are a temporal summarization of the motion history. Hu moments are then computed

for each descriptor, a feature vector is obtained and used to classify patterns as nor-

mal or pathological using a classical Support Vector Machine strategy. Evaluation was

performed on a database with 48 videos from 12 patients, with 3 types of movements:

normal, musculoskeletal disorders and parkinson’s disease.
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2.1.2 Materials and Methods

The proposed strategy segments the silhouette and uses it to construct a gait descriptor:

the motion history images(MHI). This descriptor is finally used as a feature in a classical

SVM strategy. The whole method is illustrated in Figure 2-1.

Figure 2-1: Markerless strategy to Classify Pathological Gait Patterns. This approach

consist in a set of step: (a)walking sequence of video, (b) Silhouette extrac-

tion process using Σ−∆ algorithm, (c) HMI video descriptor construction,

(d) classification method

2.1.2.1 Background Estimation for Silhouette Extraction

Temporal description of the patient gait patterns is central at describing structural

changes. Many strategies have been proposed already, they are currently known as

background estimation methods [88,141,196]. These methods use a sequence of images

It and build a model of the static scene Mt. Output of the model is a Image Dt, where

the background is represented by Dt(x) = 0 and the foreground is Dt(x) = 1.

Among the background estimation methods, the non linear operator Σ − ∆ is one of

the most robust. This estimator oversampled a signal at higher rates than the specified

by the Nyquist theorem, increasing correlation between the adjacent frames, evaluated

for each pixel [196]. The Σ − ∆ operator behaves as a background tracker Mt(x),

dynamically updated by comparing each image It(x) with the current background

Mt(x), using a simple updating rule: If It(x) is greater (lower) than Mt(x), then a

positive increase (decrease) +∆ is performed. The implemented Σ − ∆ algorithm is

shown in 1, whose results illustrated in Figure 2(a).
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(a) Walking sequence

(b) Background estimation

Figure 2-2: Silhouette extraction estimation. (a) Walking sequence of a patient with a

musculoskeletal disorder. (b) Results of the Σ−∆ background estimation

2.1.2.2 Video Descriptor

Once the silhouette is extracted from the video, the next step is to build a video

descriptor that represents the dynamic of each walking. In our case, we use the Motion

History Image (MHI) represented by Hτ (x, y, t) [6, 34] which describes the motion by

the segmented silhouette changes D(x, y, t) = 1. This video descriptor consists in a

sequence of consecutive silhouettes, recorded in a single image, i.e., moving pixels are

brighter, as follows:

Hτ (x, y, t) =


τ if D(x, y, t) = 1

−max(0, Hτ (x, y, t− 1)− 1)

otherwise.
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(a) (b) (c)

Figure 2-3: Motion History Image descriptor. (a) Normal Gait. (b)Musculo Eskeletical

disease.(c) Parkinson Disease

Algorithm 1 Σ−∆ Algorithm

Initialization: M0(x) = I0(x)

For each Frame t

Mt(x) = Mt−1(x) + sgn(Itx−Mt−1(x))

∆t(x) = |Mt(x)− Itx|

Initialization: V0(x) = ∆t(x)

For each Frame t

for each pixel x such that ∆t(x) 6= 0

Vt(x) = Vt−1(x) + sgn(N ×∆t(x)− Vt−1(x))

if ∆t(x) < Vt(x) then

Dt(x) = 0

else

Dt(x) = 1

end if

where τ is the spatial window that defines the duration of the sagital patient motion.

Figure 2.2 shows typical results for the video descriptor, in different kinds of move-

ments. Figure 3(a) shows the typical smooth pattern of the normal walking, while

figure 3(b) shows a irregular pattern, with abrupt changes and long duration, typical

of the musculoskeletal disorders [224]. Finally, figure 3(c) shows the video descriptor

of a parkinson’s disease walking, notice the short movement duration due to the short

step length, characteristic of this kind of movement.
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2.1.2.3 Gait Data

Validation was carried out with recorded sagital views, registered at the gait lab of

the National University, under semi-controlled illumination conditions. The dataset

consists of a set of videos captured from 12 patients, each was recorded 4 times while

walking, for a total of 48 video sequences. The Dataset was divided as follows:

• 4 patients diagnosed with musculoskeletal disorders.

• 4 patients diagnosed with parkinson’s disease (No depressive disorder present).

• 4 patients with normal gait.

2.1.2.4 Attributes for Classification

The Classification phase of the proposed method requires a set of attributes to be

extracted from each HMI image. As image moments represent global characteristics of

the image objects and provide information about various geometrical features [208], it

is expected that the differences between the HMI of normal and pathological gaits can

be captured by the mentioned descriptors. Therefore the first seven Raw, Central, Scale

Invariant and Hu moments were selected to characterize each of the images, building a

feature vector of dimension 7 for each HMI image. An additional Gray scale descriptor

was included, built from a rescaled version of the luminance channel of the original

color image (it was rescaled by a factor of 10).

2.1.3 Results

Classification was performed using a conventional machine learning method, a Support

Vector Machine (SVM) [41]. The SVM was trained with a set of attribute vectors,

extracted from already labelled HMI images. In this phase, two types of kernels were

employed, polynomial kernels and Radial Basis Function (RBF). Parameters of the

cost function, gamma (for RBF kernels) and the exponent (for polynomial kernels)

were estimated using the sequential minimal optimization algorithm [270]. The Gait

Dataset, with 48 videos, was split into 3 groups according to the type of gait. Each

video is represented by 5 HMI and each class is represented by a total of 80 HMI

images, from which 69 were selected for training and 11 images for test. The following

tables summarize the obtained results.

Tables 1 and 2 show that the rescaled HMI is much better than the description based

on moments, but at a higher computational cost. On other hand, scaled invariant

and Hu moments, with a sensitivity of 80% can be considered as appropriate for most
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Descriptor Samples True Positives True Positives Ratio

Raw Moments 33 21 63%

Central Moments 33 24 72%

Scale Invariant Moments 33 26 79%

Hu Moments 22 11 66%

Gray Descriptor 22 11 66%

Table 2-1: Classiffication results using Linear Kernels

Descriptor Samples True Positives True Positives Ratio

Raw Moments 33 16 49%

Central Moments 33 16 49%

Scale Invariant Moments 33 11 33%

Hu Moments 33 17 51%

Gray Descriptor 33 32 96%

Table 2-2: Classification results using RBF Kernels

applications, however results with HMI and a sensitivity of 96% can even be considered

for actual clinical applications.

2.1.4 Conclusion

This paper presented a novel markerless method to identify and classify normal and

pathological human walking. The whole strategy consists in extracting the silhouette of

the patient for each video frame and use this information for building a motion history

image descriptor (HMI). Image moments are used to build a feature vector from the

HMI descriptors, which is then used to classify patterns as normal or pathological

using a classical Support Vector Machine strategy. The results obtained show this

method could complement the conventional gait analysis and a first approximation to

a markerless analysis.

2.2 Pathology Classification of Gait Human Gestures

from noise observations

Gait patterns may be distorted in a large set of pathologies. In the clinical prac-

tice, the gait is studied using a set of measurements which allows identification of
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pathological disorders, thereby facilitating diagnosis, treatment and follow up. These

measurements are obtained from a set of markers, carefully placed in some specific

anatomical locations. This conventional procedure is obviously invasive and alters the

natural movement gestures, a great drawback for diagnosis and management of the

early disease stages, when accuracy is a crucial issue. Instead, markerless approaches

attempt to capture the very nature of the movement with practically no intervention on

the movement patterns. These techniques remain still limited concerning their clinical

applications since they do not segment with sufficient precision the human silhouette.

This article introduces a novel markerless strategy for classifying normal and patho-

logical gaits, using a temporal-spatial characterization of the subject from 2 different

views. The feature vector is constructed by associating the spatial information obtained

with SURF and the temporal information from a Σ−∆. The strategy was evaluated

in three groups of patients: normal, musculoskeletal disorders and parkinsons disease,

obtaining a precision and a recall of about 60% The complete content of this section

has been published as a research article in the proceedings of VISSAP-2011 (see [93])

2.2.1 Introduction

Distortion of gait patterns are the first clinical manifestation of many diseases, among

others diabetes, brain palsy or accident sequelae. The analysis of human gait attempts

to objectively assess pathologies by following up the hidden gait dynamic variables.

The set of techniques dedicated to perform this analysis is what is currently known

as the gait laboratory, a tool devised to quantify a disease and to compare the gait

with normal patterns [126, 224]. Most of this gait analysis is carried out with a set of

markers, carefully placed upon some specific anatomical locations. This conventional

procedure is invasive and alters the natural movement gestures, necessitating strong

variations to achieve diagnosis, i.e., this approach is hardly useful in early stages.

On the other hand, gait dynamic patterns are by nature highly variable and can be

easily contaminated with noise. In early stages, most of these diseases differ by very

little from what is considered a normal pattern so that classification is a very challenging

problem, even for the expert clinicians. This picture may be worsen if one considers

that the basic examination tool, the markers, can move very easily or can even be

unobservable, contaminating the resulting measurement. These factors together lead

to subjective clinical analyses with the consequent limitation in the reproduction of

the clinic management of the patient [158,288].

Ultimately, this problem has undergone a fundamental transformation since the objec-

tive is not anymore the movement reconstruction from the anatomical markers, but the

accurate tracking of the movement pattern i.e. the markerless strategy. Research areas
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as computer vision, automatic surveillance, animation and image processing have al-

ready developed some markerless strategies for diverse applications, namely, biometric

identification, abnormal motion detection, scene reconstruction and activity classifica-

tion [166,266]. However, there are several problems related to extracting the object of

interest from some scenarios, mainly due to the blurred boundaries between the back-

ground and foreground [64,204], an issue that can result in wrong characterizations.

This article presents an efficient markerless methodology to identify and classify differ-

ent kinds of normal and pathological movements. A non linear Sigma-Delta ( Σ−∆)

operator is used to obtain a temporal movement description as a set of pixels. Most of

them correspond to a particular patient shape while some small scattered groups belong

to the background. Afterwards, we compute a bounding box around of largest group

and therein we calculate some local features per frame, using the Speeded Up Robust

Features (SURF). A weighting function allows associating some of these spatial features

with relevant temporal information. This weighted feature vector is used to classify

patterns as normal or pathological, applying a classical Support Vector Machine strat-

egy. Evaluation was performed on a database with 96 videos from 32 patients, with

three types of movements: normal, musculoskeletal disorders and Parkinson’s disease.

Sensitivity and specificity are used to assess the utility of this method.

2.2.2 Gait data

Experimentation was carried out with video sequences recorded from 3 views frontal,

lateral and 45 degree view, registered at the gait laboratory of the National University

of Colombia, under semi-controlled illumination conditions. This dataset consists of a

set of videos captured from 20 patients, each one was recorded 4 times while walking,

for a total of 240 video sequences. The Dataset was divided as follows:

• 8 patients diagnosed with musculoskeletal disorders for a total of 13500 frames.

• 7 patients diagnosed with parkinsons disease (No depressive disorder present) for

a total of 15500 frames.

• 5 patients with normal gait for a total of 14000 frames

2.2.3 The proposed method

Our proposed method begins calculating the temporal information using a Σ − ∆

operator. A bounding box is superimposed upon the region with the largest rate of

change and the local features are calculated, within this box, using SURF. A weighting

function chooses the more relevant SURF features, those with a similar spatial location
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to the pixels detected by the Σ −∆ operator, i.e., the features that contain temporal

and spatial information. The obtained feature vector is used to classify patterns as

normal or pathological, applying a classical SVM, as illustrated in figure 2-4.

2.2.3.1 Σ−∆ Temporal Estimator

Temporal description of the patient gait patterns is central at describing structural

changes. Many strategies have been proposed already, they are currently known as

background estimation methods [88,141,196]. These methods use a sequence of images

It and build up a model of the static scene Mt. The model output is an image Dt ,

where the background is represented by Dt(x) = 0 and the foreground is Dt(x) = 1.

In our dataset the silhouette extraction is a difficult task because of the similarity

between the foreground and the background. Hence we use a non linear Σ−∆operator

to obtain a motion descriptor which detects the most probable localization of the

foreground. This estimator oversamples a signal at higher rates than the especified

by the Nyquist teorem, increasing correlation between the adjacent frames at each

pixel [196]. The Σ−∆ operator behaves as a background tracker Mt(x), dynamically

up dated by comparing each image It (x) with the current background Mt(x), using a

simple updating rule: If It (x) is greater (lower) than Mt(x), then a positive increase

(decrease) ∆ is performed. The implemented Σ−∆ is shown in the Algorithm 1. Upon

the region with the largest movement pattern, we compute a center of mass, on top

of which we place a bounding box that contains the object of interest. This process is

speeded up using an integral image representation of the original images, reducing the

computational cost by 94 % [269]

2.2.3.2 Speeded Up Robust Features (SURF)

Once the bounding box is extracted, we calculate some local features of it using the

Speeded Up Robust Features (SURF) descriptor [136]. This descriptor highlights the

salient points within the bounding box so that each salient point is described by mag-

nitude, orientation and feature vectors. The SURF method provides invariant image

description, allowing a robust representation against illumination, scale and rotation

changes, a useful aspect in our problem due to the semicontrolled scenario, different

views and patients.

The SURF description is obtained by initially computing the Hessian matrix H(X, σ),

as follows:

H(X, σ)

[
Lx,x(X, σ) Lx,y(X, σ)

Lx,y(X, σ) Ly,y(X, σ)

]
(2-1)
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Figure 2-4: The markerless strategy consists in determining a feature vector to describe

normal and pathological movement, using a temporal-spatial gait charac-

terization. Motion is classified using a Support Vector Machine strategy

where X is a specific point, s is the scale and Lxx(X, σ) is the second Gaussian con-

volution. This step relies on an integral image to reduce the computational time.

Afterwards, SURF constructs a circular region surrounding the points of interest, at-

tempting to assign a unique orientation by estimating the Haar wavelet coefficients in

both directions and thereby gaining invariance to image rotations. SURF descriptors

are thus constructed by extracting square regions around the points of interest, which

are divided in four sub-regions.

2.2.3.3 Feature Extraction

SURF features are used to obtain a summarization of the gait sequence, they operate

exclusively on the bounding boxes. Once the set of SURF features is calculated, the

values of the SURF descriptor vector are weighted, following the pixel intensity distri-

bution obtained from the Σ−∆ operator. Higher values are assigned to vectors whose

locations belong to regions with high movement. The proposed summarization is a

collection of weighted vectors, arranged according to their frame number, on the gait

sequence.

As the SURF features produce a variable number of points of interest for different

sequences, the final descriptor of a gait sequence is obtained at quantizing the complete

set of vectors into 5, 10, 20, 40 and 50 clusters using the Expectation Maximization
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algorithm yielding 5 different descriptors for a single sequence.

2.2.4 Experimental Results

Classifcation was performed using a Support Vector Machine (SVM), trained with a set

of attribute vectors, extracted from labeled gait sequences. In this phase, two types of

kernels were used, polynomial and Radial Basis Function (RBF) kernels. A sensitivity

analysis of the parameters, gamma (RBF kernels) and the exponent (polynomial ker-

nels), were estimated using the sequential minimal optimization algorithm [270], the

parameter which yielded the larger number of true positives.

Class Precision Recall

RBF Poly RBF Poly

M 0.67 0.75 0.33 0.75

N 0.6 0.7 0.95 0.66

P 0.72 0.61 0.41 0.64

Table 2-3: Table shows the precision, recall and sensitivity for the different evaluated

classes, i.e., the musculo-skeletal disorder (M), the normal pattern (N) and

the parkinsonian gait (P), using both the RBF and polynomial kernels.

Overall, the SVM strategy shows precision and recall figures above 0.6, except for the

musculo-skeletal patterns, for which the RBF is 0.33, a very large difference that can

be attributed to the fact that the group of musculo-skeletal is composed of a larger

number of patterns and therefore the variance is much larger. The RBF kernel shows

a recall of 0.95 for the normal group, indicating that the RBF kernel works better with

the data with smaller variance. Of course the fact that the normal group was the larger

group (8 cases, compared with 7 and 6) can bias these results, together with the fact

that the chosen parameters were set by the fact that they detected the larger number

of true positives.
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Class M N P

RBF Poly RBF Poly RBF Poly

M 4 9 5 1 3 2

N 1 2 20 14 0 5

P 1 1 8 5 8 11

Table 2-4: Confusion Matrix using RBF and polynomial kernels for the three evaluated

classes

Likewise the confusion matrix shows that correlation between the normal class is the

higher.

2.2.5 Conclusion

This paper has introduced a novel markerless method that allows to characterize nor-

mal and pathological human gait patterns. The whole markerless strategy consists in

determining a feature vector for describing normal and pathological movement, using a

temporal-spatial gait characterization from 3 different views. The feature vector is con-

structed by associating the spatial information obtained from SURF and the temporal

information from a Σ−∆ operator.

Motion is classified using a classical Support Vector Machine strategy. Results demon-

strate that this method can complement the conventional gait analysis since it assigns

objective pattern measurements. The methodology presented in this work constitutes

a first approximation to understanding the complex dynamic of the gait. From this

kind of analyzes, we expect it would be possible to set up an assembly of descriptors

which allow to accurately describe motions patterns and quantify gait semantics.

2.3 Estimating the size of polyps during actual

endoscopy procedures using a spatio-temporal

characterization

Polyp size fully determines the surgical endoscopy management since gastroenterolo-

gists only send a polyp sample to the pathology examination if the polyp diameter is

larger than 10 mm, a measure that is achieved by examining the lesion with a calibrated

endoscopy tool. Such measure is very challenging because it must be performed during
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a procedure subjected to a complex mix of noise sources, namely anatomical variabil-

ity, drastic illumination changes and abrupt camera movements. This work introduces

a semi-automatic method that estimates a polyp size by propagating an initial man-

ual delineation in a single frame to the whole video sequence using a spatio-temporal

characterization of the lesion, during a routine endoscopic examination. The proposed

approach achieved a Dice Score of 0.7 in real endoscopy video-sequences, when com-

paring with an expert. In addition, the method obtained a Root Mean Square Error

(RMSE) of 0.87 mm in videos artificially captured in a cylindric structure with spheres

of known size that simulated the polyps. Finally, in real endoscopy sequences, the

diameter estimation was compared with measures obtained by a group of four experts

with similar experience, obtaining a RMSE of 4.7 mm for a set of polyps measuring

from 5 to 20 mm. An ANOVA test performed for the five groups of measurements (four

experts and the method) showed no significant differences (p < 0.01).The complete con-

tent of this section has been submitted for publication to the journal of Computerized

Medical Imaging and Graphics

2.3.1 Introduction

Colorectal cancer is the seventh death cause worldwide [214], a frequently asymp-

tomatic illness characterized by a set of malign polyps along the digestive tract [7,233].

Typically, this disease is discovered during an endoscopy procedure, case in which the

polyp size is used as the main endoscopic sign that supports the decision of an imme-

diate resection, i.e., if the polyp is smaller than 10 mm [211], it is removed, otherwise

a sample is sent to pathology and the procedure is reprogrammed for an extirpa-

tion [7,233]. Usually, the polyp size is estimated by measuring the lesion with a linear

colonoscopy probe or by using the aperture of the endoscopy forceps as a repair for com-

parison [114]. This estimation is a very difficult task, highly subjective and dependent

on the expert training [159]. In addition, several technical problems may arise during

the procedure, such as: 1) optical distortion (Barrel’s effect), 2) difficult handling of

the endoscope because of the bowel tone and 3) exacerbated physiological conditions

like increased motility or secretion [159]. Current advances on video processing open

up an actual possibility of identifying polyps during an endoscopy, with some potential

advantages, namely: 1) real time estimation, 2) lessinvasiveness, i.e, no additional tool

is needed, 3) low cost procedure, and 4) a lesion characterization that might be used

as support to the diagnosis. However, an appropriate polyp estimation is yet limited,

among others because of the high variability of both the endoscopy procedure and the

polyp shape [9, 95], interference light patterns due to the bowel motion and blurred

captures because of the varying illumination conditions [159].
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Different approaches have been so far proposed for segmenting and estimating the polyp

size, under certain geometrical, appearance and size restrictions that often restrain

the accuracy of these methods [140]. Aiming to delineate the polyp, Liu et al. [187]

simulate a geometrical 3D intestinal tract, computed from a flow deformation map

that matches a set of salient points from consecutive frames. Such method results

computationally expensive and prone to errors because the salient points are hardly

correlated. This strategy only predicts the presence/absence of the polyp, and also it

requires an initial manual intervention. In [61], a per-frame polyp shape is estimated

by using a set of classical geometrical and color descriptors, a strategy that fails under

non controlled illumination conditions. In contrast, Bernal et al. [31] approximate the

polyp shape by using per-frame static features that must follow a polyp appearance

model. This characterization may fail if the polyp is blurred in the endoscopy video, as

usually observed in real scenarios. For estimating the polyp size, Chadebecq et al. [159]

introduced a prior RoI bounding the polyp and tracked the lesion using a temporal rigid

transformation. Afterward, an infocus blur allowed a RoI size estimation. However, in

real conditions the camera movements may be so rapid that the RoI easily losses the

polyp.

Recent strategies involve the fusion of video-endoscopy with ultrasound images. Nev-

ertheless, such echo-endoscopy device is mainly indicated in case of extramural polyps,

i.e., it makes possible to measure advanced stages of the polyp and its use is highly

expert dependent [243]. Other strategies include the virtual endoscopy from CT im-

ages [67,81,271], a 3D reconstruction that requires long exposition to ionizing radiation,

report low sensitivity rates [67,81,294] and is purely diagnostic and polyps finally must

be removed during an endoscopy procedure.

The main contribution of this work is a method that delineates the polyp and estimates

its size in a video sequence, using a local spatio-temporal characterization and an

automatic defocus strategy. For doing so, a per-pixel motion descriptor is initially built

while the camera is moving, assuming only a statistical dependence with the precedent

frame. An additional Bayes strategy couples the per-pixel motion descriptor with prior

motion information, approximating the shape during occlusion phases. A polyp size is

then estimated from the obtained polyp delineation, using a focused estimation of the

whole sequence with a calibrated camera model.

2.3.2 Proposed Approach

The present strategy segments, tracks and measures polyps during an endoscopy proce-

dure. An initial manual polyp delineation in the first frame captures the main features

to be used. This characterization and the motion history endoscopy coarsely follow the
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polyp in the sequence. Afterwards, a classical second order kalman filter, a bayesian

tracking strategy, is used to refine the polyp segmentation, obtained from the spatio-

temporal characterization. Once a polyp is identified and segmented, the polyp size

is computed using an offline depth defocus strategy. The pipeline of the proposed ap-

proach is illustrated in Figure 2-5 and further described in the following subsections.

Figure 2-5: Pipeline of the proposed approach. The method is composed of four main

steps. Firstly in (a), a spatio-temporal characterization allows to coarsely

follow the polyp. In (b) a polyp tracking strategy was then used to refine

the polyp segmentation. Finally a camera calibration model (c) and a

depth defocus strategy (d) was used to measure the maximum size diameter

of the polyp segmentation obtained.

2.3.2.1 Radial distortion correction

In general, radial endoscopy distortion produces non linear incremental deformations

from the optical center to the outer regions, affecting the object relative size and

position [184, 206]. The wide-angle lens distortion (barrel’s effect) was corrected by

estimating the camera parameters using a bank of artificial images (see Figure 2-5(c)).
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Assuming an orthogonal coordinate system, every point in the image space x is related

to the real world x̃ by a pinhole model defined as x = f
z
x̃, where f is the focal length

and z the distance from the object to the camera lens.

This model estimates the focus camera length, the scale factor, the distortion coefficient

and the optical center point. This nonlinear distortion was aproximated by power series

and corrected as rn = rd(1 + k ∗ r2d), being k the radial distortion coefficient and rd the

image with the corrected distortion.

2.3.2.2 Preprocessing and polyp initialization

A polyp is an intestinal protuberance whose appearance may be easily confounded with

the surrounding tissues, leading most segmentation procedures to fail. The proposed

approach starts by an expert delineation of the polyp contour in the first frame to

capture specific polyp features. The polyp contour Xt is represented as a parametric

curve defined as: Xt =
{
{xt}ni=0, (x̄, ȳ)

}
, where {xt}ni=0 is a set of n points contouring

the polyp with its centroid defined in (x̄, ȳ). Such delineation defines a neighbour RoI

around the lesion, the RoIt with size {RoIt = Xt + ξ}, being ξ a tolerance value.

Afterwards, the histogram of the whole sequence was equalized and a gaussian filter,

with σ = 0.7, was applied to remove the granular noise.

2.3.2.3 Quantifying the polyp motion patterns

During an endoscopy navigation, the expert always tries to track the polyp with transla-

tional movements, attempting to generate a depth perception by amplifying the motion

of nearby structures1. Using a background subtraction strategy, the proposed approach

estimates the region with more motion, within which the polyp shape is approximated

by those pixels with the largest temporal variance [196]. For so doing, a per pixel history

motion Mt(x, y), storing the relative motionless digestive tract, is firstly calculated as

Mt(x, y) = Mt−1(x, y) + sign(It(x, y)−Mt−1(x, y)), where It(x, y) is a particular frame

at time t. A likelihood function ∆t(x, y) measures the instantaneous pixel motion at

time t w.r.t the background history motion, being ∆t(x, y) =
∣∣Mt(x, y)− It(x, y)

∣∣. The

lesion is then composed of those pixels causally and anti-causally moving during most of

the sequence and computed as: ∆t(x,y) = (αt)∆
forward
t (x, y) + (1−αt)∆backward

t (x, y),

where α = t
N

is a temporal weight parameter. Finally, moving pixels that better rep-

resent the polyp shape are selected by simple thresholding the estimation ∆t(x,y)

with a learned scalar parameter τ as: Sbt(x, y) = ∆t(x,y) ≥ τ , yielding the motion

segmentation.

1classically known as motion parallax (right-left movements) [240] and kinetic depth perception

(rear-front movements) [273]
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2.3.2.4 Tracking the RoI

The initial position of the RoIt that bounds the polyp delineation is then propagated

to the rest of the image space and motion history sequences. For doing so, the motion

history is correlated for every pair of consecutive frames [181], as:

RoIt(x, y) = arg max
RoIt

(n−1)∑
i=0

(m−1)∑
j=0

∆t(i, j) ∗ RoIt−1(x− i, y − j) (2-2)

where RoIt(x, y) is an estimation of the polyp location corresponds then to that max-

imally correlated RoI.

Such RoI in the motion history space is mapped to the image space, where a minimal

per-pixel euclidean distance w.r.t. the precedent RoIt−1, allows to obtain an addi-

tional polyp segmentation Sit(x, y), the intensity segmentation. Then, an improved

segmentation is obtained by fusing the two mentioned segmentations as the intersec-

tion of the intensity Sit(x, y) and motion Sbt(x, y) (defined in the previous subsection),

Zt = {Sit(x, y)⊕Sbt(x, y)}.
Additionally, a classical morphological operator removes the remaining noise, basically

groups of isolated polyp regions. Finally, The obtained segmentation is transformed to

a polar space, where a simple smoothing preserves the global shape.

2.3.2.5 Tracking the polyp

During an actual endoscopy procedure, a polyp may be missed because of some abrupt

camera motions or presence of some digestive fluid that might partially occlude the in-

testinal tract. With a proper frame-rate capture, it is reasonable to assume a relatively

smooth polyp motion, even when the polyp is partially occluded.

A bayesian strategy estimates and tracks the polyp, modeling the probability p(X̂t|Zt)
of the state of the polyp delination X̂t at time t, given the spatio-temporal observations

Zt = (Z1, . . . , ZN). This model is assumed markovian, i.e., the current state of the

system stores the relevant information. Such Bayesian strategy requires a model of the

dynamics p(Xt|Xt−1) and a likelihood function p(Zt|Xt) that maps the estimated polyp

to the spatio-temporal space. Once this information is avaible, the polyp delineation

at a particular state, is calculated in two steps:

• Prediction. A particular state Xt is computed by updating the previous belief

X̂t−1, after a prediction given by the Chapman-Kolmogorov equation: X̂t =∫
p(Xt|Xt−1)X̂t−1dXt−1

• Update. The predicted belief Xt is adjusted after observations: Xt ∝ X̂tp(Zt|Xt)
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For the sake of computational efficiency, a second order kalman filter models the polyp

delineation X̂t by using the first and second statistical moments as Xt ∼ N (µt,Σ
2
t ),

where µt is the mean distribution and Σ2
t is the covariance matrix of the state t. This

kalman estimator is computationally optimal because it linearizes the system with a

first order taylor series expansion.

2.3.2.6 Polyp size estimation

Figure 2-6: The off-line depth defocus learned model is presented (a) an artificial grid

image with known defocus-depth relationship. Using this learned repre-

sentation, a depth estimation in endoscopy images finds an optimal depth

distance (infocus breakpoint) and computes the maximum polyp size (b).

A polyp size is estimated from the obtained temporal segmentation at a fixed depth

position of the camera, as a function of the focused image [118] 2 and the pinhole

camera parameters.

The depth was herein estimated by a defocus strategy [159] that assumes each frame

is contaminated with an unknown gaussian blur with standard deviation σo, propor-

tional to the object distance to the camera. This unknown Gaussian blur is estimated

by convolving the image with a known Gaussian blur and computing the difference be-

tween gradients of the original (unknown blur) and blurred (known blur) images. This

gradient ratio Rt is proportional to the unknown standard deviation as σot = 1√
R2−1σ

b
t ,

where σb is a known standard deviation of a blurred gaussian.

In an off-line posterior training step, the blur coefficients, a set of correspondences

between the blur levels of a phantom image3 and actual camera depths (see in Figure

2a well known psychophysical theory states that the distance to the camera is a function of the image

blur [118]
3An artificial grid phantom was adapted for this task
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2(a)), are computed. A single blur coefficient is then associated to the infocus break-

point image IBoff−line (the clearer cut-frame) and serves as a reference depth since

this is the minimum estimated blurring with a unique depth correspondence. Such

relationship - the blur coefficients - was herein used within the endoscopic RoIt to es-

timate the unblurred polyp by computing the corresponding infocus ROI breakpoint.

The unblurred polyp is then estimated from the segmentation previously obtained.

2.3.2.7 Dataset

The dataset herein used is composed of a set of videos captured using an Olympus

EVIS EXERA (GIF-1TQ160) gastrovideoscope device, provided with a field of view

of 140◦ and a focal length of (357.3, 325.5). Each sequence was recorded in color, with

a spatial resolution of 720 per 480 pixels and a temporal resolution of 30 frames per

second. Two different groups of videos were captured for training and evaluation. The

first dataset was captured under controlled conditions using an artificial phantom grid

superimposed to a set of images captured at different angles, estimating thereby the

intrinsic and extrinsic camera parameters. The depth function was trained with cap-

tures of the artificial phantom grid, as illustrated in Figure 2-5(c). The grid is placed

at different depth distances, using a custom platform that is displaced in steps of 1

mm, with a maximum distance of 30 mm. Additionally, as shown in Figure 3, a tubular

structure emulated the digestive tract while a set of spheres of known size, the polyps.

Four navigations within this structure were recorded to test the proposed approach

in controlled conditions. The second dataset included real endoscopic procedures and

presence of polyp lesions. Ten videos were captured and four gastroenterologists anno-

tated the videos, segmenting the polyps and estimating their size.

2.3.3 Evaluation and Results

The performance of the proposed approach was assessed in two different tasks: seg-

mentation and estimation of the polyp size. Four expert gastroenterologists delineated

and estimated the polyp size in phantom and real endoscopy sequences.

2.3.3.1 Polyp segmentation

Figure 2-8 illustrates the segmentation results in actual endoscopic videos. The yellow

contour stands for the ground truth delineation. In the second row, the red polyp

delineation is computed using an alternative tracking strategy introduced as a baseline,

the classical exponentially weighted moving average EWMA [147], for which an actual

polyp delineation is propagated along the sequence using the bhattacharyya coefficient
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Figure 2-7: Custom tubular structure that emulates the tract with spheres of known

sizes that simulate polyps.

and a set of exponentially decreasing weights obtained from previous frames. Despite

this strategy takes into account the motion histoy, and the polyp is relatively well

localized within the analysis RoI, the method misses polyp changes resulting from

abrupt camera movement, leading to a wrong segmentation. In contrast, in the third

row, the blue delineation is obtained with the proposed approach, showing a reliable

overlap during those periods with a relatively slow motion. When the camera abruptly

moves, the polyp appearance and size result modified, but the proposed approach

follows the lesion more accurately than the tracking observed with the EWMA.

Two quantitative metrics were used for assessing the segmentation task: the Dice coef-

ficient (DSC) and the Hausdorff distance (HD). The DSC(A, b) is 2(A∩B)
A+B

[78], where A

and B represent the obtained polyp area and the expert ground truth delineation, re-

spectively. The Hausdorff measure H(A,B) computes the maximum distance between

two sets of points as max(h(A,B), h(B,A)) and h(A,B) = maxa∈A minb∈B ‖a− b‖22.
In this case, each set of points represents the polyp delineation at each frame. This

measure allows to indirectly assess the compactness of the segmentation since outliers

are penalized. In videos captured within the artificial tubular structure (see in Figure

4.12(b)) a DSC of 0.96 was obtained when the phantom polyps were segmented, under

controlled illumination conditions. Table 2-5 shows the performance obtained by the

proposed approach and the EWMA tracking when segmenting 1040 frames.

An additional comparison with the Hausdorff Distance allows to assess the compact-

ness of the polyp delineation, since this measure penalizes those pixels far from the

ground truth, reporting in such a case a small value. Overall, the proposed approach

outperforms the baseline in terms of overlapping and compactness (small Hausdorff dis-
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Figure 2-8: Illustration of a polyp segmentation in a real sequence. First row, the orig-

inal sequence, second row: EWMA and third row, the proposed method.

Score EWMA tracking Proposed approach

DSC 0.52 ± 0.05 0.71 ± 0.12

HD 0.55 ± 0.08 0.38 ± 0.14

Table 2-5: Performance of the proposed approach using Dice Score (DM) and Hausdorff

distance (HD)

tance). Some segmentation errors may be caused a certain polyp occlusion is present

or in cases in which abrupt motions may change the appareance, size and shape of the

polyp.

2.3.3.2 Polyp size estimation

There exists a well documented high intra and inter expert variability [121], a reported

kappa coefficient of 0.4 and an agreement of only a 50.0% [211] in series with three

gastroenterologists. In consecuence, a second experiment aimed to evaluate the accu-

racy of the estimated polyp size. This task is much more challenging because of the
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multiple sources of distortion, but also more useful from a clinical standpoint since the

gastroenterologist usually has no reference to establish an actual polyp size. Results

are shown in Figure 2-9, the blue lower and upper boxes stand for the spread of the

estimated sizes reported by four experts (interquartile range), while the maximum and

minimum values are shown as the vertical dotted lines. A total of four endoscopy phan-

tom sequences, with 4 spheres whose size varied between 5 and 15 mm, were evaluated.

A part of the experiment required the gastroenterologist to simulate a procedure with

similar gestures to an actual endoscopy, the camera moved abruptly and the navigation

patterns were complex. In spite of the controlled conditions, experts showed a large

variability in their estimation, as illustrated in Figure 2-9, where yellow diamonds cor-

respond to the ground truth measure per video. Interestingly, results evidence a very

large variability of the obtained measures with respect to the reference. In average, the

standard deviation was about ±5.4 mm, confirming the high inter expert variability.

In contrast, the proposed metod (green circles) systematically achieved estimations

much closer to the actual value. In this case, the method accomplished an accurate

segmentation of the phantom polyps and also a proper estimation of the break focus

frame.

Overall, it has been traditionally acknowledged that the expert estimation is the most

reliable information source in real endoscopy procedures and therefore the ground truth

reference. Figure 6 shows the obtained estimations by the proposed approach (green

circles) and the gastroenterologists (interquartile range). In average, the gastroenterol-

ogists showed a variance of ±3.63 mm with respect to polyps that varied between 5 and

20mm. In case of real endoscopies, the mean expert estimation -the red line- amounts

to the ground truth. As illustrated in figure 4-16, the estimated size of the proposed

approach is within the range of variability observed for the the group gastroentelogists

and no significant differences were found when statistically evaluated (Anova test with

p < 0.01).

The real gain of any method is always contaminated by a particular noise at measur-

ing. The quality of the estimation was herein weighted by the noise as the SNR-like

measurement, using a logarithmic scale and measuring the difference between the ex-

pected control data and the predicted values. This SNR-like measurement was defined

as SNR− like = 10 log10
σ2

RMSE
, where σ2 is the largest delineation variance among the

group of experts and RMSE is the root mean squared error, the computed error of

the proposed approach w.r.t. the ground truth estimation. Table 2 shows the results

obtained by the proposed approach in terms of this SNR-like measure. In summary, the

proposed approach achieves a gain of 37.48 dB, indicating that the proposed approach

estimates the polyp, with a high degree of confidence, within the interval defined by the

estimations of the experts. Table 2-6 also reports the mean and the standard deviation
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Figure 2-9: Size estimation of phantom polyps in an artificial tubular tract. The yellow

diamonds represent the real measure of each recorded phantom polyp. The

box plot represents the obtained measures by a group of four expert gas-

troenterologists. The green circles show the estimation with the proposed

approach in each video.

of the Error (RMSE), indicating a high accuracy of the estimation in artificial videos

and a size estimation within the interval defined by expert variability, in real videos.

Dataset RMSE (mm) SNR-like (dB)

Artificial 0.89± 0.56 53.8± 16.4

Real 4.7± 3.2 37.48± 8.06

Table 2-6: Performance of the proposed approach using Root mean square error

(RMSE) and the SNR-like measurements
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Figure 2-10: Size estimation by the experts is summarized in the statistical box plots,

where the upper and bottom blue lines represent the quartiles (µ= 9.25

mm; σ = ±3.63 mm). The green circle stands for the size estimation

obtained by the proposed approach.

2.3.4 Discussion

This work introduces a novel approach that segments polyps and estimates their sizes

during video-endoscopy procedures. The method starts with an initial expert delin-

eation that is warped along the sequence by using information obtained from both

a motion and an appearance per-frame analysis. The resultant coarse shape is then

refined by a second order Kalman filter, a bayesian strategy that uses the motion his-

tory as observation. From such segmentation, the maximum polyp size in pixels is

computed and then transformed to real-world coordinates by a combination of camera

parameters and computation of an optimal depth distance.

Every polyp, found during a colonoscopic procedure, must be extirpated, but those

polyps whose size exceeds the 10 mm are sent for further pathological examination

[7, 172, 243]. In spite of the demonstrated importance of quantifying the polyp size,

the colonoscopic measure so far consists in comparing the observed lesion with micro-

scales introduced within the endoscopy tube, a very highly expert-dependent procedure.

Hence, reliable, efficient and reproducible measurements that estimate the polyp size

are required. As mentioned before, this problem is particularly challenging since the

procedure is by nature the result of abrupt motions, the exploration is carried out un-
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der uncontrolled illumination conditions and the complex anatomy introduces a huge

variability of the polyp appearance and shape. Several computational strategies have

been proposed to cope with identification, characterization and measure of polyps. Re-

garding polyp delineation, Ganz et al. [107] used a multiespectral endoscopic imaging

to highlight the region that bounded the polyp, according to certain expected histolog-

ical properties. Then, the boundary is detected using a prior shape term as regularizer.

In terms of overlapping, this strategy achieved an average Jaccard index of 0.52 for the

segmentation task. This method requires a special device to characterize the polyp,

that is to say, to define the set of histological characteristics that might be associated

to the lesion. Hence, this approach results dependent on a very large database that can

store the high shape variability. In contrast, the presented approach characterizes the

polyp in standard endoscopic sequences, without whatsoever prior shape, achieving

an overlapping score of 0.71 over 1040 frames in 10 videos. On the other hand, for

estimating the polyp size, Chadebecq et al [53]. proposed a semi-automatic method

that started by manually placing a bounding box surrounding the polyp, followed by a

conventional affine registration that propagates such initial guess to the whole sequence

and estimates the best focused region by a depth learning procedure. Unlike our ap-

proach, this break focus is determined on the entire bounding box, with the consequent

error coming from calculating the polyp distance as a linear function of the estimated

depth within the box. Likewise, the rigid registration is very limited to follow abrupt

changes of the camera view.

The proposed approach has presented a framework that performs polyp segmentation

and size estimation, during colonoscopy procedures. One of the main advantages of the

proposed approach is the adaptability to different polyp shapes, with different appear-

ances, depending only of the required initial characterization. Additionally, the deep

estimation was computed only within the polyp regions, obtaining more accurate ap-

proximations. The proposed approach was evaluated on phantom and real endoscopy

videos, showing in general an appropriate performance in both tasks, polyp segmenta-

tion and size estimation, i.e., an overlapping average of 0.82±0.09 for segmentation and

a RMSE of 0.89± 0.56mm in phantom polyps varying from 5 to 20mm and a RMSE

of 4.7 ± 3.2 mm in real sequences, when estimating sizes. In summary, the proposed

approach shows adequate sensitivity and reproducibility so that it may potentially be

useful in clinical applications as a tool to support the diagnosis.

2.3.5 Conclusions and Perspectives

This work has introduced a novel approach to segment and estimate the polyp size

in colonoscopy sequences. The proposed method uses a combination of local motion



2.4 Right Ventricle Segmentation 39

information and appearance polyp features. The results show a reliable segmentation

and tracking of the polyp along the video sequence, capable of dealing with video

artefacts and high appearance variability. Additionally, the polyp size was estimated

in millimetres. In a future work, a strategy to automatically initialize the segmentation

will be integrated, based on machine learning strategies while the segmentation will be

refined with alternative polyp appearance descriptors.

2.4 A Novel Right Ventricle Segmentation Approach

from Local Spatio-Temporal MRI Information

This paper presents a novel method that follows the right ventricle (RV) shape during

a whole cardiac cycle in magnetic resonance sequences (MRC). The proposed approach

obtains an initial coarse segmentation by a bidirectional per pixel motion descriptor.

Then a refined segmentation is obtained by fusing the previous segmentation with

geometrical observations at each frame. A main advantage of the proposed approach

is a robust MRI heart characterization without any prior information. The proposed

approach achieves a Dice Score of 0.62 evaluated over 32 patients. The complete content

of this section has been published as a research article in the proceedings of CIARP-

2013 (see [17])

2.4.1 Introduction

Cardiovascular diseases (CVDs) are world wide one of the principal causes of death

and disability [239]. An accurate quantification of the right ventricular structure and

function has become important to support the diagnosis, prognosis and evaluation of

several cardiac diseases and also to complement the typical analysis of the left ventric-

ular function [48, 124]. Currently, most common methods, for assessing the heart, are

based on quantification and characterization of patterns during a Cardiac Magnetic

Resonance Imaging (CMRI) [24]. Such methods are widely used to analyze, diagnose

and even prognose certain heart diseases. Among the evaluated heart variables, the

most common are the ventricular chamber sizes, volumes and masses at each cardiac

phase, ventricular function and correlation flow [125]. A proper RV analysis demands

an accurate 3D temporal segmentation, specifically endocardial and epicardial con-

tours. Typically such task is carried out by expert cardiologists who perform manual

delineations that may take 18.9±4min [226] per case, introducing high inter-and-intra

observer variability [49]. Therefore, automatic segmentation methods are appealing to

obtain more accurate RV temporal-segmentation. Nevertheless, several challenges arise

because of the complex RV geometry shape and high non-linear heart motion during
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diastole and systole transition. In addition, RV fuzzy edges and random acquisition

noise make more challenging the RV segmentation [226].

Several state-of-the-art methods have been proposed for automatic RV segmentation,

most of them based on the use of strong structural and appearance priors that adjust

the shape w.r.t a set of samples. In this sense, these methods use mainly statisti-

cal shape models, multi-atlas strategies and deformable approximations [226]. These

strategies are strongly dependent on how data is learned to build up the prior. How-

ever, accurate quantification of certain variables like the ejection fraction depends on

the shape changes, particularly important in pathological cases. In addition, such ap-

proaches pay a high price when mapping the prior to the MR since the metrics is usually

noisy because of the dependency of intensity variations or the pixel spatial distribution

to represent the heart, facts that may lead to inconsistent segmentations [226].

On the other hand, methods with no prior are based on appearance and temporal MRI

information. Cocosco et al. [57] describe the segmentation of both the left ventricle

(LV) and right ventricle (RV), by a simple temporal RoI estimation of major motions

and then a voxel classification is performed between RV and LV using morphological

operations. However, the simplicity of the temporal descriptor, a simple subtraction

between consecutive frames, turns out to be very noisy. In addition, Wang et al.

[275] capture information that is shared during the sequence and merge it with a

spatial within-frame descriptor, based on a classical isodata algorithm. Nonetheless,

RV segmentation may easily overflow the actual borders.

The main contribution of this work is a fully automatic method that uses no prior at

all and delineates the RV endocardium contour in 4D MR sequences. The strategy

uses both a heart motion descriptor and an estimation of RV shape for each frame of

the sequence. Firstly a robust per pixel motion model is introduced to highlight the

edges with major changes along the sequence, under the hypothesis that heart is the

organ with larger motion. Afterwards, a conventional isodata strategy estimates the

heart shape which is superimposed to the edges computed from the motion estimation.

The final delineation is set to the intersection between those edges and estimated heart

shape. The following section describes the proposed segmentation approach. In section

3, the evaluation and results. Finally in section 4 is presented the discussion on the

results obtained and some conclusions.

2.4.2 Methodology

The strategy herein proposed is capable of capturing the temporal RV contours from

a spatio-temporal MRI characterization. As widely acknowledged, heart motion is the

main biomarker in cardiology, allowing by itself an appropriate assessment of cardiac
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Figure 2-11: The proposed method. A motion descriptor is computed for the whole

MRI cardiac cycle, which is then adjusted to the edged and spatial esti-

mation found at each frame in the estimated shape.

function [230]. Hence, the approach starts by coding temporal MRI information with

a bidirectional per-pixel motion descriptor [197]. A coarse heart segmentation is ini-

tially obtained from that estimated cardiac motion. This segmentation is corrected

using geometrical observations from the estimated shape. The pipeline of the proposed

approach is illustrated in Figure 2-11 and described in the following subsections.

2.4.2.1 Motion Estimation

The heart is the organ whose vital function amounts to a constant motion. The

proposed strategy starts by estimating the cardiac movement with a bidirectional lo-

cal motion descriptor. For doing so, a temporal median sets the elements with less

motion during the sequence by recursively updating the frame median, as follows

Mt(x) = Mt−1(x)+sgn (It(x)−Mt−1(x)), where Mt(x) represent the median and It(x)

the frame at time t for each pixel x. Using such recursive median, a likelihood mea-

sure ∆t sets those pixels in movement at each instant t as ∆t = |Mt(x)− It(x)|. This

last term is in due turn regularized by a cumulated variance of the motion history, as:

Vt(x) = Vt−1(x) +sgn(N ×∆t(x)−Vt−1(x)). This descriptor is highly noise robust and

computes the per-pixel temporal variation that allows to classify the RV. Specifically,

At the End of the Diastole, when the heart is maximally expanded, pixel candidates

should meet two conditions: the pixel motion is larger than an accumulated temporal

variance under the restriction that the movement must span an important percentage

of the cardiac cycle. Such relationship is represented by a simple thresholding as
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B̂St
(D)

(x) = ∆t(x) ≥ Vt(x). In contrast, at the Systole, the heart contraction is maxi-

mum and the motion is practically null so that this phase constructs a very steady his-

tory of the cardiac flow. After the semilunar valves open, blood flows out the ventricle

with an important change that is very likely detected by the motion estimation algo-

rithm. The heart edges are thus calculated from pixels with major motion by comparing

the likelihood measure with a learned scalar parameter τ as: B̂St
(S)

(x) = ∆t(x) ≥ τ .

Classically, local motion descriptors [197] are usually unidirectional recursive algo-

rithms, but in this case the first iteration yielded a very blurry estimation of the heart

contour at the End-of-Diastole. As the recursive accuracy depends on the captured

motion history, the descriptor is herein bidirectionally run, i.e., forward and backward

as BSt(x)(D,S) = αB̂St
(D,S)

(x)+(1−α)B̂SN−t
(D,S)

(x), where α is an important param-

eter defined as
t

N
and N is the number of frames. Once motion has been thresholded,

morphological operators groups up pixels associated with movement [197].

2.4.2.2 Shape Feature Extraction by characterizing edge and pixel distributions

The previous motion estimation produces a coarse shape segmentation and serves also

to define a Region of Interest (RoI). The aim of this second phase is to construct an-

other complementary shape approximation, using exclusively spatial observations. A

first approximation to such heart shape consisted in finding a RoI that consistently

surrounded the heart, as the spatial region with larger temporal motion at each time

step. Within such RoI, heart ventricles are estimated from two complementary mea-

surements: a global shape clustering and an edge extraction.

Firstly a global shape description of the ventricles was herein obtained by a classical

isodata algorithm [235] that is used to separate the intensities corresponding to the

myocardium and the cardiac chambers. The cardiac wall or myocardial tissue is seg-

mented and therefore the right and left heart chambers serve as a reference frame of

the right and left ventricles.

On the other hand, ventricle edges are estimated from the MRI RoI by using a conven-

tional Canny filter [43]. In the apical slices however, while the LV is still differentiable,

RV edges are very blurred (as shows Figure 2-12). Overall, edges in apical slices are

considered as part of the LV. Estimations of RV edges are performed from the previous

motion estimation provided that such edge is not already part of the previously defined

LV edges.
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Figure 2-12: The variability of the RV shape, from basal (top row) to apical (bottom

row), and from left to right for the whole cardiac cycle, being the first

column the End-of-Diastole and the mid column the End-of-Systole.

2.4.2.3 Fusing temporal and spatial information: RV shape refinement

During certain phases of the cardiac cycle, some boundaries of the heart were not

properly segmented. Two fusion strategies were herein implemented to cope with such

issue: 1) a first approach fused the spatial information obtained from the temporal

information with the edge estimation and the isodata algorithm 2) a second strategy

fused the temporal and isodata informations, but using exclusively the left ventricle

isodata information. This second approach was particularly useful to segment the right

ventricle at the apex level. For the first fusion strategy, the two edge representations

are fused by simply summing and normalizing. The final shape is in this case outlined

by intersecting both the RV shape estimated from the isodata information and edges.

For the second strategy, it was applied a simple difference between the temporal heart

segmentation and the spatial LV segmentation obtained by the isodata algorithm so

that the remaining pixels then correspond to the RV. Finally, isolated pixels are always

removed by simple opening and closing operators.

2.4.2.4 Data

The evaluation of the proposed approach was performed over a public Cardiac MRI

dataset [48,84] with 32 patients split into two subsets: training and test data set, which

are specified by the authors of the dataset. For evaluation, the obtained segmentation
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was submitted to the RVSC [90] which sends back the results. Training data consisted

in a set of 16 cardiac MRI, half split into men and women, with an average age of

51 ± 12 years. For test data was split into 3 women and 13 men cases, respectively,

with and average age of 48±18 years. The recorded patients were diagnosed with several

cardiac pathologies like myocarditis, ischaemic cardiomyopathy, arrhythmogenic right

ventricular dysplasia (ARVD), dilated cardiomyopathy, hypertrophic cardiomyopathy,

Aortic stenosis, cardiac tumour, left ventricular and ejection fraction assessment. Each

MR sequence was captured in the short-axis with 1.5 Tesla, in a plane resolution of

1.3 mm and a between-slice distance of 8.4 mm. The epicardium and endocardium of

32 MR sequences were manually delineated by an expert cardiologist. Trabeculae and

papillary muscles were included in the RV cavity.

2.4.3 Evaluation and Results

Figure 2-13 illustrates the good performance of the method in cardiac MRI sequences.

The green contour corresponds to the result obtained by the presented method, while

the ground truth is drawn in red. As expected, failures are mainly present in apical

images because of the fuzzy borders and small RV area.

Figure 2-13: Example of RV segmentations with several cases, including the End-of-

Diastole (firts row) and End-of-Systole (second row). The ground truth

is the red line and the green line is the automatic segmentation. As

expected, better results were observed at the basal slices (first column).

Quantitative technical evaluation was performed using the most classical metrics de-

scribed in the literature: Dice Score (DSC) measure [77] and Hausdorff distance

(HD) [149]. An overlap DSC measure is defined as: DSC(A,B) =
2(A ∩B)

A+B
, where A
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and B represent the obtained area and the expert ground truth, respectively. On the

other hand, the Hausdorff measure H(A,B) computes the maximum distance between

two sets of points as max(H(A,B), H(B,A)) and

H(A,B) = max
a∈A

min
b∈B
‖a− b‖22. In this case, each set of points represents the organ

surface. This measure allows to indirectly assess the compactness of the segmentation.

A clinical performance was also assessed as the ejection fraction (EF).

DSC HD (in mm)

End-of-Diastole (ED) 0.66 (0.22) 20.66 (13.00)

End-of-Systole (ES) 0.54 (0.26) 27.72 (23.45)

Table 2-7: Performance of the proposed approach for training data using Dice Score

(DSC) and Hausdorff distance (HD) over the Endocardium contour.

Quantitative results were only evaluated at End-of-Diastole (ED) and End-of-Systole

(ES) since these two states are the most important to clinical quantification [113]. As

baseline it was taken the work proposed by Wan et. al [275], which until now repre-

sents the best strategy to segment the RV without prior. Table 2.4.3 summarizes the

obtained performance for training data sequences in ED and ES times. The proposed

approach clearly outperforms the baseline method in terms of overlapping and com-

pactness in both cardiac states. As expected a much better segmentation is obtained

at the ED because the MRI frame quality allows a better quantification. Although,

at the ES many times the poor MRI contrast leads to a quite fuzzy RV edges, the

proposed approach outperforms the state-of-the-art approach. Table 2.4.3 summarizes

the performance obtained by our approach over the test data. Although the obtained

score errors are slightly larger for the RV segmentations, the proposed approach prop-

erly captures the shape variability and is easily adapted to new RV shapes since it only

depends on the particular MRI observations.

Proposed approach Baseline

DSC HD (in mm) DSC HD (in mm)

ED 0.72 (0.29) 16.17 (16.48) 0.63 (0.32) 22.89 (25.01)

ES 0.51 (0.31) 27.47 (27.96) 0.50 (0.34) 27.99 (24.97)

Table 2-8: Performance of the our RV segmentation method for the Test data set

using Dice Score (DM) and Hausdorff distance (HD) over the Endocardium

contour.

Finally, it was calculated the mean error for the ejection fraction, defined as error =
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∑N
p=1EFpauto − EFpmanual, where an error of 0.36 was obtained over the whole data

set (32 patients). Although the error index shows an acceptable performance, some

important noise sources, such as the inter-and-intra high variability of RV shape, the

fuzzy edges and the complex heart motion, are not properly captured by our method.

Nevertheless, the approach herein presented shows appropiate RV segmentations using

an strategy based principally in temporal characterization. This approach outperform

state-of-the-art methods that use only appearance and temporal observations for each

sequence [57,275].

2.4.4 Conclusions

In this paper it was introduced a new strategy to segment the right ventricle in MR

sequences. The proposed mixed approach uses spatio-temporal observations and pro-

duces reliable RV segmentations. A great advantage of the proposed approach is its

independency of any prior heart shape, facilitating the capture of dynamic and shape

heart variability, which could be associated to specific cardiac pathology. In future

work, the method could extend to 3D processing and further validation with a larger

data set will be performed.

2.5 Automatic right ventricle (RV) segmentation by

propagating a basal spatio-temporal

characterization

An accurate right ventricular (RV) function quantification is important to support the

evaluation, diagnosis and prognosis of several cardiac pathologies and to complement

the left ventricular function assessment. However, expert RV delineation is a time

consuming task with high inter-and-intra observer variability. In this paper we present

an automatic segmentation method of the RV in MR-cardiac sequences. Unlike atlas

or multi-atlas methods, this approach estimates the RV using exclusively information

from the sequence itself. For so doing, a spatio-temporal analysis segments the heart

at the basal slice, segmentation that is then propagated to the apex by using a non-

rigid-registration strategy. The proposed approach achieves an average Dice Score of

0.70 evaluated with a set of 48 patients. The complete content of this section has been

submitted for presentation in SIPAIM-2014
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2.5.1 Introduction

An accurate assessment of the right ventricular function has become crucial for im-

proving diagnosis and prediction of several cardiovascular diseases as well as for com-

plementing the left ventricular evaluation [48]. Currently, this assessment is carried

out by the quantification of the right ventricular function during a Cardiac Magnetic

Resonance Imaging (CMRI) [48]. Such modality characterizes both the right ven-

tricle (RV) structure and function with a good spatial and temporal resolution [25].

A suitable RV analysis depends on an accurate 3D temporal Endocardium and Epi-

cardium segmentations, usually performed by manual delineation, a time-consuming

and experience dependent task. Expert cardiologists may take 18.9 ± 4 min delineat-

ing a case [227] while introducing high inter-and-intra shape variability [51]. Several

semi-automatic and automatic approaches have then been developed for RV segmen-

tation [21,192,274,300]. Evaluation of the cardiac function is a very challenging task,

dependent not only on the particular cardiac motion but also on the RV anatomy, i.e.,

some portions of the ventricle are really difficult to distinguish, particularly those slices

near to the apex which results in blurred edges, already fuzzy, become more blurred

also on the heart relations with its neigh going from basal to apical slices. In addition

to the complex RV geometry, there exists a well documented variability dependent on

factors such as age, cardiac pathology or gender, among others.

Several strategies have been proposed to automatically segment the RV, most of them

based on some kind of prior information like the statistical shape models, multi-atlas

approaches and deformable strategies. Although these strategies report a relatively

accurate segmentation, these methods are computationally expensive and most of them

require dedicated hardware, a very difficult issue in a clinical environment. Likewise,

the success of atlas or multi-atlas approaches depends on a number of samples that

counts for the large RV variability. For instance, Zuluaga et. al [300] propose a multi-

atlas strategy based on an exhaustive non rigid registration of a set of templates to

the new image, under a similarity criterion of convergence. However, this method is

limited by the variability of the different shapes in the set of atlases and the high

computational cost. Additionally, Bai et. al [21] proposed an atlas-based approach

with a prior introduced as a probabilistic fusion of previously segmented hearts that is

used to regularize the rigid non registration of any heart in the database. The obtained

model is of course dependent of the type of organs stored in the database. Grosgeorge

et. al [117] propose a semi-automatic approach that uses a statistical PCA shape

model to select the best representative of the database. The obtained delineations are

then used to generate the best segmentation by using a graph cut method. Besides,

semi-automatic methods introduce intrinsic expert variability, for instance, Maier et.

al [192] proposes a method based on the propagation of an initial segmentation at the
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ED to the ES using a region-merging graph cut that is sequentially eroded.

In contrast, Wang et. al [274] have segmented the target using an isodata algorithm.

This region-based segmentation is complemented with a basic motion estimation by

intersecting consecutive frames. This basic motion estimation nevertheless fails at the

apex regions. Ringenberg et. al [238] proposed an appearance-based segmentation as a

difference of gaussians combined with a window-constrained accumulator thresholding

technique. In this work, a large number of parameters must be tuned and is also

affected in the presence of variable pathologies like fallot tetralogy, where the RV

shape significatively changes. The method by Mahapatra et. al [191] extracts semantic

information from a trained Random Forest classifier, which is also dependent on the

training dataset.

The main contribution of this work is a fully automatic method that segments the RV

from a spatio-temporal characterization. Unlike typical statistical and atlas (multi-

atlases) approaches, the proposed method need not any prior knowledge. For so doing,

the most basal heart slice is firstly segmented from a spatio temporal descriptor that

tracks those objects with more motion. Such segmentation is propagated, slice by

slice, towards the apex by using a conventional non rigid registration, a process that

is independently performed for the End of the Diastole and Systole. The rest of this

paper is organized as follows: section 2 describes the proposed segmentation approach.

Section 3 presents the experimental results and Section 4 concludes the paper.

2.5.2 Method

The proposed method estimates the RV contour by a per-pixel temporal characterization

of the basal slice, followed by a local propagation to the apex using a classical non-rigid

registration. The following subsections completely describe the proposed approach.

2.5.2.1 Spatio-temporal Characterization of the basal heart

In cardiology, the heart motion is considered as the principal biomarker of the cardiac

function [231], specially at the basal region. Under such assumption, a basal cardiac

motion is estimated by a per-pixel motion descriptor, which is fused with low level

features such as edges and classical shape features to obtain an accurate RV segmen-

tation.

This motion descriptor starts by finding a set of motionless MRI pixels, i.e., a relatively

static background, defined as: Mt(x) = Mt−1(x) + sgn(It(x)−Mt−1(x)), where Mt(x)

represents the accumulated temporal average and It(x) the frame at time t for each

pixel x. A function ∆t(x) measures the instantaneous motion between two consecutive

frames as ∆t(x) = |Mt(x)−It(x)| and a coarse ED basal segmentation is defined as the
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(a) Pat 7 ED (b) ∆t 7 ED (c) Vt 7 ED (d) MD 7 ED

(e) Pat 30 (f) ∆t 30 ED (g) Vt 30 ED (h) MD 30 ED

,

Figure 2-14: Basal ED motion descriptor from two patients. Upper row illustrates

patient 7 and bottom row, patient 30. MD: Motion descriptor.

set of pixels for which ∆t(x) is close to a cumulated variance Vt(x) = Vt−1(x)+sgn(N ∗
∆t(x)− Vt−1(x)). Provided that at the ES, the heart contraction is maximum and the

motion variance is minimal, a coarse ES basal segmentation is estimated by a simple

comparison of the instantaneous motion ∆t(x) with a learned scalar threshold τ . Such

motion descriptor is bidirectionally calculated [196], while isolated regions are clustered

and corrected by using classical morphological operators [196]. This segmentation

allows also to define a Region of Interest (RoI) that consistently surrounds the heart

(see Figure 2-14).

At this point, the motion segmentation is fused with basal edge information obtained by

filtering the original basal slice with a classical Canny filter [44]. The obtained edges,

from the previous step, are then intersected with a third basal slice segmentation

computed from a conventional isodata algorithm [236]. Finally, isolated pixels are

removed by simple opening and closing operators (see Figure 2-15).

2.5.2.2 The whole ventricle segmentation

Near to the apex the cardiac motion is minimal and mainly passive so that any motion

estimation makes no sense. Provided that the blood flow is also small in this region,

segmentation is really difficult because of the complex geometry and fuzzy edges [227].

However, there exists an intrinsic coherence between the basal and apex shapes, i.e., the
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(a) Edges 7 (b) ME 7 (c) Iso 7 (d) Heart 7 (e) RV 7

(f) Edges 30 (g) ME 30 ED (h) Iso 30 (i) Heart 30 (j) RV 30

,

Figure 2-15: Spatial-temporal information of the basal ED from two patients. Upper,

patient 7 and bottom row, patient 30. ME: Heart contour combined with

the motion descriptor; Iso: Heart shape from Isodata algorithm.

spatial change of the heart from basal to apex is herein considered as smooth. Under

this assumption, the apex is obtained from a series of deformations of the initial basal

segmentation by non rigidly registering (NRR) consecutive slices, propagating thereby

that initial basal segmentation. Two consecutive slices are non rigidly registered by

maximizing the mutual information defined as: I(S, S + 1) =
∑

a,b p(a, b)log
p(a,b)
p(a)p(b)

,

where S and S+1 are two consecutive slices and a ∈ S and b ∈ S + 1. The degree

of dependency between the slices is weighted by the joint intensity distribution. This

metric is adaptively computed under a stochastic gradient descent method [165] that

finds the transformation model, defined as: T̂ = argmax
T

f(S + 1, S) . This metric

has been widely used in many applications, because its relative time efficiency and the

robustness in terms of intensity variations [299].

The resulting transformation model T̂ is used to propagate the heart segmentation

L(S) by B-spline interpolating, defined as LS+1(x) ≡ LS(T̂ (x)), x ∈ Ω, where x stands

for each labelled pixel. The NRR was implemented in elastix software package [164]
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2.5.2.3 Data

The proposed approach was evaluated on a public Cardiac MRI data set of 48 pa-

tients, supplied by the organizers of the right ventricle segmentation challenge in MIC-

CAI’12 [51]. The data set was acquired from the short-axis with 1.5 Tesla, in a plane

resolution of 1.3 mm and a between-slice distance of 8.4 mm, with 20 heart phases for

each patient. Such data set have been split in three groups training, test 1 and test

2. The experimental group was composed of patients with several cardiac pathologies,

namely myocarditis, ischaemic cardiomyopathy, arrhythmogenic right ventricular dys-

plasia (ARVD), dilated cardiomyopathy, hypertrophic cardiomyopathy, aortic stenosis

and cardiac tumour, as well as left ventricular ejection fraction assessment. For each

patient, ED and ES endocardium and epicardium contours have been delineated by an

expert cardiologist, for which trabeculae and papillary muscles were included in the

RV cavity.

2.5.3 Evaluation and results

The obtained RV segmentation at ED and ES were evaluated using the classical Dice

Score (DSC) measure [79] and the Hausdorff distance (HD) [150]. The DSC defined as

DSC(A,B) = 2(AB)
A+B

measures the overlapping between the obtained segmentation (A)

and the manual ground truth (B). On the other hand, the HD establish the compact-

ness of the obtained segmentation as HD(A,B) = max
a∈A

min
b∈B
‖a− b‖22, where A is the

evaluated volume segmentation and B the ground truth.

Figure 2-16 illustrates the performance of the proposed method for different slices at

different axial locations. The segmentation obtained with the proposed approach is

drawn in blue, while the ground truth is in red. Segmentation at Basal slices show a

good RV correspondence with the expert, while the apical segmentation shows some

slight differences with the expert.

The RV segmentation at the basal slices achieves an average DSC of 0.91. Table 1

shows quantitative results at the ED and ES. As expected, a more accurate segmen-

tation was obtained at the ED. Nevertheless, the obtained HD demonstrates a better

segmentation, i.e., without outlier voxels labelled as RV heart, a typical problem in

atlas-based approaches.

In addition, quantitative parameters, the ED and ES Volumes (EDV and ESV), were

computed and compared with the ground truth using a regression coefficient (R). Table

2. shows the clinical parameter R for sub set Test 1 and compared to State of the Art

approaches.

One main contribution of the proposed approach is a method with a very low com-

putational cost. In average, the RV segmentation takes 70 seconds using a Matlab
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(a) ED Basal (b) ED Mid (c) ED Apical

(d) ES Basal (e) ES Mid (f) ES Apical

,

Figure 2-16: Blue line represents the obtained delineation while the red line is the

ground truth at ED (top row) and ES (bottom row) from basal (left) to

the apical slice (right).

Test1 - Training Test 2 Total

DSC HD (mm) DSC HD (mm) DSC HD (mm)

ED 0.74 (0.16) 15.71 (13.6) 0.75 (0.19) 14.78 (9.79) 0.75 (0.17) 15.41(9.0)

ES 0.64 (0.20) 17.0 (8.85) 0.64 (0.26) 18.17 (13.54) 0.65 (0.22) 17.40(10.42)

Table 2-9: Performance of the proposed method for the dataset. segmenting the ED

and ES. Two metrics were used to test the performance: the Dice Score

(DSC) and Hausdorff distance (HD).

OA WPC GPR

EDV 0.95 0.95 0.94

ESV 0.95 0.83 0.82

Table 2-10: Evaluation of several methods from a clinical standpoint, computing the

regression coefficient. Other methods are: WPC - spatio-temporal infor-

mation [274]; GPR - semi-automatic method using graph cut [117].

implementation, running in a computer with a RAM of 6.0 GB and a 2.4 GHz intel

core i7 processor. This issue is crucial for this technology to be implemented in real
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scenarios. In contrast, classical atlas based methodologies or statistical methods may

take hours to obtain reliable segmentations, a time that grows exponentially, depend-

ing on the number of cases in the atlas. On the other hand, although our results are

smaller than the state of the art method (0.70 against 0.83 [238]), in terms of the rel-

evant measure, the RV volume evaluation, our method is very competitive. It should

be strengthen out that comparison was performed against a single expert and we have

not counted the inter-observed variability that has been reported in other problems as

about a 30 % [50,51].

2.5.4 Conclusion

In this paper, a simple but efficient RV automatic segmentation, is proposed. The

method takes advantage of a cardiac spatio-temporal characterization. The proposed

method captures the shape variability without depending on the nature of the cardiac

pathology. The performance of this method will be improved in the future by extending

the motion descriptor to the segmentation of the apical slices.



3 Spatio-temporal descriptors from

optical flow patterns

Visual systems capture dynamic patterns by integrating different levels of processing,

characterization and analysis. Along the dorsal pathway there exist mechanisms charged

of processing visual stimuli by representing the motion as optical velocity flow field

maps. This representation captures apparent motion patterns, object orientations and

stereo reconstruction. This chapter approaches the optical flow representation, captur-

ing dynamic patterns in diverse applications such as: the recognition and classification

of human activities (see in section 3.1 ), the computation of hummingbird dynamic

patterns during flight (see in section 3.3), and the global characterization of the heart

in cine-MRI sequences (see in section 3.4)

3.1 Representing activities with layers of velocity

statistics for multiple human action recognition in

surveillance applications

A novel action recognition strategy in a video-surveillance context is herein presented.

The method starts by computing a multiscale dense optical flow, from which spatial

apparent movement regions are clustered as Regions of Interest (RoIs). Each ROI is

summarized at each time by an orientation histogram. Then, a multilayer structure

dynamically stores the orientation histograms associated to any of the found RoI in the

scene and a set of cumulated temporal statistics is used to label that RoI using a pre-

viously trained support vector machine model. The method is evaluated using classic

human action and public surveillance datasets, with two different tasks: (1) classifica-

tion of short sequences containing individual actions, and (2) Frame-level recognition

of human action in long sequences containing simultaneous actions. The accuracy mea-

surements are: 96.7% (sequence rate) for the classification task, and 95.3% (frame rate)

for recognition in surveillance scenes. The complete content of this section has been

published in SPIE Electronic Imaging. (see [201]).
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3.1.1 Introduction

Human action recognition is the base of many surveillance applications [4, 229]. The

challenge is to automatically detect an action occurring in a recorded sequence and

to classify selected actions. The great difficulty arises with the extreme variability, in

terms of geometry of the scene, people appearance and poorly controlled conditions.

Previous action recognition methods are based on motion global descriptors that use

optical flow strategies. For instance, Ikizler et al [152] used orientation histograms of a

pre-computed optical flow combined with contour orientations. This method can dis-

tinguish simple periodic actions but the contour-optical flow integration is too limited

to address more complex activities. Chaudhry et al [55] described human activities us-

ing histograms of oriented optical Flow (HOOF) with vertical symmetry (i.e. ignoring

the difference between motions to-the-left and to-the-right). Such symmetry results

in certain invariance but also in limitations to distinguish some actions, for instance

antagonist motions of the limbs. Other methods use sparse optical flow, reducing the

representation to certain salient features that may not be representative enough to

describe a particular action [45, 248]. On the other hand, strategies based on local

patch relationships highlight and summarize the motion, for example, 3d spatio tem-

poral Haar features, proposed in pedestrian applications [161]. Such descriptors are

less sensitive to the quality of the action segmentation but remain strongly dependent

on the subject appearance and recording conditions.

The aim of the present work is to recognize human actions using motion descriptors

from temporal series of orientation histograms, collected within a multi-layer struc-

ture, each layer being a potential human action (temporal RoI). This approach starts

by computing a dense optical flow that is then spatially clustered into RoIs which are

described as orientation histograms. The histograms are gathered within a multi-layer

structure that allows to handle and store temporal information. A motion descriptor

can then be extracted at any moment by computing temporal statistics from a par-

ticular layer. Finally, the descriptors are labelled as actions using SVM classification.

Evaluation was performed with Weizmann [115] and ViSOR video-surveillance [23]

databases. This paper is organized as follows: Section 2 details the proposed ap-

proach, Section 3 demonstrates the effectiveness of the method and the last section

presents the conclusions and possible future works.

3.1.2 Proposed method

In Figure 4-13 the whole method is summarized.
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Figure 3-1: The proposed method starts by computing a dense optical flow, which is

clustered as individual motion RoIs. An orientation histogram for each

RoI is then calculated and stored in a multi layered data structure. At any

time, a vector of characteristics is extracted from every layer and classified

using a SVM model to label the action.

3.1.2.1 Optical flow characterization

The computed multiscale dense optical flow estimation [195] consists in projecting every

pixel to a feature space composed of spatial derivatives of different orders, at several

scales (the local jet). Then, for each frame and every pixel, the apparent velocity

vector is estimated by searching the pixel associated to the nearest neighbor in the

space of local jet vector at the precedent time. The dense optical flow is firstly used

to coarsely segment potential human actions by morphologically closing those pixels

whose velocity norm is above a certain threshold and spatio-temporally connecting

the resulting regions, according to a distance criterion ( see Figure 4-13, first row).

Afterward, for each RoI, a frame-level descriptor is built, based on the distribution

of the instantaneous motion orientations. For a non-null flow vector V, let φ(V) its

orientation, quantized to N values. The motion orientation histogram of each RoI

frame is computed as the relative occurrence of flow vectors with a given orientation,

weighted by their vector norm [68] ( see Figure 4-13, second row) :

Ht(ω) =

∑
{x;φ(Vt(x))=ω}

‖Vt(x)‖∑
{x;‖Vt(x)‖>0}

‖Vt(x)‖

where ω ∈ {ω0 . . . ωN−1}. N is the number of orientations.

3.1.2.2 Multi-layer data structure

The RoI histograms are stored in a FIFO multi-layer data structure, the x− axis being

the computed histogram, the y− axis the temporal dimension and the z− axis the

actions (layers) present in the video (Figure 4-13, third row). If a data layer collects

more than three consecutive histograms, it is considered as potential motion and then

a motion descriptor can be computed. When a layer does not show activity for more

than three consecutive frames, it is voided and the corresponding motion is eliminated.
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Figure 3-2: Example of motion descriptors. The blue and gray lines represent the

maximum and mean values, respectively. The red square, yellow triangle

and green circle represent the mean values for the beginning, middle and

end portion of the n histograms respectively

3.1.2.3 Motion descriptor

For each activity layer of the data structure, a motion descriptor is computed. If the

layer contains n histograms Ht(ω), a set of temporal cumulated statistics are calculated

for every orientation ω, as follows:

1. Maximum: M(ω) = max
0≤t<n

{Ht(ω)}

2. Mean: µ(ω) =
∑

0≤t<n

Ht(ω)

n

3. Standard deviation: σ(ω) =

√√√√ ∑
0≤t<n

Ht(ω)2

n
− µ(ω)2

Afterwards, the histograms stored in the multi-layer structure are also split into 3

intervals of equal durations, and the corresponding means are calculated. Examples of

human action descriptors are shown in Figure 3.3.4. For the initial computation of the

motion descriptor, different activities may show similar patterns, because some actions

are composed by two or more simple motions. However after 10 frames, the activities

are usually well labeled.

3.1.2.4 SVM Classification and Recognition

Finally, the recognition of each potential motion stored in a layer is performed using

a Support Vector Machine (SVM) classifier, a one-against-one SVM multiclass clas-

sification [143] ( see an example in Figure 3-3). As will be shown later, taking into

account all the vote values instead of the winner label only is useful to perform time

filtering of the recognition. A Radial Basis Function (RBF) SVM model was trained

with a set of motion descriptors [54], extracted from previously labeled human activity

sequences. A sensitivity parameter analysis (γ, C), was performed under a grid-search

using a cross-validation. Additionally, a simple rule was introduced to detect complex

activities. If the system detects two simple human actions and they are grouped as a

single region, a new activity is defined and tagged as complex.
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3.1.3 Evaluation and Results

Experimentation was carried out with different public dat asets. In the first experiment,

we tested our approach in an action classification task, using a leave-one-out cross

validation scheme. Firstly, we used the Weizmann dataset [115], which is composed

of 9 subjects and 10 actions recorded in 93 sequences. The corresponding confusion

matrix for the Weizmann dataset is shown in Table 1. The proposed approach achieves

an average accuracy of 95%.

Category bend jack jump pjump run side skyp walk wave1 wave2

bend 100 0 0 0 0 0 0 0 0 0

jack 0 100 0 0 0 0 0 0 0 0

jump 0 0 100 0 0 0 0 0 0 0

pjump 0 0 0 89 0 0 11 0 0 0

run 0 0 0 0 80 0 20 0 0 0

side 0 0 0 0 0 100 0 0 0 0

skyp 0 0 0 0 0 20 80 0 0 0

walk 0 0 0 0 0 0 0 100 0 0

wave 1 0 0 0 0 0 0 0 0 100 0

wave 2 0 0 0 0 0 0 0 0 0 100

Table 3-1: Confusion matrix for the Weizmann dataset.

The proposed approach was also tested with the ViSOR dataset (Video Surveillance

Online Repository dataset) [23]. This dataset is composed of 5 activities, recorded

in 150 real world surveillance videos. Each video was divided into two parts, to get

more examples. A k- fold cross validation scheme was used: for each split, 60 % of the

data were used for training and 40 % for testing, obtaining an averaged accuracy of,

96.7%. Results are shown in the confusion matrix (Table 2, top). Performance was

also evaluated in terms of classical statistical indices (Table 2, bottom). The obtained

results demonstrate both good performance using a very compact action descriptor.

Figure 3-3: Multiclass SVM voting example for action recognition in a long video. The

upper band represents the ground truth for this sequence.

In a second experiment, we evaluated the accuracy of our approach in an action recog-

nition task for 5 long videos from the ViSOR dataset(each one ∼ 400 frames). Figure

3-14 shows the performance of our approach in a long video example w.r.t. ground
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Category gc lo w r h

get car 100 0 0 0 0

leave Object 0 96.67 0 0 3.33

walk 0 0 91.65 8.35 0

run 2.38 0 0 97.62 0

hand shake 0 0 0 0 100

Action Acc Sen Spec PPV NVP

get car 98.6 100 96.5 97.7 100

leave Object 98 96.7 100 100 95.2

walk 95 91.7 100 100 88.9

run 94.3 97.6 90.4 92.1 97.1

hand shake 97 100 92.2 95.2 100

Average 96.7 97.2 95.8 97 96.2

Table 3-2: Top: Confusion matrix for ViSOR dataset. w: walking, r: running, gc: get

into a car, lo: leave an object, h: handshake. Every row represents a ground

truth category, while every column represents a predicted category.

truth (red line) for two actors. A first raw prediction (blue line), at each frame,

achieves an average accuracy of 90.81% with a delay detection time of three frames.

Looking at Figure 3-14, as expected, the major part of mistakes occurs when the mo-

tion descriptors is computed with few samples, specially during the transition between

actions. Then, a time smoothing of the prediction (green line) was useful to improve

the recognition rate. It consists in averaging the SVM votes for each class in a non

causal interval ∆t = [t− 1, t+ 4] to get a more stable prediction. To take advantage of

the stabilizations of the motion descriptor, the filter puts more weight in the future, a

strategy whereby we achieved an average accuracy of 95.3%.

Figure 3-4: Action recognition prediction for a long video sequence with two actors

(left: actor 1, right: actor 2). The red line represents the ground truth.

The blue line stands for the raw prediction. The green line is the time

filtered prediction. The “complex activity” corresponds to the moment

when the 2 actors meet.
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3.1.4 Conclusions and Perspectives

This paper presented a novel approach for multiple human action recognition, using

segmentation of the video flow in individual actions, multiple action representation us-

ing a multi-layer data structure, and action classification based on velocity orientation

statistics. The motion descriptors can be computed on line and represented with a

moderated amount of memory. Using a 96 dimension action descriptor, we achieved

an averaged accuracy of 96.7% in human action classification of video sequences and

95.3% in frame level human action recognition. One advantage of the proposed motion

descriptor is that it can be extended to mobile camera videos. In future works we will

try to extend the recognition algorithm to mobile scenarios, and also build strategies

that allow the recognition of more complex actions.
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3.2 An overcomplete spatio-temporal multi-scale

motion descriptor for human action recognition in

video-surveillance from an optical flow

characterization

This work presents an overcomplete spatio-temporal motion descriptor that is used

in classification, recognition of human activities and interactions for video-surveillance

applications. The method starts by computing a dense optical flow that serves to detect

human actions which are then marked as Regions of Interest (RoIs). Each of these RoIs

is then sequentially partioned, up to obtain an overcomplete spatial representation of

small subregions with a different size, which are then used to compute an associated

temporal multi-scale descriptor. A particular RoI is then transformed into a set of

parts that are characterized along the time. The final descriptor is composed of the

temporal estimation of the flow orientation histograms for each part of the overcomplete

representation. At any time, the whole motion descriptor can be extracted and labeled

by a previously trained support vector machine. The method was widely evaluated

using 2 different public datasets with two different tasks: (1) Global classification

of short sequences containing individual actions and (2), Frame-level recognition of

long sequence human actions, containing more than one action. The ViSOR datasets

evaluated task (1), and the method achieved an average accuracy of 95% (sequence

rate) while the ViSOR and the UT-datasets were used for evaluating the recognition

task, obtaining an average accuracy of 80% (frame rate). A complete version of this

chapter has been submitted for publication to the IEEE Transactions on Pattern

Analysis and Machine Intelligence (TPAMI) .

3.2.1 Introduction

Current video surveillance applications are aimed to automatically segment, identify

or recognize normal and abnormal human activities [270]. The recognition task is

particularly difficult because of the high variation at capturing and recording, usually

under not controlled illumination or occlusion conditions. Characterization of Human

activities introduces additional challenges, namely: (1) human activities such as “leav-

ing an object” or “ get into a car” share very similar gestures, (2) interactions with

other humans or objects may occur, occluding the capture or producing very different

dynamic patterns and (3) group activities should be analyzed as a whole [5, 37,270].

These challenges have been previously approached by characterizing either local or

global dynamic patterns of human activities. From a local analysis standpoint, in-
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dependent spatio-temporal patches have been proposed to represent human activities.

Pedestrian applications have used spatial descriptors, based on a special 3D space-time

Haar feature with automatic scale selection [162, 180]. Likewise, a 3D cuboid descrip-

tor [276] represents activities as a set of patches with maximum gradient responses. An

additional Hessian descriptor detects relevant spatio-temporal blobs from saliency mea-

sures [286]. The selected patches, processed with these descriptors, are commonly used

to classify human activities, using machine learning strategies such as the extended

2D-bag-of-words [46, 82]. Yet such methods reduce the computed features to a small

set of salient points, making this analysis much more efficient, these descriptors are in-

trinsically dependent on the object appearance and the recording conditions. Actually,

the performance of these methods is highly limited by a very variable saliency in real

scenes [171]. Global approaches include silhouette based methods, in which temporal

variations of the human shape are associated with specific activities [115, 286]. These

approaches have reported high scores in datasets with static camera and controlled

conditions, but they need accurate shape human segmentation.

On the other hand, dense spatio-temporal and appearance flow motion representa-

tions have been widely used in human recognition approaches. Such descriptors have

been popular since they are relatively independent of the visual appearance and allow

to capture complex patterns of human actions [45, 87, 249]. For instance, Ikizler et

al [151] used block-based histograms of optical flow orientations combined with con-

tour orientations. This method can distinguish simple periodic actions, but the motion

characterization is still too limited as to deal with more complex activities. Guangyu et

al [162] use dense optical flow and histogram descriptors, but their invariant represen-

tation, focused on human spatial pattern variations, limits its applications. Chaudhry

et al [180] proposed histograms of oriented optical Flow (HOOF) to describe human

activities, invariant under vertical symmetry. This approach is yet limited at describing

local differences, for instance the relationships between limbs. Currently, convolutional

deep models have been applied to constructing features used in action classification,

achieving high accuracy in standard datasets [154]. Nevertheless, the well-know high

computational cost along with an intrinsic time-delay constitute a critical limitation

in real action recognition applications. Additionally, this method is dependent on a

bias parameter that has to be learned together with the spatio-temporal kernel weight

parameters, a task for which the whole video sequence is required.

The main contribution of this work is an overcomplete spatio-temporal multi-scale mo-

tion descriptor, consisting of a set of global statistics that collect information from the

temporal history of orientation histograms of a multiresolution and overcomplete rep-

resentation of a Region of Interest. Such descriptor is capable of determining locations

of human actions with potential interest. Each RoI is spatially divided in several over-
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lapped sub-regions with a different size that constitute an overcomplete representation.

Each of these subregion was temporally characterized by computing flow orientation

histogram, weighted by the norm of the velocity, during variable intervals of time. A

complete dynamic description is then achieved by recursively computing statistics of

the histograms spanning different temporal intervals. The resultant descriptor is used

as input to a trained SVM classifier. Evaluation is performed using two human action

recognition databases in video-surveillance and real scenarios [23], obtaining a perfor-

mance that is competitive with respect to the state-of-the-art. This paper is organized

as follows: Section 2 introduces the proposed method, section 3 presents tyieldshe eval-

uation and results about the effectiveness of the method, section 4 present a discussion

and the last section concludes with a discussion and possible future works.

3.2.2 The Proposed Approach

Visual systems are naturally entailed with the ability of optimally detecting, recogniz-

ing and interpreting visual information, in many cluttered scenarios, using practically

the same evolved mechanism [112,216]. In general, the visual system explores an over-

fragmented environment and constructs a valid world representation by recognizing

a relevant motion when there exists a sort of temporal coherence during a time in-

terval. Hence, a major challenge at analysing any human action is then the optimal

duration, during which such analysis should be carried out. This interval is obviously

task-dependent on the action sparsity, for instance a walking action may be charac-

terized during very short periods while composed actions, such as getting into a car,

may require longer times. This work introduces a novel strategy that integrates sev-

eral temporal scales of an overfragmented representation of a Region of Interest, which

in due turn is determined from a dense optical flow estimation. The method starts

by computing a dense optical flow, using a local jet feature approach, from which a

spatial coherence during a certain time helps to discover potential RoIs. Each RoI is

then divided to obtain an overcomplete representation that allows to integrate local

and global dynamic information. Any of these subregions is basically characterized by

a set of statistics, computed from the history of the orientation histograms, a complex

dynamic structure that, at each time, stores the information flow between consecutive

frames.

3.2.2.1 Dense optical flow estimation using Local Jet features

The computation of an apparent velocity flow field has been succesfully applied to

recover motion patterns from object orientation [37,270]. The herein proposed strategy

firstly characterizes motion by computing a velocity flow field that is used to determine
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potential actions in the scene. Many dense optical flow algorithms might cope with

such task, but a multiscale approach is usually more robust to local noise, in particular

the nearest neighbor search in the local jet feature space [195]. It consists in projecting

every pixel to a feature space constructed with the spatial derivatives of different orders,

computed at several scales ( the local jet ). For each frame t and every pixel x, the

apparent velocity vector Vt(x) is estimated by searching the most similar feature in

the local jet space at the frame t− 1. This method provides a dense optical flow field

without explicit spatial regularization and an implicit multi-scale estimation by using

regional spatial characteristics. In our experiments, we used 5 scales, with σn+1 = 2σn,

and three first order derivatives, resulting in a descriptor vector of dimension 15 (Figure

3-5, first row).

3.2.2.2 Segmentation of Potential RoIs and overcomplete representation

Once a dense optical flow is estimated, the regions with more motion are highlighted,

obtaining a coarse spatial segmentation of potential human actions per frame. Specif-

ically, motion regions are connected by applying a simple binary closing operations

to those pixels whose velocity norm is above a certain threshold. The resulting spa-

tially connected components are then temporally grouped by a inter-frame distance

criterion. The result of this step is then a sequence of RoIs with minimum size and

coherent motion (Figure 3-5, second row).

Afterwards, each of the selected RoIs is partioned as follows, first the RoI is split in

two parts, then in four parts, then in six, nine and so on, as illustrated in figure 3-5,

obtaining a set of overlapped subregions with different sizes. Perceptually inspired,

such representation captures global and local appareance motion patterns, i.e, high

statistical dependence of these subregions [127].
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Figure 3-5: Motion RoI segmentation and overcomplete spatio-temporal representa-

tion. In (b) is bounded the region with coheren movement. In (c) the

selected RoI is sequentially partioned, up to obtain an overcomplete spa-

tial representation of small subregions with a different size

3.2.2.3 Histogram of Velocity Orientations

For each of these RoI subregions, a per-frame temporal descriptor is built up using

the distribution of the instantaneous motion orientations. For a non-null flow vector

V let φ(V) its orientation or phase. As in the Histogram of Gradients, HOG [68], a

per-frame motion orientation histogram is computed as the occurrence of flow vectors

with similar orientation, weighted by their norm. A preferred direction may then be

the result of many vectors or a single vector with large norm, such histogram reads as:
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Ht(φ) =

∑
{x;φ(Vt(x))=φ}

‖Vt(x)‖∑
{x;‖Vt(x)‖>0}

‖Vt(x)‖

where φ ∈ {φ0 . . . φN−1}, being φN the number of orientations, herein set to 64 (see

Figure 3-6, first row)

3.2.2.4 multi-scale motion descriptor

Visual systems are in general capable of recognizing activities by somehow integrating

simple primitives during different intervals of time [216]. It is well known that most

of the retina cells respond to transients and basic information of edges. Overall, this

information is organized in terms of space and time by cells that are topographically

connected to the visual field and that are triggered by variable time stimuli. This

characterization allows, among others, to filter specific noise out, to analyze complex

dynamics and to recognize objects during variable intervals of information. In surveil-

lance applications, human activities may correspond to very simple periodic motions

like some gait actions or more complex actions as the composition of a series of simpler

periodic motions. From an optical flow standpoint, periodic activities are repetitions

of smooth trajectories that can be characterized during small temporal intervals. In

contrast, activities like “get into a car” or “leave an object” are much more complex

and involve more than a single periodic activity. In such a case, the computation of

global features over the flow trajectory may result insufficient and, in many times, with

an important loss of relevant information, as for instance the transition between simple

actions. Hence, a successful temporal descriptor should combine the analysis spanning

different temporal windows.
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Figure 3-6: Computation of the multiscale motion description from an overcomplete

RoI representation. In (a) the potenatial action bounded in a RoI is se-

quentially partitionated several times and for each sub-region a motion

orientation is computed. In (b) it is computed several recursive statistics

for each bin and changing an α parameter to achieve several time intervals

of analysis. Finally, in (c) each multiscale-motion descriptor is mapped

over a previously trained support vector machine to predict each action.

The new descriptor herein introduced is supposed to fuse information from different

time periods. For so doing, a set of relevant motion features are computed during

variable time intervals (temporal scales) using recursive estimations as the cumulated

statistics from the orientation histograms. Firstly, the mean and standard deviation
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are computed from iterative operators as follows:

1. Recursive Mean : µ(φj)t = µ(φj)t−1 + αi(Ht(φj)t − µ(φj)t−1)

2. Recursive variance : v(φj)t = α(Ht(φj)t − µ(φj)t)
2 + (1− αi)v(φj)t−1rw

where Ht(φj)t is the jth histogram bin, computed at time t, (µt−1, v(φ)t−1) are the

cumulated statistics and αi is a constant in [0, 1] that tunes the time interval. For each

histogram bin, two additional statistics were recursively calculated: the maximum and

minimum of the temporal histogram, using forgetting morphological operators [234] as

follows:

3. Forgetting Max : M(φ)t = αHt(φ)t + (1− α) max(Ht(φ)t,M(φ)t−1)

4. Forgetting Min : Min(φ)t = αHt(φ)t + (1− α) min(Ht(φ)t,Min(φ)t−1)

These features require the computation of non-linear dynamic information, comple-

menting the information captured by the mean and the standard deviation. The pro-

posed descriptor combines a set of morphological and linear features recursively com-

puted, for different α constants, describing composed and periodic human activities.

Furthermore, the motion descriptor shows interesting properties: (1) little sensitivity

to the impulse noise because of the forgetting term, corresponding to the exponentially

decreasing weights attached to the past values; (2) periodic and composed motions are

characterized by a set of global features computed at several time scales, including both

recent and old dynamic information; (3) the recursive computation achieves an efficient

me of the memory. Provided that some actions are commonly composed of different

simpler activities, the statistics and the multiscale estimation facilitate discrimination

of periodic and aperiodic motions.

3.2.2.5 SVM Classification and Recognition

Finally, the recognition of each potential activity is carried out by a Support Vector

Machine (SVM) classifier, using the set of recursive statistics in the whole RoI partition,

as a spatio-temporal multiscale motion descriptor. This classifier is well known by

being successfully applied to many pattern recognition problems, given its robustness,

generalization aptness and its efficient use of machine resources. The present approach

was implemented by using the One against one SVM multiclass classification [144] with

a Radial Basis Function (RBF) kernel [54]. For k motion classes, the bank of k(k−1)
2

classifiers uses a majority voting strategy to assign the test sample to a particular

class. A sensitivity parameter analysis, (γ, C) , was performed with a grid-search using

a cross-validation scheme and selecting the parameter with the largest number of true

positives.
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3.2.3 Evaluation and Results

Experimentation was carried out with two public datasets, commonly used for assessing

human action recognition tasks: 1) the ViSOR dataset (Video Surveillance Online

Repository), captured by a real world surveillance system [23] and 2) UT-Interaction

dataset (High-level Human Interaction Recognition Challenge) which is oriented to

identify complex human activities in real world scenarios [247]. The ViSOR dataset

is composed of a set of videos showing 5 different human activities: walking, running,

getting into a car, leaving an object and people shaking hands. These videos were

captured by a stationary camera and contain a different number of actors and activities,

occurring simultaneously (examples in actions are shown in Figure 3.2.3, first row). The

challenge is related with recognizing individual activities performed by several actors

with different appearance, when the scene background differs and also the motion

direction may be variable during the video sequence. Experiments with the ViSOR

dataset consisted in classifying the different actions in 150 videos with individual human

activities. The test was performed under a k-fold cross validation scheme, each fold

using 60 % for training and 40 % for testing. The performance herein reported was

obtained with 64 directions while the multi-scale motion descriptor was calculated with

the α parameter set to 2−i, where i takes the values 4, 5, 6 for 3 scales and 5, 6, 7, 8, 9

for 5 scales.

Figure 3-7: Top row (a) illustrates different examples of the human activities recorded

in the ViSOR dataset. Bottom row (b) shows different examples of activ-

ities in UT-interaction dataset

The herein proposed strategy has succeeded about recognizing complex human actions

in real scenarios. Such spatio-temporal descriptor has been able of popping out the most
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Category gc lo w r h

get car 100 0 0 0 0

leave Object 0 100 0 0 0

walk 0 0 83.3 16.7 0

run 0 0 14.29 85.71 0

hand shake 0 0 0 0 100

Table 3-3: Confusion Matrix obtained with the ViSOR dataset, using the proposed

motion descriptor with 3 temporal scales. In average, the proposed ap-

proach achieves an accuracy of 93.3. Some misclassified actions are walking

and running

salient regions in terms of dynamic information by tracking the statistical dependency

among the different partitions of the potential RoIs. This strategy was crucial when

discriminating composed actions such as getting into a car or leave an object, since the

descomposition into motion primitives captured the differences between similar actions.

Table 1 and 2 show the confusion matrices obtained with the ViSOR dataset using a

motion descriptor parameterized with 3 and 5 temporal scales, respectively. In gen-

eral, these results demonstrate a good performance of the proposed descriptor in real-

surveillance applications, obtaining an average accuracy of 93.3 and 96.7. As expected,

the motion descriptor may confuse similar actions like walking and running, basically

because their representation in terms of the dynamic primitives is quite alike. Like-

wise, table 2 reports some mistakes regarding the composed action getting into a car,

probably because it may be associated to the identification of a single simple action,

while the action of crouching is not well characterized or is developed during a short

interval w.r.t the walking primitive.

Because the recursive nature of the descriptor, action prediction at any time of the

sequence, making this descriptor a good candidate to be an online descriptor. For

doing so, the motion is computed at each frame and mapped to a previously trained

SVM model. Therefore, in a second experiment, we evaluated the accuracy of our

approach in an action recognition task for 5 long videos (each ∼ 400 frames long) of

the ViSOR dataset. In this evaluation, the online prediction perfomed by the herein

proposed approach achieved an average accuracy of 92.3%.

In a second experiment, the proposed spatio-temporal motion descriptor was evaluated

using the UT-interaction dataset. This dataset contains around six different human

interactions, such as: shake-hands, point, hug, push, kick and punch (example of these

actions are illustrated in Figure 3.2.3, second row) [247]. The actions included in this
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Category gc lo w r h

get car 85.76 0 0 14.24 0

leave Object 0 100 0 0 0

walk 0 0 100 0 0

run 0 0 0 100 0

hand shake 0 0 0 0 100

Table 3-4: Confusion Matrix obtained with the ViSOR dataset using the proposed

motion descriptor with 5 temporal scales. In average the proposed approach

achieved an accuracy of 96.67

Category hs hg ki po pun pus

Hand Shaking 80 10 0 10 0 0

Hugging 0 80 0 0 0 10

Kicking 0 0 90 0 0 10

Pointing 10 0 0 90 0 0

Punching 0 10 10 0 80 0

Pushing 20 10 0 0 0 70

Table 3-5: Confusion matrix for UT-interaction dataset No-1.

dataset are much more complex since they show a high interaction level between two

people, with a high variability regarding the human appareance and motion patterns

during each of these tasks. A total of 120 videos of this dataset were used for assessment,

with a 720 × 480 spatial resolution and 30 fps temporal resolution. A ten-fold leave-

one-out cross-validation was performed, as described in [247]. The best configuration of

the motion descriptor for the UT-interaction dataset was a RoI configuration of 4, 12,

and 20 divisions while three temporal scales were used to characterize each computed

sub-region. The scales were computed with an α parameter determined as 2−i, where

i takes values of {7, 7.5 and 8}.
Table 3 and 4 show the confusion matrices obtained when assessing with the UT-

interaction, using its two different datasets. In average, it was obtained an accuracy

of 81.6 and 78.3 for datasets one and two, respectively. In summmary, the proposed

approach achieves a proper dynamic characterization of the different human interac-

tion activities. However, these interaction activities many times are the result of the

composition of many complex motion primitives that may occur during a short time

interval and whose differentes are not properly captured. Additionally, the complexity
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Category hs hg ki po pun pus

Hand Shaking 90 0 0 10 0 0

Hugging 0 80 10 0 10 0

Kicking 10 0 80 0 0 10

Pointing 10 0 0 80 10 0

Punching 0 0 20 0 80 0

Pushing 10 20 0 10 0 60

Table 3-6: Confusion matrix for UT-interaction dataset No-2.

Approaches Accuracy UT-dataset 1 Accuracy UT-dataset 2

Propagative voting 93 91

selection of negative 86.7 86.7

Propossed approach 81.6 78.3

Cuboid + svm 75 70

daysy 71 51

SIFT 3D 63 55

Table 3-7: Average accuracy for different reported state-of-the-art strategies.

of the task makes different sources of noise may easily mislead the descriptor, among

others the large number of dynamic actors and their variability when performing a

similar task or the actor appareance and the scene variations .

Finally, table 5 reports the results of comparing the proposed motion descriptor with

other state-of-the-art strategies. In general, the proposed approach achieves compet-

itive results w.r.t the other stragies, with the side advantage of being easily used for

on-line action recognition surveillance applications, since the motion descriptor can be

computed at any time during the sequence.

3.2.4 Discussion

This article has introduced a novel overcomplete regional representation for human

action recognition based upon the computation of recursive orientation primitives in

different temporal intervals. Inspired in visual sytems, the proposed approach carries

out a spatio-temporal analysis of the enviroment by defining salient information as those

regions that show coherent patterns along the time, thereby achieving the quantification

of diverese activities with large variability. The approach, assessed in surveillance
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applications, demonstrated to be capable of predicting actions at each time, whereby

it results a good candidate to be used in sequences captured with a mobile camera

while it is also easy to implement and efficient in terms of accuracy and time.

Action recognition is in general a very active research domain, with potential appli-

cations such as human computer interaction, biometrics, heath care assistance, survil-

leance among others [5]. Specifically in surveillance, the recognition task is oriented

to continously identify and categorize abnormal events and generate alarms [270]. In

the litetarure, different recognition strategies have been reported, coarsely categorized

as appareance based methods, motion fetures based strategies and complex learning

approaches. The appearenace based strategies consider the intesity or geometrical char-

acterization of each frame of a sequence which is then mapped to predefined model.

For instance in [180], a set of histograms of gradients (HoG), computed at each frame,

defined a particular motion. This approach is limited to the characterization of in-

dividual actors and sensitive to illumination variations during the sequence. Other

approaches use Viola and Jones algorithm [268], and Haar-like features [218] in which

the shape is also represented as distribution of edges, with the main drawback of

being not robust to orientation changes, issue that is critical in surveillance applica-

tions. Overall, these methods describe static shapes, lossing dynamic information that

may be useful when discriminating among similar activities. Additional appareance

characterization approaches have used spatio-temporal patches computed along the

whole sequence. These strategies are however dependent on the detection of salient

patches, a high computational cost process. On the other hand, many approaches

have taken advantage of the motion modeling by quantifying temporal changes dur-

ing a video-sequence. Likewise, assuming that human movements can be represented

as a continuous progression of the body geometry [35, 145], actions may be classified

using any approximation to the silhouettes. These approaches are however limited in

surveillance applications since the dynamic quantification is subjected to a proper com-

putation of silhouettes during the time, while motion captured in real conditions is in

general contaminated by a dynamic background. Additionally, these approaches may

fail when undersegmentation or oclussion occurs, a very likely situation in real video-

sequences. To overcome occlusion challenges, in [39], a geometrical shape is tracked

using moving average models (ARMA), obtaining smooth estimations of the silhouette

during the sequence. Nevertheless, this approach may lose the non-linear information

of the geometrical temporal chamges because the proposed tracking acts as a temporal

smoothing filter.

Motion description, from dense and sparse optical flow primitives, have been also widely

used to characterize and recognize individual and interactive activities since this is rel-

atively invariant to appareance variations and more noise robust [270]. For instance,
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in [180] it was proposed a histogram descriptor of dense flow features, invariant to

vertical symmetry which was applied to recognize human gestures. This approach

however misses local details that might define a particular activity in surveillance ap-

plications, for instance the motion relathionship between the limbs. In contrast the

herein proposed strategy is easily adaptable to recognize individual and interactive

human activities thanks to the overcomplete representation which allows to recover

local details that can differentiate similar complex actions. In [205,237], several recog-

nition strategies have been proposed, based on the computation of different dynamic

relathionships using an optical flow and combined with bag-of-features models that

aid to determine the occurrence of motion patterns. These methods in general high-

light the most frequent dynamic patterns but lose temporal and spatial probabilistic

feature distributions. The herein proposed approach in conytrast characterizes the oc-

currence of dynamic patterns that are spatio-temporally localizated. Currently, some

approaches have used learning algorithms to compute dynamic patterns and recognize

different human activities from large training sets [20, 29]. In [169], it was proposed a

propabilistic hidden markov strategy that models structured social human behaviours

and interactions in video-sequences. This approach is however highly dependent on

the learned scene context. Deep convolution networks have been also used [154, 259]

in real video-sequences, containing different types of actions and achieving a proper

performance for the classification and recognition tasks. These methods correlate, at

different levels, the appareance and temporal information but at the price of a highly

increased computational complexity and processing time. The proposed approach is

in contrast flexible to represent from atomic gestures to simple and interaction activi-

ties, exploiting the same representation and being relative independent of the scenario.

In fact, for simple gesture recognition, the temporal descriptor requires few temporal

scales, while for interaction and behavioural activities, the different scales completelly

cover the dynamic description. Different temporal scales can be applied by adapting

the hyperparameter α during K different periods as: α1 < . . . < αK . Finally, the

presented framework gains by its simplicity while it is also potentially used in real

time applications because of its adaptability to different gestures, a clear advantage in

surveillance applications.

3.2.5 Conclusions and Perspectives

This paper presented a novel approach for recognition of multiple human actions and

for classification of simple and interactive human activities. The descriptor is based

on multiscale velocity orientation statistics computed from an overcomplete RoI rep-

resentation. This algorithm can run under any of the main stream architectures and
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also can be computed on line because of the recursive nature. The proposed descrip-

tor achieved an average accuracy of 95 and 80 in real surveillance dataset (visor) and

UT-imteraction dataset, respectivelly. In future works we will try to extend the recog-

nition algorithm to mobile scenarios, and also to build strategies that allow recognition

of more complex actions such as group human activities.
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3.3 Automatic markerless analysis of the hovered

hummingbird flight from a dense optical flow

A new method for automatic motion analysis and characterization of the torsion and

deformation of the hummingbird wing is proposed. The method starts by computing a

multiscale dense optical flow field, which is used to segment the wings, i.e., those pixels

with larger velocities. Then, the whole flight is characterized as a set of global and

local temporal measures: an angular wing acceleration as a time function and a local

acceleration profile that approximates the dynamics of the different wing segments.

Additionally, while the variance of the local velocity orientation estimates those wing

foci with larger deformation, a local measure of the orientation highlights those regions

with maximal torsion. The approach was evaluated in a total of 93 flight cycles,

captured under three different acquisition setups. The proposed measurements follow

the hovering hummingbird flight dynamics, with a strong correlation of all computed

paths, reporting a variance of 0.31 and 1.96 for the global angular acceleration and

the global wing deformation respectively. A complete version of this chapter has been

submitted for publication to the journal of Bioinspiration & Biomimetics .

3.3.1 Introduction

Emulation of flying animal movements may facilitate the design of smarter micro air

vehicles (MAVs), allowing them to perform more complex maneuvers and expend less

energy [198]. Among these MAVs, hovering machines have succeeded in executing

elaborated movements within very limited spaces [198]. Designs of such new hovering

MAVs may be inspired in animals such as the Hummingbird [10], a bird species able

to hover in mid-air. Their maneuverability is based on their ability to easily turn in

very restricted spaces, a skill developed to access flowers with sugar rich nectars. A

proper design of flapping-wing flight machines requires a precise comprehension of the

many interactions between kinematic and morphological wing parameters. Temporal

torsion or wing deformation patterns constitute the fundamental variables to estimate

the nonlinear relationships between the different wing segments. Moreover, rotations

and velocities are related not only with kinematic information but also with forces and

torques produced by muscles and tendons [13,198]. Nevertheless, in spite of extensive

studies, many of the morphological, local dynamic, kinematic and even aerodynamic

details are poorly understood [198] because of the still limited tools used to capture

flight patterns, like for instance flapping frequency, stroke amplitude, angular velocity

and even spatio-temporal wing deformation.

Many questions about the flight mechanisms still remain open, e.g., how the humming-
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bird accomplishes yaw turns during the hovering flight or how the bird is able to keep

turning once he starts this maneuver. In many cases, the only available information

about these turns comes from other species like the gliding or flight patterns observed

in insects [130,132,157,232,279,280]. However these animals are actually very different

since they are entailed with simple wings that operate over a larger range of speeds [258]

and are supported by an outer skeleton. In addition, while birds roll their body to ori-

ent the wing forces, insects can easily turn by asymmetric left-right wingbeats. The

hummingbird flight has been broadly studied using customized analysis systems that

require a set of reference points, somehow highlighted and superimposed on the animal

structure. These salient anatomical points are usually drawn by an expert [215], adding

new variables to the analysis since such delineation is a frame-per-frame task which

inevitably leads to high inter and intraobserver variabilities. Furthermore, these tools

introduce artifacts that alter the natural hummingbird motion gestures since they need

markers that must be placed on the wing bird, markers that in addition can be easily

occluded during a wing cycle. In particular, wing deformation has been estimated by

following up the temporal patterns of several interest points, manually selected, in the

recorded video. However, these measures are indirect and are performed under very

strong simplifications [272].

Classical approaches may miss many important details of the real dynamic patterns

since they rely completely in both an expert user and an invasive tracking strategy.

Recently, some approximations have automatically estimated the dynamics of flight

trajectories, most of them using machine-learning methods that require a considerable

number of videos for training and finding global flight patterns [257]. Overall, these

kinematic methods model the wing as a stiff airfoil [290], but in reality the wing is a

very flexible structure, able to asymmetrically produce non uniform movements [290].

Some works have extracted patterns to characterize the hovering hummingbird dy-

namics [281], supporting the importance of performing analyses of the whole structure

rather than following some isolated reference points. A very useful tool has been the

Particle image velocimetry (PIV) [3, 36], a strategy that permits to estimate aerody-

namic variables by indirect measurement of the resultant flow produced in the air by

the wing motion. In practice the set of particles, near the wing boundary, is supposed

to closely follow the animal motion. The whole procedure consists then in illuminating

such particles with a pulsed light laser and capturing this motion with a camera. A

flow field is obtained by cross-correlating consecutive image patterns formed by par-

ticles highlighted by the laser [3, 36]. A main advantage of this method is its relative

non-invasiveness, but a limitation is that the particle illumination may produce in-

terference phenomena near the wing boundary. Besides, the whole dynamics can not

be estimated with the PIV method since the captured flow is related to the external
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motion and hence the analysis of forces and torques is only indirect. In other words,

this method may improve understanding of the hummingbird movement from an aero-

dynamic standpoint, but not from a kinematic angle, whose importance is mostly asso-

ciated to the local wing deformation and temporal rotation. Lately, several researchers

have introduced mechanical and mathematical wing models, aiming to exploit some

basic physical relationships to simulate different types of wing motions [12,38,183,278].

However, these models are very restrictive, for instance wings are represented as rigid

structures and therefore only very linear approximations are possible, whereby the

obtained conclusions are limited and the predictive model capabilities are largely re-

duced [250].

In this work, a novel description of the wing dynamics is introduced, providing previ-

ously unavailable information about rotational and deformation wing patterns. This

spatiotemporal description is based on a set of velocity vectors obtained from a dense

optical flow. Four principal temporal estimations are computed: (1) the global angular

acceleration of the hummingbird, (2) the angular acceleration profiles computed over

different wing segments, (3) the variance of the spatial orientation of the velocity field

for each of the two wings and (4) a distribution map of the local orientation variation

within the wing. These four complementary measures allow not only to follow up the

wing but also to determine the instants of maximal and minimal deformations, as well

as the regions with larger torsion. This paper is organized as follows: Section 3.3.2 in-

troduces the proposed method, section 3.3.3 describes the dataset, section 3.3.4 demon-

strates the effectiveness of the method and section 3.3.5 presents a discussion of the

proposed work. The last section concludes and presents some possible future works.

3.3.2 Materials and Methods

Overall, a dense optical flow provides a motion description by estimating the instanta-

neous displacement of each pixel between consecutive frames. Such vector field allows

to compute four complementary motion descriptors at each time step, all of them

further described hereafter.

3.3.2.1 The Dense Optical Flow Computation

First, a dense optical flow is estimated by matching all the points from frame to

frame, using a nearest neighbor search in a projected feature space [195]. The mul-

tidimensional feature space is herein obtained using the local jets [177], an approxi-

mation to the image spatial structure provided by derivatives at different orders and

scales: fσij = f ∗ ∂i+jGσ
∂xi1∂x

j
2

, where Gσ is the 2d Gaussian function with standard devi-

ation σ. Each pixel is associated then to a feature vector defined as the collection
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{
fσij; i+ j ≤ r, σ ∈ S

}
, where r is the derivation order and S = {σ1, . . . σq} the selected

scales. The set of features, associated to a frame, is represented in a kd-tree structure

which facilitates efficient distance search [30]. Finally Vt(x), the apparent velocity

vector for pixel x at time t is calculated by coupling the feature vector associated to x

to its nearest neighbor in the feature space calculated at time t+1. Thanks to the mul-

tiscale representation, which implies the matching of that extended spatial structure,

this method provides a spatially consistent dense optical flow, without using explicit

spatial regularization.

3.3.2.2 Hummingbird motion patterns

Quantifying kinematic flight patterns and their structural relations is crucial for optimal

design and development of flapping-wing flight prototypes. These complex relationships

may be primarily determined from the analysis of variables like the angular acceleration

and temporal wing deformation, herein estimated from the dense optical flow. Such

variables are temporal functions, some of them being global scalar functions of t and

other local spatial maps indexed by t. Local dynamic patterns are determined by

firstly segmenting the calculated apparent velocity flow and finding the two largest

connected regions, corresponding to the right and left wing and denoted Vrt and Vlt.

The isolated remaining flow areas are assigned to the nearest region, according to the

spatial Euclidean distance.

3.3.2.2.1 Angular Acceleration patterns Rotational wing patterns are crucial to

understand complex flight mechanisms, like: particular rotational patterns, an optimal

angle of attack, a large downstroke span ratio and a high wingbeat frequency that

together maintain the achieved equilibrium and facilitate complex maneuvers [80,263].

In this work, the angular acceleration was estimated by associating the orientation of

the computed apparent velocity optical flow and the wing, under the assumption that

the rotation axis is perpendicular to the optical axis of the camera [138, 267]. Two

configurations were herein proposed to analyze the hummingbird wing motion from

an angular acceleration standpoint: a global angular acceleration of both wings and a

temporal map of regional angular accelerations, constructed by estimating the angular

acceleration profiles for a set of wing segments which correspond to a wing anatomical

partition.

The Global Angular acceleration: A main global description of the hummingbird

flight is the mean angular acceleration. For a non-zero flow vector V, let φ(V)

be the apparent velocity flow orientation, the averaged spatial orientation φ(V)t
at each time t is calculated. Under the assumption that there exists a dominant
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orientation of the velocities, the rate of change of the velocity angle is then

computed as Ωt = dφ(V)t
dt

. This variable describes the turn angle during the

flight, and highlights the relaxation and effort phases during the flight.

Angular acceleration spatial profiles: A local angular estimation was herein obtained

from a temporal acceleration profile that follows the wing region st
r,l along a

flight cycle, where st
r,l ∈

{
s
{r,l}0
t , s

{r,l}1
t , . . . , s

{r,l}i
t , . . . , s

{r,l}N−1

t

}
stands for the

set of N wing segments (Figure 1 (d)). Each of the two st
r,l regions, associ-

ated either to Vr
t or Vl

t flows, is bounded within a bounding-box at a particular

time t. The bounding-box is rotated by an angle θl,rt which corresponds to the

main direction defined by the wing and then split into N spatial segments. The

temporal series is constructed by associating a wing region to the closer region

in the precedent frame. For so doing, the metrics is defined as the minimal

distance dr,lt+1 between the centroids of consecutive wing regions (x, y)sr,lt
, as fol-

lows: dr,lt+1 =
∣∣∣∣∣∣(x, y)sr,lt

− (x, y)sr,lt+1

∣∣∣∣∣∣2
2
. Finally, a local angular acceleration for

each segment sti was computed and its temporal map Ω(si) was obtained. Such

representation is:

Ω(si(x, t)) =

{
dφ(Vt(x)))

dt
;x : x ∈ si

}
(3-1)

3.3.2.2.2 Wing deformation patterns Although hummingbird kinematic pat-

terns are generally similar to the insect flight, the morphological structure of the

wings are very different given the mass and structural relationship, further con-

sidering that the wing muscle mass is largely determined by the need of producing

efficient mechanical power. This is why the impact of the wing deformation during

the flight must be quantified for understanding how the wing geometry supports

forces and produces motion. For instance, it has been documented [281] that the

hummingbird upstroke and downstroke are not symmetrical. Such observation is

strongly related to the local loads supported along the wing.

Wing deformation is herein estimated by computing the variance of the local

velocity along the time. This estimation is carried out by assuming that every

flow vector should be equally distributed along a rigid wing, while deformable

structures produce a non homogeneous distribution, whereby the local motion

variance is proportional to the physical deformation.
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Local map of the wing deformation: The wing flow and its averaged orientation are

used to compute a per-frame deformation map, estimated as a squared difference

between each non-zero flow vector and the average orientation:

Ql,r
t (x) =

∣∣∣∣∣∣φ(Vt(x))−Ol,r
t

∣∣∣∣∣∣2
2

(3-2)

This analysis provides a stress map of the wing, highlighting the forces shearing

the wing 1.

Global wing deformation: For each wing, a global deformation W l,r
t is estimated 1

by averaging the local wing deformation map Ql,r
t (x) . This measure allows to

detect accurately the largest deformation instants during a flight stroke.

3.3.3 Dataset description

Four annas hummingbirds (Calypte Anna’s) were recorded. Each hummingbird was

placed inside a flight chamber that contained a wooden perch in the corner and a feeder,

in which a 1 ml syringe was mounted at the end of a metallic arm (0.22m × 0.19m ×
0.15m). The feeder arm was connected to a stepper motor (MDrive 23 Plus, Intelligent

Motion Systems, Inc.) placed at the centre of the cage roof. This setup allowed the

bird to feed from the spinning feeder, while maintaining its centre of gravity in the

same spot, executing a pure yaw turn. A white cardboard square was placed above

the hummingbird to offer a contrasting background to the hummingbird body. The

hummingbirds were trained to follow the feeder at 30 rpm. A stationary hovering flight

was recorded using a high speed camera (Fastec Imaging, Troubleshooter) with spatial

resolution of (640× 480) and a temporal resolution of 1000 frames
s

.

In this study, three different sets of videos recorded the hummingbird flight from three

complementary perspectives (see Figure 3.3.3 ). A total of 93 flight cycles were herein

considered. Additionally, two high spatial resolution videos (1024 × 1024), capturing

a single wing, were recorded.

Figure 3-8: In (a), (b), (c) is shown the three complementary configuration perspectives

used to record the hummingbird flight. In (c) is illustrated the computation

of the N wing segments using as reference a rotated bounding box

1where l stands for the left and r for the right
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3.3.4 Results

The set of motion measures, herein proposed to analyze the hummingbird hovering

flight, provides a valuable spatio-temporal wing description from local and global per-

spectives, highlighting the maximal and minimal moments of the angular acceleration

and the wing deformation. The introduced analysis framework, allows for a time-

resolved analysis of wingbeat kinematics, promoted by a direct wing kinematic anal-

ysis, promoted by a dense optical flow that facilitates a spatio-temporal tracking of a

particular wing region. In addition, the proposed work is a markerless strategy so that

the natural flight gesture is not altered.
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Figure 3-9: Hummingbird wing motion analysis from a dense optical flow computation.
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An accurate estimation of the apparent velocity field facilitates the extraction of any

motion pattern. However, understanding of the dynamics performance along the flight

requires a proper balance between information collected at the global and local lev-

els, a task for which a conventional optical flow is insufficient, because it performs

pixel matching at a very local level, obtaining density through explicit spatial regu-

larization. In contrast, the multidimensional dense flow herein implemented, turned

out appropriate because it performs matching at the object level, and no explicit spa-

tial regularization is needed. A typical multidimensional dense flow estimation of the

hummingbird flight is shown in Figure 3.9(b), illustrating that the apparent velocity

vectors are mainly within and around the wings. For the experiments presented here-

after, the dense optical flow was parameterized as follows: 7 scales with a σ0 = 0.3

and σn+1 = 2σn, while up to the second order derivatives were used, resulting in a

descriptor vector of dimension 42.

Figure 3.9(c) shows the temporal deformation map Qt(x) as a function of time and

space (x, t) obtained during a stroke cycle. The color scale represents the magnitude

of the local deformation along the wing. Such deformation maps, estimated from the

velocity fields, are totally coherent with the classical bio-mechanical descriptions of the

musculoskeletal hummingbird structure: during the first stroke phase, the shoulder and

pectoral muscles support the main energetic expenses to drive the wing forward [13].

This action produces an initial wing torsion, basically controlled by the proximal wing,

as illustrated in the first panel of the deformation map(Figure 3.9(c)). During the

intermediate stroke phase, the wing deformation is propagated to the distal segments,

which lack of any skeletal structure and whose maximal deformation occurs at about

60 % of the stroke, as observed in the mid panel of the Figure 1. The final cycle

is completed by backwardly extending the wings, as illustrated in the last panel of

figure 1, the passive part of the movement which is may generated by the elastic wing

component.

The estimated global angular acceleration Ωt correlates with the wing deformation and

was calculated as the derivative of the averaged apparent velocity orientation of the

apparent velocity flow. All the computed wing deformation paths, computed from each

video, were normalized between 0 % and 100 % of the stroke cycle. Each stroke cycle

in the video was manually selected and phase-aligned by an expert. The pattern of a

cycle was estimated by determining the correlation among the experimental group: for

the whole set of 90 recorded sequences and for each instant t, a statistical boxplot was

computed, within which the red line represents the median of the angular acceleration,

the blue lower and upper boxes stand for the spread of data (interquartile range) and

the maximum and minimum values are drawn as the vertical dotted lines, as illustrated

in figure 3.
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Figure 3-10: Global dynamic hummingbird patterns computed from the videos with

the C camera configuration.

Overall, the temporal series follows a very similar pattern for each of the recorded

wings, with minimal variance in the passive phases and larger differences for the active

parts of the cycle. The observed acceleration peak between the 40% and 60% percent of

the stroke, represents two complementary states: an initial relaxation, when the wings

are forwardly driven to join, and a second phase characterized by an important effort

to separate them. During each stroke cycle, it has been well documented that there

exist three complementary phases, namely upstroke, downstroke and the transition

between them, as observed in Figure 3. Determination of both the energetic cost and

the dynamic patterns for each one of these phases demands an independent analysis of

the three phases. Upstroke and downstroke phases correspond to the [10%−40%] and

[60%−90%] of the temporal series, respectively. In such intervals, the flight is basically

passive and smooth because motions are mainly driven by the inertia and forces are

typically reactive. The resultant variance in these intervals is about 0.1871 rad
frame2

, a

figure that can be considered as negligible, i.e., a high correlation is observed among

the whole experimental group. In contrast, the mid part of the temporal series reveals a

larger variance because of the transition between the upstroke and downstroke phases.

During such interval, the anatomical differences as well as the capturing noise contam-

inate the observations, which results in larger differences between the wing dynamics

amongst the whole experimental group. In other words, during a cycle the amount of

expended energy is different.

Figure 3-11: Local angular acceleration profile by the subdivision of the wing in eight

segments.

A local angular acceleration profile was computed by dividing the wing into segments,

the angular acceleration being regionally estimated for each segment. Figure 3.3.4

shows a typical 3D-map acceleration profile using eight wing segments. Each computed

map reveals further details about how the angular acceleration moments are distributed

along the wing, from the proximal to distal regions along the stroke flight. As expected,

in the first phase of the stroke cycle, the acceleration profile is very similar for the

proximal and distal parts. At about a 30 % of the cycle, this pattern changes and the

distal part is fully responsible for the observed motion changes. The proximal wing

simply leverages the distal motion whose amplitude varies in several mini-cycles to a

larger extension at the end of the cycle. From such acceleration 3D-map, it was also
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possible to observe the non linear distribution of the angular acceleration in both axes:

wing position and temporal cycle.

Finally, a global wing deformation, during a stroke cycle, was estimated from the whole

experimental group W l
t (resp. W r

t ), and shown in Figure 5. In general, every series of

the wing deformation follows a very similar pattern, with a variance whose amplitude

is smaller than a 10% of the spanned wing amplitude. As for other deformation estima-

tions, a statistic boxplot was computed at each time of the cycle, using every recorded

video, and again the red line represents the sample median while the spread of data

is represented by the blue lower and upper quartiles. The larger stroke deformations

correlate with the maximum wing effort moments, when motion abruptly rises and

there exists a change of direction.

Figure 3-12: Global wing deformation from the videos with the C camera

configuration.

An independent analysis for the three flight stroke phases was also performed for the

global deformation patterns. As expected, during the downstroke and upstroke phases,

when there exists a relatively relaxed state and motion is almost constant, the wings

act like rigid structures with small deformations, principally at the wing borders. The

pattern is systematically reproduced by the different wings, with a very small variance

(around 1.96
(

rad
frame

)2
). On the other hand, during the transition stroke phase, the

deformation increases, as well as the variance. During this phase, the deformation is

large because of the rapid wing adaptation to the new change of acceleration direction.

3.3.5 Discussion

This work introduced a novel approach to perform a complementary kinematic analy-

sis of the hummingbird wing motion, using a multidimensional dense optical flow and

without any prior information or any invasive sensor that could alter the natural flight

motion gesture. The optical flow herein applied aims to extract global and local relevant

information rather than following up the apparent location of individual pixels, and

therefore is a suitable and robust tool to determine the fundamental motion wing pat-

terns and to estimate the local wing deformation. The whole picture is reconstructed

by means of a set of kinematic measurements computed from the apparent velocity

vector field, which was in due turn used to spatially segment and cluster the different

wing flow patterns. Angular acceleration and temporal wing deformation measures

were herein estimated from local and global perspectives over a set of 93 videos. Quan-

titative metrics and results demonstrate both a remarkable coherence with previously
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described biomechanical and dynamic hummingbird patterns, and a low variance of

the computed kinematic patterns among all the evaluated samples. This method, of

very easy implementation, is capable of establishing the kinematic flight lift generated

during the upstroke and downstroke phases.

Flight analysis by means of physical approximations are often based on the study of

some temporal sparse biomarkers, and therefore only provide temporal information

for very simplified structures, or are too sparse to be statistically significant. These

approximations in consequence result insufficient or unsuitable to understand complex

maneuvers, especially when such motions are directly related with temporal non-linear

structural deformation. Some computational models partially overcome such simplicity,

allow for simulation of several flight patterns by subdividing the wing into simpler parts

which are steered by independently parameterized physical models [183]. However, such

simulations are usually unrealistic and far from being interpretable, they would hardly

discover complicated relationships among forces, interactions, neuromotor commands

and joint movements that might produce complex motions such as the hang up flight.

In contrast, the proposed approach is able to describe convoluted kinematic patterns

that are spatially spread out along the wing, using exclusively the video information,

without prior hypotheses. In this sense, the presented strategy not only can find out

reliable motion patterns, but it also may reveal local deformation patterns of the wing

.

Rotational patterns are crucial in flight analysis since they allow to study the source of

circulation air which is straightforwardly related to the upward and downward forces

during the stroke cycle. Furthermore, the angular acceleration, the angle of attack

and the span ratio are responsible for controlling the upstroke circulation, the wing

orientation and the maintenance of the forward flight [80,263]. The Global angular ac-

celeration herein estimated presents large gradients during the upstroke and downstroke

transitions, a result of the upward and downward wing forces which are responsible for

the circulation changes. From a local angular acceleration standpoint, the proposed

approach also allows to estimate a regional angular acceleration profile along the wing,

thereby discovering not only the phases where the sources of circulation change but

also determining which particular wing regions are more involved in the generation of

these forces. As illustrated in Figure 3.3.4, the main angular acceleration modes are

initially concentrated in the proximal wing regions because the shoulder and pectoral

muscles drive the forward wing motion, a pattern that is displaced to the distal wing

regions when the passive accumulated energy rules the downstroke phase. Although

the proposed method is able to capture local motion patterns from the dense optical

flow, the spatial accuracy is restricted by the number of scales and the standard de-

viation used to convolve each frame. For instance, when the scales are obtained by
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convolving Gaussians with large sigmas, results would be more robust to noise motion

but less accurate spatially. A proper balance between the noise control and the spatial

accuracy is part of the method tuning as to obtain coherent results.

On the other hand, the stunning deformations of the wing are responsible for much

of the salient abilities of hummingbirds such as their stability and relative conserva-

tion of the orientation, even if they are forced to change constantly their acceleration

patterns [11]. In addition, localized wing deformations may produce relative point cir-

culation vortices that induce a non linear pattern along the wing structure and therefore

completely alter the hummingbird flight smoothness [131]. In the proposed strategy,

deformation wing patterns were locally estimated along the wing as the relationship

between each local orientation w.r.t an average orientation, resulting in a wing map of

deformation for every stroke. Main wing deformations are commonly localized along

the proximal and distal segments while the largest deformation is observed when the

wing acceleration is maximum, i.e., during the downstroke and upstroke transitions

(see Figure 3.3.4).

Recent methodological advances have improved our comprehension of the most complex

hummingbird maneuvers and their intrinsic mechanisms, for instance, aerodynamic

studies using PIV have shown an asymmetric distribution of the lift forces during the

stroke, probably caused by unknown micro-mechanisms like the stall and leading-edge

vortices [281]. New analysis instruments are then required to approach such local

and non linear phenomena whose role is yet an open problem. The proposed approach

herein introduced is a global-to-local analysis tool that complements the existent meth-

ods, with the benefit of methodological simplicity. Likewise, the two variables herein

estimated, angular acceleration and wing deformation, were locally and globally com-

puted, opening thereby the possibility of conducting more subtle studies that discover

the wing regions that contribute to every step of the hummingbird hovering. The

proposed approach is also able to locally compute force and torque patterns at the dif-

ferent wing segments by directly relating the angular acceleration with real anatomical

values. Finally, this method might be used to automatically segment the hummingbird

flight strokes in sequences of video, highly reducing inter and intra expert variability.

3.3.6 Conclusions

This work has presented a novel approach to quantify the hovering hummingbird mo-

tion, using a dense optical flow computed from video sequences. A main contribution

is the markerless flight analysis framework that estimates two relevant kinematic hum-

mingbird variables i.e., the angular acceleration and wing deformation. The proposed

method opens up an actual possibility of understanding more complex hovering phe-
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nomena. Future works include the study and development of a robust method that

temporally relates the kinematic dense flow description with force measurements gen-

erated by flapping, under actual anatomical and mass parameters.

3.4 Characterization of motion cardiac patterns in

magnetic resonance cine

One of the most important tasks in Cardiac Magnetic resonance Cine (CMRC) consists

in identifying and describing normal and abnormal dynamic heart patterns, a task

usually performed by physicians. Segmentation and tracking may support decisions

during a particular treatment, but their performance is dependent on the quality of

the video. The acquired signal, on the other hand, is contaminated with noise coming

from physiological movements and devices, resulting in cardiac blurred boundaries.

This paper presents a novel method that automatically identifies flow heart patterns

by establishing similarities between two consecutive frames to which a local jet feature

analysis has been applied. Once a vector motion field is calculated, spatially connected

regions with minimal variance are found as the sources of movement and different

statistics objectively estimate movement patterns of these regions. The utility of this

method is illustrated by comparing the temporal series of these regions between normal

and abnormal patients. The complete content of this section has been published as a

research article in the proceedings of IEEEXplore (see [199])

3.4.1 Introduction

Cardiovascular disease (CVD) is an important worldwide health concern that amounts

to a 29.2 % of the total global deaths, according to World Health Report in 2003

[213]. Magnetic Resonance Cine (MRC) is a non invasive video technique that provides

cardiac anatomic information with good spatial and temporal resolution, allowing the

analysis of the heart dynamic patterns. These analyses aim to estimate, globally, the

myocardial function, and specifically, the wall motion information. Therefore they are

used as an indicator of the pathological and normal movements [135]. Overall, these

analyses are carried out by expert physicians, whereby results are highly subjective.

Likewise, in the actual clinical routine there is no objective measurement upon the

cardiac flow, a fundamental limitation of this analysis. This may be especially useful

in early disease detection, case in which the boundary between normal and abnormal is

quite diffuse, even for expert physicians. The point is that any objective measurement

must take into consideration different variation sources, namely, changes of pose and

reflection properties of the object, acquisition device noise and similar tissue properties



90 3 Spatio-temporal descriptors from optical flow patterns

of the neighboring heart tissues. For instance, in the video, it is really difficult to

establish a neat border between heart and liver [190,219].

So far different approaches have been proposed to obtain dynamic and structural heart

patterns. Some of them, based on region growing or edge-detection, present difficulties

when dealing with noise, grey scale variations and low gradients. Therefore, a high

degree of supervision is required [189]. On the other hand, other works have used MR

tagged images, a technique in which the tissue motion is related to the tag line locations

or intersections [170]. Active contours or statistical models that attempt to track the

ventricle movements have been also used. These active contours are computationally

expensive and their performance in noisy conditions is very poor. The statistical models

are not correlated with any physiological phenomenon, a very important issue from the

clinical standpoint since the objective is not uniquely to follow a movement but rather

to establish patterns with physiological meaning [123,254]. Finally, even if the tagging

technique offers appropriate quantitative analysis for some dynamic parameters, its

clinical use has so far remained limited mainly because its performance is very poor

when the acquisition process is noisy. Besides, the tagging resolution is so low that the

physiological meaning of the found flow patterns is really difficult to establish [254].

The main contribution of this work is the design of a fully automatic method which de-

termines the fluid vector field that represents the apparent heart motion. The method

allows to define objective measurements upon the main FOE (Foci of Expansion), de-

fined as those locations with minimal motion from which line fields are coming out from

one of these foci to another. This paper is organized as follows: We first briefly present

the dataset, then Section III introduces the proposed method, Section IV demonstrates

the effectiveness of the method and the proposed metrics, a useful tool to help the ex-

pert physician. The last section concludes with a discussion and possible future works.

3.4.2 Dataset description

Ten different cases were herein included to assess the proposed method, five normals,

three diagnosed with Fallot tetralogy and the last two, with acute myocardial infarction.

The images were acquired in a 1.5T Intera scanner (Philips Medical Systems, The

Netherlands), equipped with 30 mT/m gradients, using a dedicated 5 elements phased

array cardiac coil for every patient, The 4D sequences follow the conventional views:

short axis, two chambers and four chambers.

A balance gradient echo sequence (balanced TFE) has been used in all cases. The most

relevant parameters for the short axis view are: slices = 13, slice thickness = 8 mm,

heart phases = 30, TR/TE = 3.15 ms, flip angle = 60◦, matrix = 256 × 192, SENSE

factor = 1.5, turbo factor = 8. For the two chambers view: slices = 2, slice thickness =
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8 mm, heart phases = 20, TR/TE = 2.7/1.3 ms, flip angle = 60◦, matrix = 256× 186,

SENSE factor = 1.5, turbo factor = 24. Finally, for the 4 chambers view: slices = 2,

slice thickness = 8 mm, heart phases = 20, TR/TE = 3.2/1.6 ms, flip angle = 60◦,

matrix = 256× 175, SENSE factor = 1.5, turbo factor = 15.

3.4.3 The proposed Method

Figure 3-13: Local jet features from MRC slices are calculated and stored in a kd-tree

by similarity. The motion is estimated by searching a particular pixel in

the precedent kd-tree. Once the apparent heart motion is obtained, some

metrics define the dynamic patterns.

The whole method starts by calculating the Jacobian and Hessian matrices for different

scales of a slice, using a Local Jet Feature approach [98]. The resulting local jet

representation is then grouped by similarity i.e., foci with minimal variance. A kd-

tree structure stores the values of local jet for every pixel. The motion is estimated

by searching a particular pixel in the precedent kd-tree (the kd-tree at time t − 1).

Such search is firstly addressed to the pixel with the closer local jet feature Euclidean

distance. The kd-tree structure allows orientating this search to the pixels with similar

local feature description. Once this most similar pixel is found, the two associated

coordinates are used to calculate the motion vector. One main contribution of the

present work was the design of an objective measurement on the obtained vector field:

spatially connected regions with minimal variance were firstly grouped, i.e. regions

that maximize the inter-group variance regarding the vectors magnitudes and angles.

3.4.3.1 The Multiscale Local Jet Similarity Space

Nowadays it is well accepted in the computer vision community that relevant informa-

tion can be determined by different strategies that measure correlation or coherence

through different scales [185, 244]. The strategy herein applied is known as local jets

and basically consist in obtaining an homogenous partition of the frequential spectrum

by analyzing the image at different scales, which are then characterized by a map of

partial derivatives of different order (we used here a first and second orders but the

analysis can be extended to higher orders when one might want a finer spectral par-

tition). In consequence, the first step in our approach was to obtain a collection of

spatial derivates at different scales from independent slices, as follows:
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fσij = f ∗ ∂
i+jGσ

∂xi1∂x
j
2

(3-3)

where Gσ is the 2d Gaussian function with standard deviation σ. The Gaussian kernel

is here justified because this is the unique kernel with an homogeneous scale-space

representation (linearity and shift invariance in both frequency and space) [185]. The

multiscale local jet is given then by the collection
{
fσij; i+ j ≤ r, σ ∈ S

}
, where r is the

derivation order and S = σ1, . . . σq the selected scales.

Local jets as descriptors have been already used on natural images, in which it has been

shown that the first eigen (singular) vectors obtained by PCA or SVD are quite similar

to the first derivatives of a 2d Gaussian function [194,212], whereby this representation

is quite sparse. Therefore, information can be automatically estimated by calculating

the energy concentrated at each scale.

Then, local jets are normalized [185]:

F σ
ij =

σi+j

i+ j + 1
fσij (3-4)

where σi+j is the scale normalization factor and i+ j+ 1 is the number of (i+ j) order

derivatives. The following single scale distance is used:

dσf (x, y) =
∑
i+j≤r

(
F σ
ij(x)− F σ

ij(y)
)2

(3-5)

3.4.3.2 Data structure

Once a MRC slice is represented by a multi-scale set of features (local jet collection

Fij), the next step consists in storing the local jet in a kd-tree structure F. This data

structure, a binary space partition, organizes the whole set of features and allows

rapid access to them [30], performing nearest neighbor (NN) searches in the feature

space. This efficient search is extensively used to perform operations based on similarity

between pixels that are not connected in the image space.

3.4.3.3 Heart Motion Estimation

The apparent heart motion is estimated for every pixel x at frame t by using the

similarity cluster established before. At frame t, slice ft, and pixel x, we compute

u(ft−1, ft, x), the nearest neighbor of the feature vector associated to x in the ft−1
feature space:
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u(ft−1, ft, x) = arg min
vεF−1

ft−1

dF (x̂ft, v) (3-6)

where x̂ft is the x projection onto the feature space of f , i.e., x̂ft = {fi,j(x)} and dF

denotes the feature space distance. Then we compute y(ft−1, ft, x), the pixel from ft−1
which is the most similar to x from ft:

y(ft−1, ft, x) = arg min
zεF1

ft−1
u(ft−1,ft,x)

dI(x, z) (3-7)

where dI denotes the distance in the image space. We obtain the pixel from the set of

pixels associated to the feature vector u which is the closest to x in the image space.

Finally, the velocity vector is computed as the difference:

c(ft−1, ft, x) = x− y(ft−1, ft, x) (3-8)

Our method was implemented in C++ language on a standard PC (AMD with 2.66

GHz CPU and 3 GB of RAM) takes about 10-15 sec to process all slices of a plane.

3.4.3.4 Computed Measures

Our fundamental hypothesis is that those places with minimal movement constitute

a stable source of information of the whole flow pattern. Once the vector flow was

determined, the next measurements were proposed:

Flow motion clustering: Similar flows are grouped as the sets of points with minimal

variance regarding the vector magnitude and angle. The number of sets depends

on the type of description one might want to obtain, for instance with k = 2 the

two circulatory circuits are repaired, i.e., left and right. With k = 4 we observe

the principal fluid directions, mostly in the left part of the circulatory circuit. A

larger number produces more clusters but with no physiological meaning.

Global and local statistic measures: computing simple statistics either globally or

in a small neighborhood, results in a saliency map of the flow pattern. This

saliency map corresponds to heart segmentation, when this is locally considered,

and to a tracking of the Center of mass, when the analysis is global. In both cases,

these patterns (as it will be illustrated later) show very different appearance.
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3.4.4 Experimental Results

The method parameters were adjusted to obtain the best performance and then set to

the following values: NN = 1 with a local jet order of 2 and σ = 5. Typical results of

computing motion estimations for the three planes are shown in Figure 3-14 (upper

sequence). After visual evaluation, the expert determined that the proposed method

achieved a very realistic motion simulation during a cardiac cycle. Figure 3-14 (lower

sequence) shows the flow determined by the different selected clusters on every slice

of a cardiac cycle. On the other hand, it is possible to use the saliency map built up

from the computed flow (magnitude and norm) and determine a center of mass of this

flow or global heart trajectory, as showed in Figure 3-15. This trajectories can be used

as dynamic patterns to identify or grouping different kinds of movement. The RMSE

computed from global trajectories demonstrated a minimal error between similar move-

ments as illustrated in Table 3-8, for instance, the difference among normal flows is

0.04 in average, while the difference with Fallot tetralogy is 20.51 and the difference

with infarction movement is 23.023. This difference suggests that this measure could

be used as indicator of some abnormal movements.

Figure 3-14: The flow determined by the different selected clusters on different slices

of a cardiac cycle.

Mean Signal RMSE-Normal RMSE-Fallot RMSE-Infarction

Mean-Normal 0.04 20.57 23.16

Mean-Fallot 20.51 3.89 10.27

Mean-Infarction 23.023 8.81 3.82

Table 3-8: Root Mean Squared Error for the three evaluated movements. These aver-

ages have been calculated from the differences between the signals and the

mean representative signal to every movement of the cardiac cycle.

Figure 3-15: Mean trajectories of CoM heart movement computed since the saliency

map. In this figure it is possible to observe the characteristic of global

motion computed from saliency map and the strong differences between

the three kinds of movements.
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3.4.5 Conclusions

We have introduced a new method to analyze the heart dynamics by estimating the

apparent motion. We obtain a robust representation which captures some important

heart dynamic and static features, for instance the most important topological elements

that represent both places with minimum coherent movement (fluid sources) and with

largest change rate (they represent the fluid lines). Experiments demonstrated that

this can be used to characterize fluid patterns and establish a base normal line, as

confirmed by an expert in the domain. Measures presented in this work constitute a

first approximation to understanding the complex dynamic heart. From this kind of

analyzes, we expect that it is possible to set up a collection of descriptors which allow

to accurately describe motions patterns and quantify its semantics. The presented

procedure could be extended to other type of medical imaging problems, or may be

used to segment the wall of the heart with better accuracy by taking advantage of

the temporal information. On the other hand, the combination of our method with

statistical approaches would allow tracking of specific heart areas.
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from prior knowledge.

At a more sophisticated level, visual systems exploit the learned relationships between

motion observations and prior concepts and analyze complex patterns, accomplishing

a remarkable discrimination of normal and abnormal behaviors. This chapter aims to

approach such analysis at characterizing, following and simulating normal and patho-

logical dynamic gait patterns (see in section 4.1 and 4.2 ). As a contribution, the prior

knowledge and observations were herein related in a classical segmentation task: a prior

shape was iterative evolved to adjust noisy observations and segment the prostate in the

context of radiotherapy planning (see in section 4.3).

4.1 A Kinematic Method for Computing the Motion of

the Body Center-of-Mass (CoM) During Walking:

A Bayesian Approach

The gait pattern of a particular patient can be altered in a large set of pathologies.

Tracking the body centre-of-mass (CoM) during the gait allows a quantitative evalua-

tion of these diseases at comparing the gait with normal patterns. A correct estimation

of this variable is still an open question because of its non-linearity and inaccurate loca-

tion. This paper presents a novel strategy for tracking the CoM, using a biomechanical

gait model whose parameters are determined by a Bayesian strategy. A particle filter is

herein implemented for predicting the model parameters from a set of markers located

at the sacral zone. The present approach is compared with other conventional tracking

methods and decreases the calculated root mean squared error in about a 56% in the

x-axis and 59% in the y-axis. The complete content of this section has been published

as a research article in the journal of Computer Methods in Biomechanics and

Biomedical Engineering (see [92]).
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4.1.1 Introduction

The gait pattern can be altered in a large set of pathologies, such as diabetes, brain

palsy, cerebral vascular accidents, and neuromuscular dystrophies or from any kind of

accident. The study of the human body movement or visual gait analysis is a modern

tool that allows to objectively assess any of these pathologies. Examination is based

on the follow-up of dynamic variables, whereby the disease severity can be quantified,

and the gait compared with normal patterns [104,105,193].

The musculoskeletal dynamics, obtained from a gait analysis, is evaluated from the

kinetic and kinematic perspectives. The kinematic analysis describes patient displace-

ments in terms of the system components and its fundamental relationships, using

variables such as the trajectory of the CoM, some specific angle joint variations or the

step length, among others [74]. The kinetic analysis quantifies the needed energy for

the human movement to be produced, measuring electro-physiological states during

displacement [47]. A correct extraction and quantification of these variables is an open

question since they are highly non-linear.

The CoM constitutes a fundamental descriptor for the clinical gait analysis because

through its movements it is possible to describe both central nervous system and mus-

culoskeletal disorders [76,122,265]. The more accurate CoM is usually estimated using

a force plate, where a double integral of the ground reaction force in the time define

the CoM displacement [86, 110]. This relationship is a simple dynamic equilibrium

equation:

dCoM =

∫ ∫
FGR −mg

m
dt2 + v0t+ d0 (4-1)

with FGR= ground reaction force, m= body mass, g= gravity, t= time, v0 and d0
the integration constants of the initial velocity and position. This method is the gold

standard for the CoM calculation. However, this method requires a patient steps

upon the force plate, a difficult task in many musculo-skeletal disorders. Moreover,

conventional gait laboratories have only two force plates, which results insufficient

when gait analysis demands data from the whole gait cycle. This method is only

used for validation of others techniques and its accuracy depends on the integration

constants so that its utility is still limited in real clinical scenarios [86, 110].

In the clinical routine, it is common to use the optic kinematic methods for estimation of

the CoM because of its versatility and control. However, accurate location of the CoM

is impossible because of the high inter-patient anatomical variability and its within-

the-body location [76]. Usually, the CoM is tracked the closest marker in the video

[85]. This CoM can also be estimated from the body segments [86], but its extraction
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is a complicated task that requires many markers and changes the natural motion

expression. These methods do not accurately estimate the CoM trajectory [86, 110],

since this is the result of a complex interaction of forces, neuromotor commands and

joint movements of the lower limbs, and therefore it shows a high non-linear dynamics

[203].

This article presents a precise and efficient strategy for estimating the temporal CoM

location using a non-linear gait biomechanical model whose parameters are recursively

adjusted by a Bayesian strategy, herein implemented as a particle filtering. The Main

contribution of this work is to use a very simple methodology to follow an actual non

linear dynamic. The whole strategy allows a natural and accurate tracking of the

non-linear gait patterns with a high degree of noise robustness.

4.1.2 Materials and Methods

The strategy for tracking the CoM requires that the set of video frames, within two

alternating heel strikes (gait cycle), are segmented. Tracking is carried out under a

Bayesian framework that defines the trajectory of the CoM as a sequence of hidden

states. At each step of the gait, the more probable parameters are calculated from a

set of observations and the previous step parameters.

The Bayesian approach for tracking aims to estimate the hidden states of a system from

a set of observations, or at least to extract useful information under the fundamental

hypothesis that the observation process do not completely destroy the link between the

true and the observed variables, or that the observed and true data are somehow close

together under a particular metric. A Bayesian strategy starts at defining the system

state as a random variable xt and its associated probability density function (pdf), i.e.,

the uncertainty level of the occurrence of the state xt. Bayesian filters estimate such

pdfs upon a state space following the sequence of observations. The belief Bel(xt) is

defined as a posterior probability density function of xt, conditioned to all the observed

available data z1, z2, . . . , zt at time t. This pdf addresses the question: what is the

probability that the system state is in xt if the history provided by the measurements of

the process are z1, z2, . . . , zt? Since the number of observations increases through the

time, the complexity of such posterior density grows exponentially. This estimation

becomes computationally tractable by assuming a Markovian hypothesis: the current

state of the system contains all the relevant information. Under this assumption,

Bel(xt) may be computed efficiently without information losses. In practice, it is a

required a system model p(xt|xt−1), that represents how the system states change in a

time step and a likelihood model p(zt|xt) , which describes the probability of making

the observation zt if the system state is in the xt state. Finally, the initial system state
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Bel(x0) = p(x0) is also needed. Once this information is available, the belief Bel(xt)

is calculated in two recursive steps:

• Prediction. The belief in the state xt is computed by updating the previous belief

Bel(xt−1) , according to the prediction given by the system model p(xt|xt−1),
through the Chapman-Kolmogorov equation:

B̂el(xt) =

∫
p(xt|xt−1)Bel(xt−1)dxt−1 (4-2)

• Update. The predicted belief Bel(xt) is adjusted after the system observations:

Bel(xt) =
B̂el(xt)p(zt|xt)∫
B̂el(x∗t )p(zt|x∗t )dx∗t

(4-3)

Bayesian filters provide a probabilistic framework for recursive and sequential estima-

tions of the system state. This representation is important for obtaining good estima-

tors in non-linear/non-Gaussian dynamics as it is the case of the CoM trajectory, herein

tracked through a particle filtering which approached the belief function by discrete

sampling.

4.1.2.1 Modeling the CoM movement

The human gait is a locomotion process which involves both lower limbs to help the

body to keep the balance while it gains support and propulsion [284]. This process

comprises a cyclic set of movements, where one foot acts as a fixed point which supports

the body swings, whereas the free foot moves forward until it reaches the floor and

becomes the new fixed point.

Figure 4-1: Sequence of events of a complete gait cycle extracted from the humanEva

database (Sigal and Black 2006).

Schematically, the upper part of the body is represented by a mass which moves for-

wards with respect to each fixed point, describing a harmonic oscillating trajectory,

similar to the inverted pendulum [40]. At the same time, the free foot swings with re-

spect to this mass, such as a simple pendulum. Given that these processes are coupled

together, the human gait is modeled by a double-articulated pendulum (see Figure
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4.1.2.1). This model properly represents the gait trajectory and it has been widely

used [83, 167, 174]. Based on the double articulated pendulum model, MacGeer [203]

formulated the theory of passive dynamic motion, which describes the movement with-

out a complex control mechanism, i.e., it is more important the body’s structure for

understanding the gait rather than its control or muscular activity. Afterward, based on

this theory, Garcia et. al. [109] formulated a simplified gait model. Accordingly, the feet

are relatively small with respect to the trunk and the heelstrike is subjected to a restric-

tion rule. This model has been used for tracking other body’s structures [116,153,297].

The model corresponds to two coupled non-linear differential equations:

θ̈(t)− sin θ(t) = 0

θ̈(t)− φ̈(t) + θ̇(t)2 sinφ(t)− cos θ(t) sinφ(t) = 0
(4-4)

where θ is the angle of the stance leg at particular time t with respect to the slope

and φ is the angle between the stance leg. The model also defines a transition rule

that simulates the swing foot when it hits the ground at the heelstrike, this moment

corresponds to φ(t)− 2θ(t) = 0.

4.1.2.2 Online Adaptation with a Bayesian Filter

The biomechanical model computes the trajectories for the CoM from temporal func-

tions (θt, φt), which are hidden, and the set of markers, which are the only direct

measurements. We shall focus on the markers located within the sacral zone, more

specifically the zt = (M1
t ,M

2
t ,M

3
t ,M

4
t ) located around the hip (two at the back and

two at the front), as illustrated in Figure 4.1.2.2. Provided that locations of these

markers are indirect measurements of the CoM movement, their location in time t cor-

responds to the two hidden parameters xt = (θt, φt) which better match the observed

marker locations z1, z2, . . . , zt at time t. The most probable state xt can be recursively

found using a Bayesian filter. For doing so, we need to set an initial estimation of the

CoM location, a prior of CoM evolution during the gait and the likelihood function

which associates states and observations (marker locations).

Figure 4-2: Marker locations in the sacral region.

An estimation of the initial CoM location is herein calculated from a Gaussian distri-

bution whose mean and covariance are computed from the set of four positions located
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closest to the actual CoM. These positions are marked by an expert in the first frame

of the video gait recording.

The dynamic model of the CoM movements indicates how the angular functions (θt, φt)

change during a gait cycle. Let us suppose that the gait satisfies Garcia’s model

(equation 4-4) including the heel strike rule. This model can be modified for including

the gait variability so that gait dynamic reads as

P (xt|xt−1) = G(xt−1,Σ
2
1) (4-5)

where G corresponds to a multivariate Gaussian distribution, whose mean was experi-

mentally set [109] and σ describes an inherent gait variability. The covariance matrix

Σ2
1 was calculated using a maximum likelihood estimation [160] from a data set given

by the difference between the ideal CoM signal (drawn from [86]) and the signal ob-

tained from the prior model [109]. On the other hand, the likelihood function should

yield a maximal probability when the states closely follow the observations, i.e:

P (zt|xt) = G

(
1

4
[z̄x,t, z̄y,t]− Le[sin(xθt,t), cos(xθt,t)],Σ

2
2

)
(4-6)

where z̄x,t = 1
4

∑4
i=1M

i
x,t, z̄y,t = 1

4

∑4
i=1M

i
y,t, M

i
x,t and M i

y,t are the marker coordinates

in the x and y directions. The CoM coordinates defined by (Le[sin(xθt,t), cos(xθt,t)])

are directly computed from the geometric representation of Garcia’s model, where Le

is the leg length and xθt,t is the angle of the stance leg with respect to the slope, at

a particular time t. Adittionally, Σ2
2 is a predefined covariance matrix calculated as a

maximum likelihood estimation from a data set, given by the difference between the

ideal CoM signal and observations. The mean of the Gaussian distribution stands for

a measure of how well the hidden angles meet the observed marked positions. The use

of this Gaussian is fully justified since the noise associated to the captured positions is

independent of the anatomical details.

4.1.2.3 Particle Filter Implementation

A different approach to represent the Belief is a discrete approximation of the pdf using

Monte Carlo techniques. These methods approximate the probability density function

p(x) using a large number of samples,

p(x) ≈
n∑
i=1

w(i)δ(x− x(i)) (4-7)
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where x(1), x(2), . . . , x(n) are a set of n discrete independent and identically distributed

variables (i.i.d), w(i) are the weights which stand for the probability of occurrence of the

sample xi, and δ(x) is the Dirac function. Clearly, the larger the number of samples,

the closer the description is to the pdf . This approximation allows useful quantities,

such as the discrete expected value of any function f(x):

∫
f(x)p(x)dx = lim

n→∞

n∑
i=1

w(i)f
(
x(i)
)

(4-8)

and the samples are generated using methods such as the rejection or importance

sampling [16], better known as Particle Filters.

A particle filter is the discrete version of the Bayesian filter obtained when the belief

is approximated using a Monte Carlo (MC) method. The belief is estimated with

the point mass distribution defined in equation 4-7, when replacing the Chapman-

Kolmogorov equation by the approximation defined in equation 4-8, and discretizing the

update equation with the belief previously calculated. Since each particle corresponds

to an independent state of the system, with a number of particles which is function

of the desired precision, the method allows to simulate the evolution of the complete

system with no restrictions regarding linearity or noise. Additionally, the belief can

be modified for each of the simulated system states as to adapt to real observations.

Finally, classic estimators such as the expected value of the state or the maximum

a posteriori can be calculated from the simulation while the system is evolving for

predicting future states.

The Particle filter is constructed as follows. First, the Belief is approximated by an

empirical point-mass function:

Bel(xt) ≈
n∑
i=1

w
(i)
t δ(xt − x

(i)
t ) (4-9)

where the weights w
(i)
t are chosen using the principle of sequential importance sampling

(SIS) [16], which states that samples can not be directly sampled but rather found

through a density importance function. Hence a weighted aproximation is given by:

w
(i)
t ∝

P (x0 . . . xt|z1 . . . zt)
q(x0 . . . xt|z1 . . . zt)

(4-10)

where P (x0 . . . xt|z1 . . . zt) is exactly the very same belief function, as defined in section

2 and q(x0 . . . xt|z1 . . . zt) is an importance density function, chosen to meet:
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q(x0 . . . xt|z1 . . . zt) = q(xt|xt−1)q(x0 . . . xt−1|z1 . . . zt−1) (4-11)

Now, particles evolve by dependences which are always of first order, so we can suppose

that
{
x
(i)
t−1

}
∼ q(xt|xt−1). We can then assume that q(xt|xt−1) represents the system

CoM dynamics as P (xt|xt−1), so:

q(xt|xt−1) = G(x
(i)
t−1,Σ

2
1) (4-12)

Particles need then to be updated after the Bayes rule defined in equation (3), which

can then be approximated as follows:

P (x0 . . . xt|z1 . . . zt) ∝ P (zt|xt)P (xt|xt−1)P (x0 . . . xt−1|z1 . . . zt−1) (4-13)

By substituting (4-11) and (4-13) into (4-10), the weight updating equation reads as:

w
(i)
t ∝

P (zt|xt)P (xt|xt−1)P (x0 . . . xt−1|z1 . . . zt−1)
q(xt|xt−1)q(x0 . . . xt−1|z1 . . . zt−1)

(4-14)

w
(i)
t = w

(i)
t−1

P (zt|xt)P (xt|xt−1)
q(xt|xt−1)

(4-15)

note that the left term is just the weight in the precedent time and the rest of the

expression corresponds to the system dynamics, previously defined. Therefore, this

entire expression can be re-written as:

w
(i)
t = w

(i)
t−1G

(
1

4

[
z̄
(i)
x,t, z̄

(i)
y,t

]
− Le[sin(x

(i)
θt,t
, cos(x

(i)
θt,t

)],Σ2
2

)
(4-16)

After some iterations, all but one particle will have negligible weight, a recurrent draw-

back broadly documented in the literature and known as the SIS degeneracy phe-

nomenon [16]. To cope with, we introduce a step of resampling that generates a new

set of particles at each iteraction. Finally, The algorithm is explicitely described here-

after:
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Algorithm 2 Particle Filter implementation[
{xit, wit}

N
i=1

]
∼ Bel({xit, wit}

N
i=1 , zk)

FOR i = 1 : N

set
{
x
(i)
t−1

}
∼ G(x

(i)
t−1,Σ

2
1)

update weights according to w
(i)
t = w

(i)
t−1G

(
1
4

[
z̄
(i)
x,t, z̄

(i)
y,t

]
− Le[sin(x

(i)
θt,t
, cos(x

(i)
θt,t

)],Σ2
2

)
END FOR

normalize weights
n∑
i=1

w
(i)
t = 1

resample {xit, wit}
N
i=1

4.1.2.4 Gait data

Validation was carried out on a set of gait cycles segmented from the humanEva

dataset [251]. The humanEva data consists of a set of videos, captured from four

subjects in different activities, using a calibrated marker-based-motion-capture-system

and multiple high-speed video capture systems. Every video is provided with an as-

sociated motion data in C3D format that describe the accurate 3D marker position.

For evaluation purposes, we assume this capture has an associated Gaussian noise, an

statement fully justified since the marker position is independent of the anatomical

location and the capture process, as described before in subsection 2.2. The proposed

strategy was assessed on twenty gait cycles from three different subjects ,i.e., 8400

frames which corresponded to a total of sixty cycles. Each cycle corresponds to the

set of frames within two alternating heelstrikes. The initial and final points of each

cycle were selected by an expert in the domain, who also verified that the extracted se-

quences corresponded to normal gait patterns. The locations of four hip markers were

extracted for each frame, as well as the CoM location. For doing so, the evaluated

subjects have a set of attached makers, following the VCM protocol (Vicon Clinical

Manager), from which 4 were extracted and defined as:

• LPSI : Placed directly over the left posterior superior iliac spine

• RPSI : Placed directly over the right posterior superior iliac spine

• LASI : Placed directly over the left anterior superior iliac spine

• RASI : Placed directly over the right anterior superior iliac spine

Finally, a marker placed in the sacral region was set and defined as the CoM.
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4.1.3 Evaluation and Results

Evaluation was carried out by comparing the accuracy of the presented strategy with

two standard tracking approaches: the location of the closest marker to the CoM and an

exponential weighted moving average (EWMA) [65,146], a typical method for tracking

time series. Control data were obtained from normal patterns, captured from force

plates and reported in the literature [86] which thereby fully describe coordinates x and

y of a normal cycle. The particle filtering algorithm was written in java (JDK 1.6.0 07)

and run under an AMD turion 64 processor of 1.59 GHz and 3 GB in RAM. The

Garcia’s model was solved using a fourth order Runge-Kutta method, also implemented

in Java.

Figure 4-3: The gait trajectory has been divided into its y (left) and x (right) compo-

nents for better analysis. The y-pattern is characterised by a non-linear

periodic path (thicked line) which is closely tracked by the Bayesian strat-

egy (squared dots) and hardly matched by the other two methods (dashed

lines). The x-plot complements the whole picture, the marker CoM and

EWMA methods are shifted away from the control path, which is closely

followed by the Bayesian strategy. The Bayesian method highly outper-

foms the two other methods, regarding no linear adaptation.

Figure 4.1.3 shows the gait trajectory decomposed into the y-coordinate at the left,

and the x-coordinate at the right, during a complete gait cycle (control). The y-
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axis displays in both cases the CoM change, in percentage, weighted by the body

height, while the x-axis is weighted by the entire cycle duration and also expressed in

percentage. The two panels superimposed upon the same plot, the control gait path

and the predicted trajectory of three different strategies: the closest marker to the

CoM, a EWMA computed using the actual CoM observations along the recorded gait

cycle and the approach herein presented (Bayesian tracking). The vertical movement or

the y-axis spans the control pattern during 300ms, along which the periodic movement

is smoothly increasing within the first 40% of the entire cycle. At this point, the height

percentage decreases in a non-linear manner, because of the heelstreak, a task quite

difficult to follow by any of the methods used. Importantly, the Bayesian tracking

matches this non linearity much better than the other two, i.e., the Bayesian presents

a little oscillation in this phase but rapidly decreases and closely follows the control

pattern. On the contrary, the other two methods are highly oscillating after this phase

and remain distant from the actual pattern until the cycle ends up. Regarding the

x-axis displacements, there appear two different trajectories, a first one formed by the

control and the Bayesian method and a second one by the other two methods, which

follow nearly the same path but are shifted away from the control trajectory. These

results demonstrate that the proposed method is more stable than the EWMA after the

heel strike and follows much better a control pattern which is quite noisy. Interestingly,

the particle filtering approximates better the non-linear plot of the control trajectory,

a result which holds our original hypothesis about the necessity of using more robust

tracking methods.

Tracking Method x-axis y-axis

Marker CoM 0.414 ±0.05 0.4 ±0.081

EWMA 0.38 ± 0.05 0.41 ± 0.079

Bayesian tracking 0.232 ± 0.021 0.236 ± 0.028

Table 4-1: Root Mean Squared Error and its tracking deviation for the three evaluated

methods. These averages have been calculated from the differences between

the control and any of the predicted data, expressed as percentage height.

Table 4-1 presents the mean and the standard deviation of the Root Mean Squared

Error (RMSE) between the tracked data and the control series for the three methods

during twenty gait cycles, which correspond to about 30 s of gait, distributed among

four different subjects. The higher tracking error is observed for the COM marker,

a result that may be attributed to the fact that this is not actually placed close to

the CoM as well as to the high noise levels in the acquisition process. Indeed, the
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EWMA decreases these error rates at smoothing these noise levels, but the error is still

unacceptable for many applications, such as the prostheses fabrication, in which the

prostheses mean life is absolutely dependent on the accuracy design [155, 228]. The

particle filtering presents the lower errors, approximating better the control data since

this model is not only capable to adapt to the marker position variability but also

to the non linearities in the trajectory. These results strongly suggest this method is

steadier and more accurate for the tracking task.

Since the whole problem consists in following temporal series which are highly non

linear and whose dynamics is therefore very difficult to determine, it is important to

establish a metric on which it would be possible to measure the level of agreement

between two trajectories. Herein we have measured this concordance level using the

correlation coefficient of the temporal differences between two series. The correlation

coefficient measures the degree to which two things vary together or to which two

things draw apart together. In this case, the concordance level was evaluated as the

correlation coefficient from the temporal differences between series.

Tracking Method x-axis y-axis

Marker CoM 0.54 ±0.05 0.7849 ±0.081

EWMA 0.56± 0.05 0.7584 ± 0.079

Bayesian tracking 0.9 ± 0.021 0.91± 0.028

Table 4-2: Correlation factor of the differences between the control and the three as-

sessed methods.

Table 4.1.3 shows the correlation factor of the temporal differences between the kine-

matic data of the three methods and the control series during twenty gait cycles, in the

x and y axes. Again, while the Marker CoM and the EWMA methods hardly follow

the control data, the particle filtering tracking outperforms these two methods and

definitely correlates with the control data (Correlation factor of about 0.9 in the two

cases). A statement which is easily inferred from the correlation coefficients presented

in table 2. Furthermore, figures in this table show a high correlation in the x and y

axes, but importantly a better performance of the particle filtering method in the two

dimensions, for instance, from 0.7 to 0.9 in the y-axis and from 0.5 to 0.9 in the x-axis.

The results prove a natural tracking of the control signal obtained by the particle fil-

tering method, i.e., the predicted data properly scale and shrink. In contrast, the CoM

Marker or EWMA predicted data are inadequate for tracking the different phases of

the gait and hence inappropriate to detect small changes, an issue which results crucial

for identifying certain pathologies [262].

In despite of the so far better performance of the particle filtering method, provided
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that changes are in any case very small, it is very difficult to follow differences through

the time and the correlation coefficient is a global measurement. In particular, it is

really difficult to figure out the real gain of any method at any time, since results

are always contaminated by the particular noise in measurements at any of the two

dimensions and differences, as said before, are really small. In consequence, the quality

of the prediction was weighted by the noise, using a logarithmic scale and measuring

the difference between the expected (control data) and the predicted values. This

SNR-like or quality performance measure reads as

q((xc, xm), (yc, ym))dB = 10 log

[
1

(xc − xm)2 + (yc − ym)2

]
(4-17)

where (xc, yc) are the ground truth coordinates at the time t and the (xm, ym) are

the signal coordinates at the same time. The great advantage with this measure is

that it allows a temporal gain follow-up of the tracking. Overall, the most important

component is the vertical (y-axis) since most pathologies alter mainly this vertical

pattern [110,262]. Therefore, this quality measurement was modified by weighting the

horizontal and vertical components with a coefficient α, whereby we could tune the

importance of the vertical direction. Then, this quality measure can be written as:

q((xc, xm), (yc, ym))dB = 10 log

[
1

((1− α)(xc − xm)2 + (α)(yc − ym)2)

]
(4-18)

This evaluation was performed using the cycle for which the averaged difference between

the control and each of the temporal series was the smaller, when comparing with the

entire sequence of differences among gait cycles. Quality was then measured using α

values of 0.9, 0.8 and 0.7 and results were plotted in figure 4.1.3. The four graphs

show in the y-axis the gain in decibels for each of the methods and in the x-axis the

cycle with smaller averaged difference. For comparing so, each cycle was expressed

as percentage since overall each cycle spans a different time interval. The four panels

are distributed as follows: Upper left panel is the first quality measure, that is to say,

there is no α, upper right panel corresponds to the SNR-like measure with α = 0.7

and left and right bottom panels correspond to this measure with α set to 0.8 and 0.9,

respectively.
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Figure 4-4: The SNR-like measurements assess the fidelity to the control data along the

best cycle for each of the methods. The graph shows in four panels different

evaluations: upper-right panel displays the three methods when no specific

weight is given to the vertical component, i.e. there is no alpha while the

other three panels show different alpha values, set to 0.7, 0.8 and 0.9 for

upper-right, bottom-left and bottom-right panels, respectively. Note that

the Bayesian tracking outperforms the other two methods in about 1-3

dB for the four different comparisons, indicating a higher quality of the

prediction of the control data.
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In the image processing community, the PSNR measure is a term for the ratio between

the maximum possible power of signal and the power of corrupting noise that affects

the fidelity to the original data. Typical values for the PSNR in lossy image and

video compression are between 30 and 50 dB, where higher is better. In the case

of our evaluation a decibel entails a large difference and this accounts as a quality

measurement of the fidelity to the control data. Overall, plots in the four panels show

the same pattern, that is to say, the particle filtering always outperforms the other

two methods. The pattern of the four panels results to be very alike at the beginning,

but rapidly after the gait has reached a 30 % of the entire cycle, the particle filtering

strategy shows a larger gain, between one and three decibels. The larger difference

appears when the cycle has spanned about a 60 %, as expected since at this time the

gait pattern is much more non linear because of the heelstrike and the particle filtering

is better suited to following this kind of discontinuities. Likewise, the introduction

of a particular preference for the vertical direction in the SNR-like measurement has

no influence on the results. Basically, the difference between plots with α set for

instance to 0.7 (upper right panel) and the SNR-like measurement with no α (upper

left panel) is about 0.5 decibels, and most punctual differences are slightly amplified,

indicating that the x-axis or temporal evaluation contribute very little to the whole

variability of the SNR-like measurement. This result agrees, with what is known in the

literature, in the sense that most important evaluation must be performed upon the

vertical direction [110, 262]. Finally, the analysis performed setting α to 0.8 and 0.9,

shows the same trend, i.e., the vertical direction weights more and differences are more

important, demonstrating that the particle filtering strategy is able to closely follow

these non linear patterns, and to more accurately predict this vertical movement.

The SNR-like assessment was also pormed on the twenty cycles of the three patients

and the mean with its standard deviation were calculated from this set of data. erf

Tracking Method without α α = 0.9 α = 0.8 α = 0.7

Marker CoM 1.35 ± 0.35 2.34 ± 0.39 2.04 ± 0.39 1.86± 0.36

EWMA 1.33 ± 0.46 2.32 ± 0.46 2.03 ± 0.46 1.85± 0.47

Tracking Bayes 2.17 ± 0.5 3.17 ± 0.5 2.86 ± 0.5 2.7± 0.5

Table 4-3: The mean and standard deviation of the SNR-like mesurement for a total

of sixty cycles available in the present investigation

Table 4.1.3 shows the mean and standard deviation of sixty cycles from three different

patients. In general then, among the three methods, the higher quality gains are

observed for the particle filtering, as was illustrated before in Figure 4.1.3 for the best

cycle. These differences are larger when evaluation has no α value, as expected since



4.1 the Body Center-of-Mass (CoM) During Walking 111

the particle filtering outperformed the other two methods in the two directions. In this

particular case, the trajectory generated by our model had an approximated quality of

2.17, compared to the averaged 1.34, obtained by the conventional methods.

When the vertical preference is introduced into the SNR-like measurement, differences

decrease but the Bayesian tracking conserves the better performance at any of the set

α values. The results with this modification show a considerable gain (mean of 3.17

for α = 0.9 ), whereby the three methods track much better the vertical movement but

the particle filtering presents still the best performance so that its utility in clinical

application could be even better. Figures for the EWMA and Marker CoM methods

look very similar, in despite the Marker CoM estimation is a very noisy.

The accuracy of the particle filtering method prediction is of course dependent on the

goodness of the approximation to the pdf . This is essentially an issue which is function

of the number of particles used to get this approximation. Accuracy was herein defined

as the averaged RMSE for each of different number of particles. The Bayesian fidelity

to the control data was thus assessed using a different number of particles so that we

could establish the influence of this parameter. Since the whole performance picture

includes also the computational time, the running time is also described in table 4.

Particle x-axis y-axis Duration ms

10 0.451 ± 0.022 0.423 ± 0.039 170

100 0.281 ± 0.023 0.29 ± 0.028 810

1000 0.253 ± 0.025 0.252 ± 0.031 7100

Table 4-4: Accuracy index or the averaged RMSE with its standard deviation for differ-

ent numbers of particles from the data of vertical and horizontal directions.

The running time is included for illustrating the computational cost of any

of them.

Table 4.1.3 shows a high gain obtained with 100 particles when comparing with 10, but

a smaller one when 1000 particles are used instead. On the contrary, the variance is

comparable in the three cases, indicating a systematic error decreasing with the number

of particles, as expected. This statement holds true for the two dimensions (x and y)

but this error reduction results very small when using 1000 particles. Computation

times evidence an important increasing at using 1000 particles, when comparing with

100. It is very likely that a time of 7s is incompatible with real time applications while

the gain in error reduction is actually small, a trend which will be even bigger for larger

numbers of particles since this exponential difference is a well known characteristic of

this type of algorithm [16,100].

Finally, it is worthy to point out an efficiency issue within this evaluation. Efficiency
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was herein conveniently defined as the precision per unit cost. For the present eval-

uation, the precision of a final estimate was expressed as the reciprocal of the data

variance (σ2) and the cost as the running time t. Hence, an index of efficiency E was

computed as 1
σ2t

Particle x-axis y-axis

10 0.02673 0.15082

100 0.05367 0.044091

1000 0.0056 0.00454

Table 4-5: Efficiency index for both dimensions and running time for a number different

of particles.

Table 4.1.3 shows a larger efficiency when using 100 particles, a statement that was

difficult to figure out from data in table 4 and which illustrates the needed balance

between accuracy and the computational cost, an important demand in real time ap-

plications.

4.1.4 Discussion

This article has introduced a novel strategy for the CoM to be closely followed during

actual body gait cycles, which is based upon some probabilistic considerations, namely,

there exists an extensive domain knowledge about the gait physiology and the whole

process can be modeled as a Markovian process so that the future system states are

stochastic functions of the past system states. The particle filtering framework used in

the present investigation nicely dealt with this highly non linear gait dynamics, based

on the calculation of two complementary terms: a prior adapted from a well known

mathematical gait model, whose aim is to predict the gait cycle [109], and which is

constantly tuned by a function that expresses the link between observations and system

states (the likelihood). This approach is simple, easy to implement when the pdf is

approximated by a particle filter and efficient in terms of computational running time

and accuracy on the obtained measurements.

As extensively discussed before, the CoM has been a quantity difficult to establish due

to its highly non linear dynamics. Previous works [86, 110] have presented significant

differences between optical methods and the CoM estimated from the double integra-

tion of the reaction force, measured in ordinary force plates. Many authors consider

that the CoM trajectory, determined from the reaction force, is the gold standard in the

CoM examination [86,110,283,284]. Biomechanical literature is highly rich in methods

whose aim is to estimate the CoM position. Nevertheless, their clinical use remain lim-
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ited because most commercial laboratories are provided with one or two force plates,

a set up that hardly adapts to the step length variability since, at the best scenario,

one entire gait cycle is assessed. Besides, repeatability of the gait analysis is poorer

with these force plates and so the analysis becomes inconsistent. Overall, there have

existed two main approaches: the first has been a very practical solution at associating

the CoM temporal pattern to a marker located within the sacral zone, defined by an

expert. Yet its accuracy is enough in many clinical studies, as it was shown in the

present investigation, this estimation hardly follows the non linear CoM patterns, very

likely because the marker dynamics is by itself non linear and not necessarily of the

same type. This picture would be worst in those disorders in which the gait is so altered

that it is really difficult to define even a cycle pattern. In practice, this approximation

has consisted in setting a point where the CoM is supposed to be, namely, a 60% of the

body height, a point from which there exists considerable clinical evidence for being

the candidate as the more probable CoM location [110, 291]. However, this method is

particularly inaccurate in pathological situations in which the relative movements of

the body segments are very distorted. On the other hand, a second strategy borrowed

from optical methods consists in combining the CoM optical estimation for each of the

body segments into a resultant CoM [86]. The main drawback with this method is

that the CoM location for each body segment is by itself a high non linear problem

and therefore very inaccurate. Moreover, the error will be propagated systematically

from each of these segment estimations because of the anatomical segment variability,

as well as because the variable marker placement [110]. Setting a convenient marker

location may be particularly difficult in patients with high anatomical variability and

unfeasible in patients using ortheses. In addition, movements of the body segments

lead to relative displacements of the original marker locations, an intrinsic error which

is almost impossible to avoid. Even worst, many pathologies are characterized by ac-

centuated or attenuated movements and hence most marker placement protocols fail

under these extreme conditions. This performance is improved by increasing the num-

ber of markers and so the CoM estimation, nonetheless a large number of markers

alters the natural gait gesture. In despite that these optical methods are the more

used in clinics because of their easy implementation and control, they are still very

inaccurate in calculating with sufficient precision the CoM location [110] and therefore

inadequate for many diagnosis and follow-up. The strategy herein proposed, although

is also based on the marker measurements, it depends initially on the location of four

markers, but above all upon the underlying gait dynamics which drives the movement.

Moreover, the method introduces efficient mechanisms for tracking the gait trajectory

involving non linear descriptions of the human movements. Among other advantages,

this strategy requires a small number of markers (four for the present investigation)
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and can even be used in patients with ortheses since the sacral region is not invaded

with any device, in these cases.

The trajectory described by the CoM during a gait cycle is a global indicator that

correlates with the gait efficiency but that also can be used as a dynamical variable

which complements the standard gait analysis [76]. The CoM temporal path is dis-

torted in different movement abnormalities and associated with a degree of illness [76].

The CoM is considered as an efficient indicator for assessment of pathologies such as

hemiplegia, paraplegia or distonia. The optimal walking, in terms of the energy, can

be defined as the movement of the CoM from a place to another with minimum energy

expenditure. Therefore, a pathological gait can be analyzed in terms of energy using

the CoM change as the transfer of potential to kinetic energy (recovery) ,i.e., normal

gait patterns loss a 40% of this energy in this transfer, a higher lost is pathological [76].

Indeed a proper gait analysis should be based on an accurate estimation of the CoM

positions and for doing so, the analytical description of the CoM movement pattern is

required. The inverted pendulum system is an appropriate mechanism to represent-

ing the CoM movement in energy terms, describing the exchange between kinetic and

potential energies within the different gait cycles [40, 52, 76]. Garcia’s model has suc-

ceeded about representing the whole system in these terms [109] and is able to describe

normal patterns. The strategy presented here takes this model as a prior, adapts it

to the observations and demonstrates its effectivity for tracking such patterns with no

major concern on the anatomical variabilities, i.e. this hypothesis allows to assume

a fixed leg length. Importantly, the strategy herein described could be easily used to

follow pathological patterns by simply replacing this prior (see [167] for models that

describe pathological patterns), or changing the weight given to the likelihood function

so that even with this prior, the mapping of the observations to the states could follow

the actual pattern. We claim that this is possible since a mixture of Gaussians has been

already used in other problems [222] for tracking non linear dynamics with comparable

accuracy rates. The prior here is needed because it gives physical meaning and more

importantly, clinical meaning, to the possible altered patterns and so quantification

makes sense.

An important part of the routine clinical examination is the CoM estimation per cy-

cle, a basic descriptor of many neuromuscular and musculoskeletal disorders. So far

the common point, among the different approximations, has been a heuristic detection

of the CoM location. Yet these approaches have coped with many clinical needs, no

endeavours have been dedicated, up to now to developing tracking methods [86, 262].

The point is that any strategy, devised to uniquely achieve detection, is inefficient

because it is based on noisy position mesurements and highly dependent on their ini-

tal marker location [76, 85]. In the present work, we propose an efficient strategy for
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tracking CoM locations, using a non-linear gait biomechanical model whose parame-

ters are recursively adjusted by a Bayesian filter, implemented as a particle filtering.

Implementation of any Probabilistic function distribution (pdf) can be achieved us-

ing several techniques, namely, extended Kalman filtering, multihypothesis tracking,

grid-based or topology-based representations and particle filtering [16, 99]. The Ex-

tended Kalman Filter approaches the system dynamic by a first order Taylor series

expansion. This filter is useful if the state uncertainty is not too high, i.e., measures

come from accurate sensors, which is obviously not the case for CoM tracking. The

multihypothesis tracking represents the belief as a mixture of Gaussians and tracks

each with a Kalman filter. This technique is computationally expensive and requires

complicated heuristics to determine when to add or delete Gaussians. Additionally, the

heelstrike rule, herein used for the dynamic model, introduces angular discontinuities

that would require many Gaussians whose number would be impossible to establish

beforehand. Grid-based approaches stand for a piecewise constant representations of

the belief. This approach approximates discontinuities by refining the resolution grid

cells, and therefore expensive computational methods are required when discontinuities

are present. This grid complexity could be approached by topological representations,

corresponding to a graph where each node is related to a state and each edge to the

enviroments conectivity, but the computational cost is even higher. In contrast, each

particle of a particle filtering can easily follow any discontinuity, with a low number of

particles and minimum computational cost. Moreover, the particle filter does not re-

quire accurate measurements because the particle weights are modified proportionally

to their likelihood.

The whole strategy allows a natural tracking of the non-linear gait patterns with a high

degree of noise robustness, under a non-linear minimal square criterion. Accuracy and

efficiency were herein assessed under several different metrics. Firstly, under RMSE

metric the particle filtering is a 56 % smaller in the x-axis and 59 % in the y-axis,

when comparing with other two conventional tracking strategies. Also, correlation was

assessed using the correlation coefficient and again the particle filtering outperformed

the other two from 0.9 to 0.7 in the x-axis and from 0.9 to 0.6 in the y-axis. Finally, the

SNR-like measurement permitted to measure the quality of the tracked signal among

the different strategies under the Gaussian noise conditions, introduced from different

independent sources. On average, measurements showed that the trajectory generated

by our model was 0.86 db higher, when comparing with conventional methods, indicat-

ing a large gain in accuracy. Importantly, the largest gain difference was observed in

the heelstreak phase (1.5 db), demonstrating the capacity of the proposed method to

follow the non linear gait patterns. Finally, the method was computationally imple-

mented through a particle filter because of the great advantages of this implementation
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when comparing with others [100], among others: accuracy, robustness, efficiency and

easy implementation. The particle filter is herein used to estimate the gait Bayesian

model. The Sequential Importance Resampling implementation of the particle filter

approximates the pdf by a weighted set of particles whose importance is constantly

evolving with the dynamics we introduced and then updated after system observations

are available. This implementation, as shown by our results, is efficient in terms of

the computational time and enough accurate as to follow the gait non linear patterns

so that on-line data analysis is possible along with the routine capture of the other

variables which compose an entire gait analysis.

4.1.5 Conclusions and Perspectives

This work presented a general framework for tracking complex human movements. The

whole strategy consists in simulating the dynamics of the system, using some priori

information of the particular problem. Simulation requires a discrete system model

and an observation process. The model approximates the truth hidden system states,

while the observation process adapts to non-linear dynamics using the Bayes rule,

implemented as a particle filter. The method was successfully assessed. The presented

procedure could be extended to other type of medical imaging problems, under the

restriction that there exists a proper knowledge of the problem so that analytical or

parametric expressions may be found.

4.2 Simulation of normal and pathological gaits using a

fusion knowledge strategy

Gait distortion is the first clinical manifestation of many pathological disorders. Tra-

ditionally, the gait laboratory has been the only available tool for supporting both

diagnosis and prognosis, but under the limitation that any clinical interpretation de-

pends completely on the physician expertise. This work presents a novel human gait

model which fusions two important gait information sources: an estimated Center of

Gravity (CoG) trajectory and learned heel paths, by that means allowing to reproduce

kinematic normal and pathological patterns. The CoG trajectory is approximated with

a physical compass pendulum representation that has been extended by introducing

energy accumulator elements between the pendulum ends, thereby emulating the role

of the leg joints and obtaining a complete global gait description. Likewise, learned

heel paths captured from actual data are learned to improve the performance of the

physical model, while the most relevant joint trajectories are estimated using a classical

inverse kinematic rule. The model is compared with standard gait patterns, obtaining
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a correlation coefficient of 0.96. Additionally,themodel simulates neuromuscular dis-

eases like Parkinson (phase 2, 3 and 4) and clinical signs like the Crouch gait, case in

which the averaged correlation coefficient is 0.92. The complete content of this section

has been published as a research article in the journal of NeuroEngineering and

Rehabilitation (see [91]).

4.2.1 Background

Quantification of complex movements such as human locomotion is a fundamental

step towards an objective characterization of particular patterns associated to a cer-

tain degree of a disease [209, 223, 225]. The gait is the result of complex interactions

between several sub-systems: neuromuscular, musculo-tendinous and osteo-articular,

which work together to generate the body dynamics that underlies the bipedal dis-

placement [295,296]. In despite of the intensive research in biomechanics [103], robotics

[59, 89], medicine [102] and computer animation [72,73], the biological complexity has

hindered a proper understanding of the locomotor system. This problem has been par-

tially overcome in the clinical routine by a gait estimation inferred from the gait labo-

ratory [102,220,293]. Usually, a physician or rehabilitation expert determines whether

there exist pathological gait patterns using exclusively her/his expertise [106,168,296].

Overall, diagnosis is supported using statistical tests carried out on the acquired gait

laboratory data [14,22,60,128,200], with an inherent high degree of variability. In con-

sequence, development of gait models that provide a quantitative gait description has

become important in the process of supporting physician decisions [102,106,252,296]

The main contribution of the present work is a human gait model that accurately

describes a set of kinematic gait patterns, normal or pathological. The model fuses two

important gait information sources: an estimated Center of Gravity (CoG) trajectory

and heel paths learned from actual gaits. The global motion is governed by the CoG

trajectory of a compass physical pendulum representation, coupled to a spring that

emulates the muscle function. This trajectory is regulated by learned heel paths,

while the remaining joint patterns are estimated using a classical inverse kinematic

method. The models benefit is demonstrated by accurately simulating two different

sorts of neuromuscular gaits: Parkinson and Crouch patterns. Finally, a human-like leg

structure is animated with the obtained trajectories, allowing the clinician to interact

with the model and facilitating the interpretation of an observational analysis.

Many models have been previously proposed for simulating the human gait, with differ-

ent complexity levels, depending on the application area. A first group includes bipedal

descriptions that exclusively use structural information so that they are able only to

determine global relationships between muscles and joint angles. These models exploit
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the conceptual simplicity of mechanical systems such as the inverted pendulum or mass-

springs [101, 111, 176, 203, 282]. Basically, these approximations provide a locomotion

description from an energy standpoint, simulating the change from the kinematic to

potential energy during the gait cycle. These models are devised to coarsely classify

normal and pathological patterns [200, 292]. However, a main drawback of these ap-

proximations is that about a 20 % of the gait cycle, corresponding to the double stance

phase, is completely eliminated. These physical models are useful in areas like robotics

since they eliminate the dependence on a robust control mechanism. Nevertheless,

they are very limited for medical applications because of their strong simplifications,

missing relevant gait aspects such as the non-linearities introduced by the heel strike.

A second group of human gait models are capable of simulating muscles and tendons

during the gait. These models have obtained better gait representations, introducing

muscular information that is required from a clinical standpoint in terms of inter-

pretability, i.e., specific activity of certain muscle groups in musculoskeletal disorders

like hemiplegic movements. These models have introduced new elements to simulate the

control and energy storage of the locomotion process. Specifically, some gait approxi-

mations include the Hill model as the base of the muscle representation [168,295,296],

but with no relation between the muscle and the locomotor structure and hence with-

out any clinical meaning [142]. In these approaches, each model accelerates a specific

body segment, obtaining a simplistic simulation of pathological movements. Likewise,

these models are not accurate enough to describe the complex interaction among dif-

ferent groups of muscles. In addition, they require a certain number of parameters

that need to be tuned, with the consequent dependence on an expert knowledge. Scott

Delp [71,72] introduced a computational strategy that combines the Hill muscle model

and structural information, accomplishing realistic normal and pathological simula-

tions, but again, with a high degree of subjectivity at tuning the model parameters.

Currently, several approaches have used some control-based strategies, requiring rela-

tively few data to simulate simple human structures and predicting new motions [264].

These approaches include a large number of degrees-of-freedom while joint force profiles

remain subjected to a large number of constraints [14,73,102,137,292]. These methods

approximate human control systems and simulate some neurological pathologies [168],

but these strategies require specific information about each particular motion to be

simulated and therefore they demand a high degree of interaction and prior knowl-

edge [292]. Moreover, these methods necessitate a large group of experimental data to

generate natural motions so that their clinical usefulness still remains very limited.
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4.2.2 Materials and Methods

The present work simulates normal and pathological kinematic patterns by fusioning

two important sources of information: a prior model of the CoGx,y(t) and real data

trajectories. The proposed model is summarized in Figure 4.2.2. Firstly, the prior

knowledge of the CoGx,y(t) is introduced using a physical gait model, a compass pen-

dulum with springs coupled to both ends, representing the role of the knee and smooth

tissues (see Figure 4.2.2(b) and a further description in section 4.2.2.1). The inclusion

of these non linear elements allows more accurate estimations of the CoGx,y(t). A sec-

ond information source comes from actual heel trajectories that are used to regularize

the estimated CoGx,y(t) and serve to simulate diverse pathological and normal motion

(see Figure 4.2.2(a) and section 4.2.2.4). Additionally, this fusion facilitates an accu-

rate estimation of the remaining joint trajectories, using a classical inverse kinematic

framework. Finally the set of obtained trajectories animates a human-like leg structure

that provides the clinician with a interpretable tool (see Figure 4.2.2(c-d)).

Figure 4-5: Pipeline of the proposed model. First the GoGx,y(t) from the proposed

physical model is computed (panel (B)). Additionally heel trajectories are

learned for each kind of movement (panel (A)). Then, a fusion rule to

compute kinematic patterns (Panel (C)) from both trajectories allows to

simulate Normal and Pathological patterns (Panels (D) and (E)).

4.2.2.1 CoGx,y(t) gait representation

In human movement analysis, the gait is divided in cycles, coarsely classified as double

and single stance phases [18, 106, 287]. The double stance period accounts for around

20 % of gait cycle and stands for the body movement with both limbs touching the

ground, while the single stance represents around 80 % of gait cycle and corresponds

to the interval in which a single limb supports the whole body weight. In this work the

CoGx,y(t) for a complete gait cycle is approached using two complementary strategies:

a compass pendulum for the single stance and a spring mass system for the double

stance, as follows.

4.2.2.2 The single support phase

The single support phase conserves a regular periodicity which is properly captured

using a compass pendulum representation. This strategy represents the upper part of

the body by a mass M which moves forwards with respect to each fixed point (with
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mass m), describing a harmonic oscillating trajectory, similar to the inverted pendulum

[175,203]. Likewise, the free foot swings with respect to this mass, establishing a simple

pendulum pattern. Provided that these processes are coupled together, the human gait

is modeled by a compass pendulum as two coupled non-linear differential equations:

β(1− cosφ)(3θ̈ − φ̈)− β sinφ(φ̇2 − 2θφ̇) + (g sin θ
l

)(β(sin(θ − φ)− 1)) = 0

θ̈(β(1− cosφ))− βφ̈+ βθ̇2 sinφ+ (βg
l

) sin(θ − φ) = 0

(4-19)

where β = m/M , θ is the angle of the stance leg at the particular time t with respect

to the slope and φ is the angle between the stance leg, and l0 = lr = ll. This model

also allows to simulate the swing foot when it hits the ground at the heelstrike, a time

in the cycle that corresponds to φ(t)− 2θ(t) = 0 [175], when the double stance starts.

4.2.2.3 Double stance phase

Classical gait models often ignore the double support stance since they have been

devised to simplify the gait rather than to accurately follow gait patterns. These

simplifications have ended up by considering the leg structures as rigid segments, a

hypothesis that easily leads to conclude for instance that the percentage of gait recovery

is inefficient in energy terms, a reason why this phase has been eliminated in most

of these strategies [102, 108, 252, 296]. Additionally, important elastic contributions

which produce relevant changes in the CoGx,y(t), during the double stance, are often

neglected. These strong simplifications reduce an appropriate gait understanding and

may lead to wrong interpretations when these models are used as supporting tools of

clinical decisions.

A more accurate CoGx,y(t) description of the double stance phase was herein achieved

by coupling a planar spring-mass system [33] to the compass pendulum, previously

introduced. This change of the leg length l during the gait stance phase, allows to

estimate the reaction force during the whole gait cycle, as illustrated in Figure 4.2.2(B).

Notice that each leg reaction forces points out towards opposite sides, separated by a

distance d (the distance between the heelstrike and the other toe-off phase). The

coupling is obtained as:

Mẍ = llx− lr(d− x)

Mÿ = lly + lry − gM
(4-20)

where g is the gravity, ll and lr are the left and right legs, respectively and their length

changes as:
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ll = k( l0√
x2+y2

− 1)

lr = k( l0√
(d−x)2+y2

− 1)
(4-21)

These equations simulate the periodic vertical ground forces, with a period defined by

T = 2π
√

m
k

. This independent formulation of each reaction force allows an independent

analysis of each link, whereby gait abnormalities that asymmetrically affect each leg,

such as the diplegia, can be simulated. Finally , the CoGx,y(t) is simulated by the

integration of the two gait phases described as follows:

CoGx,y(t) =


l0 [sin θ(t), cos θ(t)] if φ(t)− 2θ(t) < 0;[
ll
x3

6
−lr(d−x

3

6
)

M
,
ll
y3

6
+lr

y3

6
−gM

M

]
elsewhere.

(4-22)

4.2.2.4 The fusion information strategy

Although the CoGx,y(t) is a fundamental clinical descriptor [200], a useful identification

of a particular disorder also requires a proper gait analysis of other anatomical joint

trajectories. Accordingly, a more complete gait description was herein achieved by the

fusion of two important sources of information: the physical gait strategy previously

described and the learned heel trajectories.

The learned heel trajectories were modeled as a set of normal distributions with mean

µi and variance σ2
i from three different groups of patients captured in a gait laboratory

as:

ψx,y(t) =
I∑
i=1

wiN(t|µi, σ2
i )

where I represents the total number of learned gait movements (normal, Crouch and

Parkinsonian gaits). Each gait distribution was computed from 30 gait cycles belonging

to 10 patients (7 men and 3 women). From this multi-gaussian distribution model, we

can select a heel trajectory i to regularize the CoGx,y(t) associated to a particular

gait movement. Likewise, the normal motion distribution allows a large variety of

gait patterns of the same pathology. New relationships are inferred from these two

trajectories by assuming the knee joint position as rx,y =
l0x,y
2

[75]. Afterward, a

classical inverse kinematic method is adapted to obtain two main kinematic patterns:

the flexion-extension patterns of the hip ω(t) and knee γ(t). For doing so, at each time
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t of the gait cycle, a CCD method performs an iterative rigid transformation over each

couple of joints. The two patterns are defined as:

γ(t) = acos

(
CoGx,y(t)

2 − r2x,y − r2x,y
2

)
(4-23)

ω(t) = atan2(ψx,y) + atan2(rx,y sin γ, rx,y + rx,y cos γ) (4-24)

where r is the distance between the CoGx,y(t) and ψx,y(t). Unlike other approaches,

this model estimates kinematic patterns with medical meaning, but the model can also

obtain energy and ground force patterns for normal and pathological cases, obtained

from the CoGx,y(t).

4.2.2.5 Building up a human leg structure

Finally, a human-like leg structure is animated using the set of kinematic patterns

described above. This structure may be used as a clinical interpretability tool. For

doing so, we define a human structure composed by a set of 12 rigid elements, connected

together, as shown in Figure 4.2.3. The lower limbs follow a dynamics established by

the proposed model, while the upper limbs are normal trajectories computed from real

data of the gait laboratory.

Figure 4-6: The figure shows the human-like leg structure used to simulate the set of

kinematic patterns. It can be used as software tool that allows interpreta-

tion and interaction.

4.2.2.6 Modeling pathological movements

The proposed model is also capable of simulating pathologic patterns such as the spastic

diplegia (typically represented by a Crouch Gait) and Parkinson, an advantage with

respect to other classical models.

Firstly, the model is used to simulate a Crouch gait. This motion is produced by

a neuro-muscular disorder known as the spastic diplegia that is characterized by the

presence of muscle rigidity and loss of muscle force, affecting predominantly legs, arms

and face. The clinical signs include gait pattern distortions of the sagittal plane, like

bent-rigid knees, flexed hips and certain anatomical changes like lumbar lordosis. Such

signs were herein modeled by setting the spring constant to values close to the estimated
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leg springiness. The resultant kinematic patterns are thus related with an increase in

the energy consumption, showing a flexion rigidity of the hip and knee. The model is

also used to simulate typical Parkinson gait patterns. In this case, the gait patterns are

produced by a degenerative disorder of the central nervous system and are characterized

by rigidity and slowness of the human movements: this gait is characterized by short

steps. These Parkinsonian gait features were captured by fixing the d and k parameters,

associated to the step length and the the knee flexion-extension, respectively. This

representation results directly related to the energy consumption since in this case a

particular displacement demands more energy than that required during a normal gait.

Likewise, the kinematic gait patterns are characterized by a higher frequency than the

observed for a normal gait. This kind of patterns can be modeled and simulated to

approximate different phases of the disease, allowing thereby to objectively characterize

the pathology.

Simulation of these pathologies requires to set the l0, k and d parameters, using actual

patient data. For the Crouch gait simulation, the spring constant was fixed within a

range of k = 350 to 400, the d = 0.65 and the l0 length was reduced to 5 % of the

initial 1 m, according to well known biomechanical parameters [128,209,223,225]. For

the Parkinsonian gait simulation the d parameter was obtained from actual data and

set to 0.58 m, the k was set to 500 and l0 = 1 meter. The heel paths fitted a normal

distribution and were learned from actual patient data, as previously explained. The

simulated trajectory precisely follows the different components of the abnormal gait

pattern, in particular the flexed knees, the CoGx,y(t) attenuation and the step length,

as shown in Figures 4.2.3 and 4.2.3 and reported in next section.

4.2.3 Evaluation and Results

Evaluation was carried out by comparing the estimated gait kinematic patterns with

ground truth trajectories, of normal and pathological patterns, as reported in [106,223,

252]. A quantitative evaluation was performed by calculating the correlation coefficient

and the Fréchet distance between both trajectories, which are composed of temporal

x and y paths, belonging to a single gait cycle.

A first part of the evaluation consisted in determining the CoGx,y(t) relation of two

models, the physical model herein proposed and a classical compass pendulum model

w.r.t the ground truth [173]. Figure 4.2.3 shows the decomposed motion for both mod-

els: the x axis representing the percentage of the gait cycle and the y axis the vertical

displacement with respect to the body height, also in percentage. Both models follow a

CoGx,y(t) periodic sequence, but the classical compass pendulum model systematically

misses the discontinuity introduced by the heel strike, much more important in the x
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axis, while the proposed model accurately predicts this part of the cycle. Notice that

the heel strike of the contralateral foot (toe off) actually occurs at about a 60% of the

gait cycle.

Figure 4-7: Simulation of Crouch gait patterns.In the left panel it is illustrated a se-

quence of human poses obtained from the proposed model which better

tracks actual patient poses. In the right panel it is presented the joint an-

gle trajectory (red starred line) obtained with the proposed fusion strategy

and compared with ground truth patterns (shadowed gray zone with mean

trajectory represented by green line).

Figure 4-8: Examples of the proposed method performance when estimating the dy-

namics of the CoG movement in different stages of the Parkinson disease:

Second stage (A), third stage (B), fourth stage (C).

A second part of the evaluation compared the hip γ(t) and knee ω(t) joint-angle pat-

terns of simulated normal gaits and ground truth patterns. For this assessment, the

fusion strategy used two different CoGx,y(t) estimations: the proposed physical model

and the classical compass pendulum previously described. The hip γ(t) and knee ω(t)

patterns were expressed as joint-angle variations at the y-axis and plotted against the

gait percentages at the x-axis, previously weighted by the entire duration of a cycle.

Figure 4 shows the ground truth and the predicted gait patterns for a sagittal view

(right and left) of a complete cycle, using the two CoGx,y(t) estimations. The joint-

angle trajectories computed from the fusion strategy show a very close Correlation

Coefficient (CF) w.r.t the ground truth patterns ( CF = 0.8 using the compass pendu-

lum, CF = 0.9 using the herein proposed physical approach). During the single stance

phase, the angle trajectories computed from both CoG paths have a high correlation,

nevertheless the conventional pendulum misses about a 40 % of the angle variation

because of the nonlinearity introduced by the heel strike and therefore the curve corre-

lation also falls down. In contrast, the joint-angle trajectories obtained from the fusion

strategy with the proposed physical model follows the actual gait paths and its correla-

tion coefficient remains larger than 0.8. Significant differences were then reported with

the conventional compass pendulum, specifically for the part of the cycle dominated

by the heel strike.
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Pattern R.Hip R.Knee L.Hip L.Knee CoG

Garcia’s Model 0,17 ±0.02 0,38 ±0.05 -0,02 ±0.01 0,17 ±0.05 0,52 ±0,01

Our Model 0,89 ±0.02 0,99 ±0.01 0,95 ±0.003 0,99 ±0.02 0,84 ±0,01

Table 4-6: Correlation factor computed for a normal Gait using two different physical

models

Figure 4-9: CoGx,y(t) trajectory obtained with two different approaches. The shad-

owed gray represent the normal distribution pattern for the CoGx,y(t) tra-

jectory, with mean µ represented by the dark green line. The red starred

line represent the CoGx,y(t) trajectory obtained with our physical model

while the blue crossed line represent a trajectory computed from a classical

pendulum model.

Table 4.2.3 shows the correlation coefficient obtained with the temporal differences

between both joint angle estimates and the ground truth. This measure was applied

only to those gait segments associated with the heel strike since it was previously

confirmed that performance in the other gait phases are comparable because both

models are based in the pendulum principle to represent the single stance phase.

Differences were found to be significant during the heel strike phase (student t-test, p <

0.05) for the joint angle paths computed with the conventional pendulum CoGx,y(t),

while the joint angle trajectories estimated with our physical model, obtained corre-

lations of about 96 %. In contrast, joint angle paths computed with the conventional

pendulum CoGx,y(t) obtained barely correlations of about 46 %, evidencing the weak-

ness of this type of models during this gait phase.

On the other hand, since the whole problem consists in following temporal series which

are highly non-linear and whose dynamics is therefore very difficult to establish, eval-

uation should also include a type of measure that determines a level of agreement

between two trajectories. We have then measured this level using the Fréchet distance

between two temporal series, i.e., the ground truth and any of the joint-angle trajec-

tories obtained from the fusion strategy using the two models. Briefly, the Fréchet

measure estimates how close two trajectories are during the temporal capture, that is

to say it estimates how similar these two curves are. Two trajectories are then similar

if this distance is close to zero, the smaller this distance the closer the curves are. The
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Pattern R.Hip R.Knee L.Hip L.Knee CoG

GM 0,31 ± 0,025 0,3 ± 0,023 0,37 ± 0,017 0,35 ± 0,025 0,019 ± 0,0024

PA 0,18 ± 0,012 0,14 ± 0,018 0,26 ± 0,009 0,22 ± 0,014 0,013 ± 0,0041

Table 4-7: Fréchet distance for a normal gait using two different physical mod-

els:Garcia’s Model (GM) and proposed approach (PA)

Fréchet distance between two curves is the length of the shortest path between two

points that are simultaneously moving through the two curves. The Fréchet metric

uses a particular direction of the two curves because the pairs of points whose distance

contributes to the Fréchet distance sweep continuously along their respective curves.

This makes the Fréchet distance a better measure of similarity for curves than alter-

natives, such as the Hausdorff distance, for arbitrary point sets. It is possible for two

curves to have a small Hausdorff distance but large Fréchet distance.

Table 4.2.3 shows the Fréchet measure obtained from temporal differences between esti-

mates and ground truth. Again, the CoGx,y(t) was assessed as well as the hip γ(t) and

knee ω(t) joint-angles, showing smaller differences with our model. Interestingly, the

close curve similarity between the joint angle trajectories estimated from our CoGx,y(t)

and the ground truth, achieved a gain of 20% with respect to the classical compass

pendulum model, that is to say, joint angle trajectories computed from our physical

model were about 20 % more accurate.

Finally, a third part of the evaluation focused on challenging the fusion strategy to

simulate pathological patterns. A Chrouch gait was tracked by changing the value of

the k constant. Figure 5 shows a typical cycle obtained with the proposed model when

tracking this pathological movement. It is observed in this illustration a close rela-

tionship between the trajectory described by the proposed model and the pathological

pattern. A useful clinical evaluation requires a precise track of the consecutive ups and

downs described by this pattern, rather than the magnitude changes.

The Crouch gait simulation was also compared with the two similarity metrics pre-

viously introduced, i.e., the correlation factor and the Fréchet distance, as illustrated

in Table 4.2.3. The correlation factor is larger for upper joints, as expected since

movement is much smaller, but yet correlation is high with joints such as the knees.

The proposed approach was also used to simulate the Parkinsonian gait in different

stages of the disease. For each Parkinson stage it was computed the most probable k
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Metric R.Hip R.Knee L.Hip L.Knee CoG

CF 0,96 ± 0,01 0,88 ± 0,04 0,96 ± 0,01 0,93 ± 0,03 0.92 ± 0,02

FD 0,19 ± 0,006 0,26 ± 0,001 0,13 ± 0,004 0,21 ± 0,002 0,29 ± 0,003

Table 4-8: Correlation factor (CF) and Fréchet distance (FD) when simulating the

Crouch gait with the proposed fusion strategy

Model Parameter Stage 2 Stage 3 Stage 4

k average 52.3 ± 6.22 67.42 ± 8.25 96.8 ± 2.54

d average 0.76105 ± 0.087 0.5576 ± 0.0474 0.4356 ± 0.0294

Table 4-9: Model parameters learned from 10 patients in different stages of Parkinson

disease

and d parameters (See table 4-9). Then, using these parameters it was generated a

CoGx,y(t) with the proposed physical model (Figure 4.2.3).

Figure 4-10: Simulations for different gait cycles. The shadowed gray zone corresponds

to the normal distribution pattern for the joint angle trajectories. The

dark green line correspond to the mean joint angle patterns, i.e., the

ground truth. The vertical shadowed green zone is the heel strike phase.

Notice that the proposed model (red starred line) tracks better the ground

truth, above all on the zones defined by the heel strike which are the

most important when assessing pathological patterns. The blue crossed

line corresponds to the trajectories computed from the fusion strategy

but using the CoGx,y(t) of a classical compass pendulum.

The rule of fusion, with the computed CoGx,y(t) and the learned heel paths from groups

of patients, was used to compute the hip γ(t) and knee ω(t) joint-angle trajectories.

The set of these trajectories allows to animate an articulated model as a virtual repre-

sentation that shows characteristic Parkinsonian signs such as the short step and the

slight flexion of the knee and the hip, as illustrated in figure 4.2.3. Each Parkinson dis-

ease stage was also compared with the two similarity metrics, previously introduced,

i.e., the correlation factor and the Fréchet distance, and results are summarized in
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2nd Metric R.Hip R.Knee L.Hip L.Knee CoG

CF 0.92± 0.008 0.91± 0.01 0.95± 0.008 0.93± 0.009 0.83± 0.004

FD 0.09 ± 0.001 0.11 ± 0.002 0.09 ± 0.001 0.12 ± 0.002 0.12 ± 0.001

3rd Metric R.Hip R.Knee L.Hip L.Knee CoG

CF 0.95± 0.012 0.89± 0.009 0.93± 0.012 0.96± 0.01 0.88 ± 0.003

FD 0.09 ± 0.001 0.13 ± 0.002 0.09 ± 0.001 0.08 ± 0.002 0.13 ± 0.016

4th Metric R.Hip R.Knee L.Hip L.Knee CoG

CF 0.93± 0.008 0.90± 0.008 0.96± 0.008 0.91± 0.008 0.86 ± 0.005

FD 0.09 ± 0.002 0.12 ± 0.001 0.17 ± 0.002 0.13 ± 0.001 0.04 ± 0.001

Table 4-10: Results obtained simulating the Parkinsonian gait for in each stage of the

disease considered in this work using Correlation factor (CF) and Fréchet

distance (FD)

Table 4.2.3. These results demonstrate that our fusion strategy simulates accurately

different Parkinsonian gaits stages. The angular joint variations are very similar w.r.t

to real patterns, obtaining a CF higher than 0.90 while the CoG achieves an accuracy

larger than 0.80. The performance for every Parkinson level was similar, showing a

compact representation for the gait with our method.

Figure 4-11: Simulation of Parkinsonian gait patterns. In the left panel it is illus-

trated a sequence of human poses obtained with the structural model,

corresponding with actual patient poses. In the right panel it is pre-

sented the joint angle trajectory (red starred line) obtain with the fusion

strategy and compared with a ground truth patterns (shadowed gray zone

with mean trajectory represented by the green line).

4.2.4 Discussion

The gait can be thought of as a sequence of complex combinations of several subsystems

that help the body to keep the balance while it gains support and propulsion [285].
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The gait analysis aims to interpret the complex combination of several motion patterns

generated by the interaction of different systems. In the clinical routine, the gait

examination is considered as the most important tool for identifying motion disorders,

and it is also used as a biomarker of some neuromuscular illnesses like the cerebral palsy

or the Parkinson disease, supporting thereby diagnosis and follow up. Interestingly,

during this analysis it is possible to evaluate the effectiveness of a specific treatment

and the particular response of the multiple gait subsystems. However, these analyses

are not actually carried out in the clinical practice, among others because this requires a

complete correlation of all pattern recorded, which is very time consuming and examiner

dependent. Moreover, measures are contaminated by noise during the capture or,

by invasive devices like markers, which inevitably alter the natural motion gestures.

Overall, most clinical examinations are devoted to capture a general gait picture which

makes that treatments are globally addressed. The actual utility of devising gait models

is that they may improve understanding of some subsystem patterns from the captured

data, even if they are noisy, and hence they allow to plan more specific treatments.

This work has presented a new fusion scheme that simulates a large set of gait pat-

terns, including pathological conditions. The model allows to identify the role of cer-

tain subsystems during the simulation, an important step towards planning oriented

treatments. This scheme uses two important information sources, i.e., kinetic and

kinematic components, maintaining the possibility of an energy consumption analysis.

The fusion method assumes that the gait kinematic patterns must follow basic physi-

cal principles. The underlying trajectories are generated by an adapted version of the

compass pendulum representation which has been extended with elements that store

energy, describing a larger number of abnormalities than it has been possible so far.

These trajectories are then regularized by actual learned paths, completing thereby

the rule of fusion by means of an inverse kinematic approximation. A broad range of

gait pathologies can thus be emulated with the proposed approach, mainly those char-

acterized by flexion-extension restrictions or leg stiffness, as for instance patients with

diabetes mellitus (DM) and peripheral neuropathy (PN) who commonly present very

short stride lengths, slower walking velocities and unstable upright postures [40,41].

Likewise, these simulations may be extended to gait pathologies that compromise knee

dorsiflexors and extensors like the steppage gait.

The models reported in the literature are very limited when describing particular varia-

tions of a pathological motion. Gait models can be coarsely divided in two large groups:

physical based models and musculoskeletal representations. Physical models use an in-

verted pendulum or a spring mass system that allow an energy consumption analysis

and a global dynamic description. These models nevertheless fail to mimic pathologi-

cal patterns because of the strong simplifications and restrictions, i.e., pendular models
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represent only the single stance while the double stance is completely omitted. Mus-

culoskeletal representations, typically more complex than physical-based models, are

able to simulate muscle patterns at each gait phase by adding some non linear muscle-

tendon interactions, traditionally modeled by the Hill’s model or prior information

coming from data obtained from actual gait laboratories. Currently, musculoskeletal

models associate each leg segment to a Hill’s model. However, a main drawback of

this approach is that there is no interaction between the different segments and hence

simulations are quite far from experimental data, therefore, missing any anatomical

meaning [71, 72]. Best performances are obtained by combining a prior model with

observations coming from actual data [72, 168, 295, 296], but these models completely

neglect important kinetic relationships and require a high level of expertise to properly

tuning the model parameters. In contrast, physics based models are simple and usually

tuned with a small number of variables. This simplicity, nonetheless, leads to most

physics based models to miss important phases of the gait cycle. The fusion model

proposed in this work represents the single stance by an articulated double pendulum

system, while the double stance is properly simulated by a spring mass component

that stands for the important knee motion contribution. The proposed model in addi-

tion emulates a whole skeleton structure by animating this architecture from the CoG

trajectory. The whole strategy allows a natural simulation of non-linear gait patterns,

representing several kinds of movements. Evaluation demonstrated the fusion model

advantages, by comparing several kinematic patterns like the CoG trajectory and the

hip and knee flexion-extension movements, considered as the most representative gait

patterns for determining whether a motion is pathological or not [209,223,225].

The first evaluation compared the adapted physical model with a classical compass

pendulum. An appropriate extraction of the CoG is essential since this biomarker is

an efficient indicator of the normal/abnormal gait pattern, it constitutes one of the

most important markers in pathologies such as hemiplegia, paraplegia or dystonia. A

pathological gait can be analysed in terms of energy using the CoG, which tracks the

transfer of potential to kinetic energy (recovery), i.e. normal gait patterns loss 40%

of their energy in this transfer, a higher loss is pathological [76]. The CoG trajectory

described by our physical model achieved a CF of = 0.84 while classical pendulum

model only achieved a CF of = 0.52, as illustrated in Figure 3. In a second evaluation,

hip and knee joint-angle paths were compared during the linear part of the cycle.

Results showed a close correlation of the fusion strategy with respect to gold standard

patterns, a CF of = 0.9 for our strategy and a of CF = 0.8 for trajectories computed

from the classical compass pendulum. The same test was repeated exclusively for the

nonlinear part of the cycle: a CF of = 0.96 was estimated with the fusion model while

a CF of = 0.35 was computed with the classical compass pendulum. Likewise, while
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the complete proposed strategy obtained a 0.1 Fréchet distance, the joint trajectories

estimated with the classical pendulum yielded a 0.35 Fréchet distance for the normal

gait. Overall, the largest error was obtained during the nonlinear parts of the gait

cycle like the heelstrike and the hip moments. This fact illustrates the relevance of

obtaining a complete CoG global description even to estimate the remain joint angle

trajectories.

When simulations were performed for pathological patterns, the fusion method main-

tained in average a CF = 0.90. Two neuromuscular disorders were simulated: the

cerebral palsy and the Parkinson disease in three different stages. For both abnormal

movements, actual patient motion data allowed to adjust parameters and to obtain

closer CoG trajectories.

During the Crouch gait simulation, the model parameters were set to k = 400 and

d = 0.65, according to the data learning process. Simulations achieved a CF of =

0.9, a very close representation of actual patterns ( Figure 5). The Fréchet distance

maintained a comparable performance when tracking the ground truth. The Parkinson

simulation, in three different disease stages, also shows a very alike representation w.r.t

actual patterns. The model parameters were fixed according to Table 4 for each stage

disease. The fusion model achieved in average a CF = 0.92 and a Fréchet distance

average of 0.1, demonstrating the close likeness of the patterns obtained and actual

data. These results demonstrated the model ability to accurately follow a different

sort of gait patterns, either normal or abnormal. The model may be used as training

tool for physician and also to predict the performance of a particular gait treatment.

Finally, it is worth to strengthen out the simplicity of the presented model and its

ability to represent pathological movements by only tuning two parameters and with

a relatively simple fusion strategy. The model may be used as a complementary tool

of the classical gait analysis to determine an illness degree of any subsystem, either by

correlating the compromise of any leg segment with the clinical data, or by perturbing

the model and therefore the resultant trajectory.

4.2.5 Conclusions and Perspectives

This work has presented a fusion model to simulate normal and pathological kinematic

gait patterns. Two main contributions are introduced in this work, a fusion strategy of

two important information sources which allows the accurate estimation hip and knee

joint angle trajectories. Additionally, a physical that describes the COG trajectory

using a pendular motion for the single stance and a spring mass system for the double

stance. The model is complemented by an animated structure that allows to visualize

and quantify different gait patterns,i.e., the hip and knee flexion-extension. The pro-
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posed approach can be easily extended to simulate other pathologies or even to find

more dynamic gait relationships that describe a particular movement. Finally the pro-

posed model opens up an actual possibility towards understanding more complex gait

phenomena, crucial in many applications of the prostheses design such as the alignment

or the relationship between those prostheses and the different muscle subsystems.

4.3 Segmentation of pelvic structures for planning CT

using a geometrical shape model tuned by a

multiscale edge detector

Accurate segmentation of the prostate and organs at risk in computed tomography

(CT) images is a crucial step for radiotherapy planning. Manual segmentation, as per-

formed nowadays, is a time consuming process and prone to errors due to the a high

intra- and inter-expert variability. This paper introduces a new automatic method

for prostate, rectum and bladder segmentation in planning CT using a geometrical

shape model under a Bayesian framework. A set of prior organ shapes are first built

by applying principal component analysis to a population of manually delineated CT

images. Then, for a given individual, the most similar shape is obtained by mapping a

set of multi-scale edge observations to the space of organs with a customized likelihood

function. Finally, the selected shape is locally deformed to adjust the edges of each

organ. Experiments were performed with real data from a population of 116 patients

treated for prostate cancer. The data set was split in training and test groups, with 30

and 86 patients, respectively. Results show that the method produces competitive seg-

mentations w.r.t standard methods (averaged dice = 0.91 for prostate, 0.94 for bladder,

0.89 for rectum) and outperforms the majority-vote multi-atlas approaches (using rigid

registration, free-form deformation and the demons algorithm). The complete content

of this section has been published as a research article in the journal of physics in

medicina and biology (see [202]).

4.3.1 Introduction

Prostate cancer is one of the most commonly diagnosed male cancer worldwide, with

190.000 new cases diagnosed in USA in 2010 (American Cancer Society) and 71.000

new cases in France in 2011 (INCa 2011). External beam radiation therapy (EBRT) is

a commonly prescribed treatment for prostate cancer which has proven to be efficient

for tumor control [69]. EBRT uses high energy beams from multiple directions in

order to deliver the dose within the patient tumor region to destroy the cancer cells.
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Modern treatment techniques offer nowadays improved treatment accuracy through

a better planning, delivery, visualization and the correction of patient setup errors.

Segmentation plays a major role during the whole therapy. During a standard protocol

for EBRT planning, CT images are manually delineated to define not only the clinical

target volume (CTV), prostate and seminal vesicles, but also the neighbouring organs

at risk (OARs), for instance the bladder and rectum. The CTV is then expanded to

constitute the Planning Target Volume (PTV) for treatment. These spatial margins

between the organs and the PTV as depicted in Figure 4-12 allow for uncertainties in

delineation, patient setup, motion and organ deformations [26,120]. The segmentation

allows the definition of dose constraints according to a certain recommendations. The

International Commission on Radiation Units and Measurements (ICRU) 50 and 62

reports, for example, define and describe several target and critical structure volumes

that aid in the treatment planning process and may provide a basis for comparison of

treatment outcomes. Thus the directions, strengths, and shapes of the treatment beams

are computed in a planning platform to comply with them, following a particular dose

prescription. The delineated structures may also be used in further stages and with

different purposes during the treatment such as the computation of cumulated dose

when image guided radiotherapy (IGRT) is used or for toxicity population studies [2,

133,256].

In current radiotherapy planning, the CT is still used to perform the segmentation since

the dose computation relies on the CT electron density information. However, the CT

offers a poor soft tissue contrast and therefore segmenting pelvic organs is highly time

consuming (between 20-40 minutes to delineate each), and prone to errors, especially in

the apical and basis regions [58]. Previous studies have reported variations in prostate

delineation of about 20.60 % of the organ volume [119]. These uncertainties lead to

large intra- and inter-observer variabilities and may impact the treatment planning [97]

and dosimetry [19, 27]. Hence, reliable, efficient and reproducible (semi)-automatic

segmentation techniques are are required in treatment planning.

Several difficulties hamper automatic segmentation methods in this context: (i) the

poor border contrast between adjacent organs, (ii) the high intra- and inter-individual

shape variability, (iii) the inhomogeneities in the amount of bladder and rectum fill-

ing [178] (iv) the often presence of fiducial markers used to guide dose delivery. Com-

mon automatic methods for organ segmentation of pelvic structures include deformable

models [63, 66], atlas based methods [1] or statistical shape models [139, 221]. At-

las based approaches use prior learning not only for obtaining a final contour but

also to provide initial organ positions for further segmentation algorithms. In atlas-

based methods a pre-computed segmentation or prior information (i.e. probability

map) in a template space is propagated to the image to be segmented via registra-
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tion [1, 207, 241, 242]. Although atlas-based approaches may provide prior structural

information, a high inter-individual variability and registration errors may lead this

method to fail. Multi-atlas approaches can partly overcome some of these difficulties

by selecting the most similar organ of interest among a large database, but the definition

of a proper similarity metrics between the available atlases and the individual query, is

still an open issue [1,1,289]. Statistical shape models may help to overcome atlas-based

segmentation problems by introducing prior shapes, which in a further step may be

locally adjusted [139, 221]. In general, these approaches define a cost function encod-

ing similarities that matches a prior shape/appearance knowledge with a particular

individual (test image) [96, 134]. These approaches are relatively stable and robust to

noise and voxel variations, however their accuracy may be limited by the set of features

selected to represent the image test and the particular definition of the match function.

Examples of prostate segmentation following this approach appear in [245] where the

segmentation problem was addressed without shape constraints by allowing flexibility

to individual local variations, with some issues, however, in regions with poor contrast.

More recently, Chen et al [56] proposed a statistical method that matches the prior

shape information under a Bayesian hypothesis, incorporating anatomical constraints

but without exploiting spatial information. Other approaches include learning strate-

gies to segment the prostate, but within the context of intra-individual segmentations

where previous organ delineations are required [182].

In this paper, we propose a novel method for automatically segmenting pelvic struc-

tures from CT scans based on a statistical shape model within a Bayesian framework

and with local spatial variations. The proposed approach is appropiate for different

types of organ, shapes, as well as stable to variations in contrast and bladder and rec-

tum filling conditions. A method for removing CT artifacts was implemented which

increases contours reliability using an adapted non-local filter, which was able to over-

come the issues with fiducial markers. Since the prior is built from different available

shapes, the approach is robust to the large inter-individual variability. The likelihood

matching includes a geometrical and topological analysis which allows to set an optimal

correspondence between a prior 3D shape model and the considered CT. Such prior is

built from an actual population while a multi-scale edge descriptor allows for the map-

ping between the prior and the CT observations. The yielded 3D organ segmentation

is spatially coherent and voxels are connected together. In the remainder of this paper

we first describe the method, we then validate the accuracy of our approach on real

CT data, and compared with baseline Atlas-Based segmentation methods.
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(a)(b)(c)(d)

Figure 4-12: Example of planning dose on manually segmented CT. a) original CT

scan, b) prostate and rectum delineations, c) PTV is obtained by adding

margins to the prostate and c) Resulting 3D planning dose. The presence

of fiducial markers may hamper segmentation.

4.3.2 Methodology

Figure 4-13: Proposed method for 3D segmentation. First, a shape space organs is

built (PCA). The template is rigidly registered to the CT to be segmented

followed by an automatic extraction of RoIs for preprocessing and multi-

scale edge detection. A likelihood function matches the most similar PCA

shape with the detected edges to finally being locally adjusted.

The proposed method consists of several stages as depicted in Figure 4-13. Let Ŝo,

the estimated organ shape (prostate, bladder or rectum) that optimizes a maximum a

posteriori (MAP), under a Bayesian framework

Ŝo = max
Ŝo

arg[P (Ŝo|Spcao1
, Spcao2

, . . . , SpcaoN
)] (4-25)

where {Spcao1
, Spcao2

, . . . , SpcaoN
} is a collection of shapes (the shape space) of the organ o.

The reference template serves as the coordinate framework of the PCA geometrical

shape model and corresponds simply to a random seletion of a single CT-image. The

likelihood function (section 4.3.2.4), aimed to match the most similar shape with the

observations extracts information from a multi-scale analysis in a RoI around the organs

(section 4.3.2.3), after removing CT artifacts. Eventually, the most likely shape Ŝo is

locally deformed, driven by the multiscale edge descriptor (section 4.3.2.5). These steps

are described in the following sections.

4.3.2.1 Learning an organ shape model: the prior

A dimensionality reduction of the whole training data was firstly carried out by ap-

plying PCA [255] to the population of manually delineated organs [188]. Hence, a

collection of shapes {Spcao1
, Spcao2

, . . . , SpcaoN
}, for each considered organ, was computed. A
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previous rigid registration scales different volumes so that the number of slices is always

the same for any organ. Then, a set of “360 landmarks” was set in the polar space

(a landmark per grade), using the centroid of every organ as reference. Each shape

contour is the parametric curve defined by a set of landmarks, among the training data

lying on the contour. In consequence, correspondences are always one-to-one and the

number of points of any contour is always the same. Thus, the first two contour mo-

ments are then computed, namely the mean shape vector s̄ ∈ R3M and the covariance

matrix ρ ∈ R3M×3M , are computed as s̄ = 1
N

∑n
i=1 si and ρ = 1

N−1
∑n

i=1(si− s̄)(si− s̄)T ,

where the vector (si − s̄) characterizes the organ deviation with respect to the mean

shape. A conventional spectral analysis allows diagonalization of this covariance ma-

trix, thereby finding the directional gains or eigenmodes. Each eigenmode defines a

3D vector field of the correlated organ inter patient-variability. Thus, the organ sta-

tistical samples were generated by deforming the mean shape with a weighted linear

combination of the L dominating eigenmodes:

Spcaol
= s̄+

L∑
l=1

clql (4-26)

where the coefficients cl follow a Gaussian distribution and the ql are the eigenvectors or

directions with a variance defined in the interval ql ∈ {+3
√
λ, . . . ,−3

√
λ}, accounting

for the 96% of the shape variability. This procedure was independently used for each

organ, obtaining a family of shape models that were aligned with the previously chosen

CT template. Examples of the different shapes obtained for each organ are shown in

Figure 4-13.

4.3.2.2 RoI extraction and pre-processing

During the segmentation of a given CT image, the previously computed model is rigidly

registered towards the CT template, from the training database, using a classical “block

matching” method [217]. Thus, a set of RoIs of size {S̄o ± ξ}, being S̄o the average

organ size and ξ a tolerance value, allows to define a particular partition for the test CT

image. The computation of the organ boundaries is confined to this RoI, assuming that

only two intensity classes exist, foreground (organs) and background. However, other

classes may appear in the neighbourhood of the considered organ, mainly becasue of

some acquisition artifacts, namely intensity inhomogeneities, noise and presence or not

of fiducial markers. Then, we assume a two class RoIo(x): the organ of interest and

some neighboring tissues, which are randomly distributed. Every RoI is then modelled

as a mixture of Gaussians (GMMs), aiming to approximate the organ of interest and
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the other contaminant tissues as a non uniform sum of Gaussians, each approaching a

particular distribution of voxels. Such modelling is formulated as:

ψ(i) =
∑

k=1,2,...,n

wkN(i|µk, σ2
k) (4-27)

where the two main distributions stand for the foreground tissues and any other struc-

ture (bones for instance), respectively. Such an estimation is consistent because the

different types of noises were herein modeled as additive, usually approached by a

mix of Gaussians. A classical Expectation Maximization algorithm is then applied

to estimate the GMMs parameters. Let RoIo(x) the pixel tissue distributions, with

probability density function (pdf) p(x|θ), where θ is an unknown vector of parame-

ters (µi, σi) and x is every pixel of the RoI. Given an observation pixel x, we aim at

maximizing the likelihood function L(θ) = p(x|θ) w.r.t. a given search space Θ. This

problem has been classically approximated by numerical routines, as the well known

Expectation-Maximization algorithm [32]

Once the Mixture of Gaussians is determined, the two main distributions (max
k=1,2

(2σk))

are chosen since they represent the two searched classes. Any other distribution is

eliminated by setting its voxels to the closest main distribution, using for doing so an

adapted non local mean filter, as follows: a voxel x, within the RoI, may represent any

noise {x < min
k

(µk−2σk)∨x > max
k

(µk+2σk)} and therefore is replaced by a weighted

average of a neighbourhood with foreground/background information, satisfying a “non

local property”: weights depend on the pixel similarity in the image space as

%(x) = e
−d(x)

h2 , (4-28)

where d(x) =
∑
i∈φ(o)

∥∥RoIo(x)−Nk1,k2(µ, σ2)
∥∥, φ(o) is the neighborhood and h is a

decay parameter. The underlying idea behind this filter is to replace a pixel belonging

to a probable artifact by its nearest “foreground/background” model. Examples of the

RoI pre-processing are depicted in Figure 3.

Figure 4-14: In (a) Bladder RoI preprocessing before. Lower bladder region had dif-

ferent appareance because filling bladder. In (b) is shown the processed

RoI. The proposed filter reduce the appareance difference allowing cap-

ture robust observations
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4.3.2.3 Multi-scale CT edge detector: the observations

The multiscale image analysis was herein implemented using the first partial derivatives

at each scale obtained by convolving each RoIo(x, y) with a variable gaussian kernel.

Thus, the multi-scale edge estimation was obtained by a simple linear combination of

the different gradient magnitudes at each scale, as follows:

Sedgeo (x, y;σ) =
∑
i

RoIo(x, y) ∗ ∂Gσi

∂x∂y
(4-29)

where Gσi is the 2D Gaussian function with standard deviation σi. In this context, the

Gaussian function is the unique kernel with an equivalent scale-space representation

(linearity and shift-invariance in both frequency and space). A multiscale image de-

composition allows to build a more stable set of observed edges [186] since true edges

are coherently present at different scales. In this context, the detection of the bound-

aries is further pursued by applying a classical multiscale non-maximum suppression

strategy, consisting in detecting the maximum gradient magnitude for each particular

direction as cited in [186]. This multi-scale edge detection follows the universal princi-

ple of scale invariance and allows a robust edge description which is usually preserved

through multiple scales [260].

4.3.2.4 Computing the geometrical likelihood

Within a Bayesian framework, the devised likelihood function P (Ŝpcaoj
|Sedgeo ) was defined

to find the best geometrical matching between the sample shapes Ŝpcaoj
, obtained from

the learned model, and each multi scale edge descriptor Sedgeo under a log-Euclidean

metric [15]. For doing so, every shape, from the organ space, and the edges of each

RoI, are characterized by the first seven Hu moments [298] as

P (SPCAoi
|Sedgeoi

) = [min
Spcaoj

 ∑
hu(i=1...7)

||mSedgeo
i −m

Spcaoj

i ||

 (4-30)

where mSedgeo
i = log |hS

edge
o
i |, and m

Spcaoj

i = log |h
Spcaoj

i | are the computed shape features

for the edges and the PCA learned shapes, respectively, and hS
edge

i , h
Spcaj

i are their Hu

moments. Under a log-Euclidean metric, null values are excluded, and the metrics

allows to globally determine the most similar shape. This choice is also justified since

the space of organs has a Lie group structure, that is to say, a similarity space in which



4.3 Segmentation of pelvic structures for planning CT 139

continuity applies and algebraic operations are smooth mappings. This type of log-

Euclidean metrics is invariant to orthogonal transformations, change of coordinates and

scaling, and sets to an infinity distance those matrices with null or negative eigenvalues.

The likelihood function reaches a maximal probability when a learned shape closely

match the observations after the multi-edge-scale descriptor.

4.3.2.5 Local Shape Deformation

In a final step, a 3D local deformation function was also introduced to eventually

improve the local correspondence of the chosen organ, selected by the PCA model.

Such deformation depends on two different measurements: (1) the radial distance of a

particular shape point to the observed multi-edge-scale in the same slice and (2) the

distance of the same particular organ point to the corresponding organ point in the

upper and lower slices. These distances drive out the warping deformation of the organ

either to the observed multi-edge-scale or to the upper and lower organ neighboring

points. This deformation is controlled by a λ term, which represents a trade-off between

the observed edge and the prior organ shape.

Soi(x, y) = λŜpcaoi
(x, y) + (1− λ)(min

So
(‖Ŝpcaoi

− {Sedgeoi
, Ŝpcaoi±1

}‖))

This local deformation tends to preserve a coherence between the prior shape and the

observed edges, a compact representation of the shape given by the λ term and the

nearest edge criterion. In this work, the best performance was obtained from a training

database with λ = 0.6

4.3.2.6 Experimental Setup

A quantitative comparison was performed between the manual organ delineations

(prostate, bladder, rectum) and the computed segmentation, using two different mea-

sures: a dice score (DSC) and the Hausdorff distance. The DSC is an overlapping

similarity measure, defined as DSC(A,B) = 2|A∩B|
|A|+|B| , where | · | indicates the number

of voxels of the considered A (gold standard) and B volumes. On the other hand, the

Hausdorff measure H(A,B) computes the maximum distance between two set of points

as max(h(A,B), h(B,A)) and h(A,B) = maxa∈A minb∈B ‖a− b‖22. In this case, each

set of points represents the organ surface. This measure allows to indirectly assess the

segmentation compactness.

As mentioned before, the dataset was randomly split into: training (30 patients) and

test (86 patients). The training set was used to build the organ shape space and the

best representation was selected within a leave-one-out cross validation scheme. The
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performance of the proposed method during the training step was compared with three

multi-atlas vote methods1, using a leave one out scheme. In a first multi-atlas method,

the atlases were rigidly registered to the test volume. The other two methods followed

two steps: (1) the atlases were rigidly registered to the whole set of volumes, using

a “block matching” strategy, and the transformed volumes were ranked according to

the normalized cross-correlation (NCC) [217]. (2) The delineations associated to each

volume were propagated to a new test organ volume by non-rigidly propagating the

whole set of organs. This non-rigid registration was carried out by either a standard

free-form deformation (FFD) [246] or by using the demons algorithm [261]. Eventually,

the majority vote decision rule was applied to obtain a single segmentation for each

considered organ. A second evaluation of the presented method was carried out by

segmenting the test data (86 patients) that were not included in the training phase,

using the best prior model constructed during the training step.

4.3.3 Data

Data used in this paper include a total of 116 patients, who underwent Intensity Mod-

ulated Radiotherapy (IMRT) for localized prostate cancer between July 2006 and June

2007 in the same institution. The whole treatment (patient positioning, CT acquisition,

and volume delineations) and dose constraints complied with GETUG 06 recommen-

dations, as previously reported [28]. The size of the planning CT images in the axial

plane was 512x512 pixels, with 1mm image resolution, and 2mm slice thickness. The

used treatment planning system was Pinnacle V7.4 (Philips Medical System, Madison,

WI). Each treatment plan used five field beams, in a step-and-shoot delivery configu-

ration with gantry angles of 260◦, 324◦, 36◦, 100◦and 180◦. The delivery was guided

by means of an IGRT protocol, with cone beam CT images or two orthogonal images

(kV or MV imaging devices), using gold fiducial markers in 57% of patients. In this

study, only the CT and the delineated prostate, bladder and rectum, were considered.

For evaluation purposes, the dataset was split into two parts : training (30 patients)

and test (86 patients) datasets.

4.3.4 Evaluation and Results

Figure 2 illustrates an example of segmentation obtained with the proposed approach

(red), overlaid on an expert segmentation (in green). A major advantage of the pro-

posed method is the adaptability of the prior shapes to the patient-specific organ,

with local variations. As mentioned above, the approach performance was evaluated

1The used database corresponds to the 30 patients mentioned before
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as follows:

Figure 4-15: Axial segmentation illustration of the pelvic structures ((a) rectum, (b)

bladder and (c) prostate). The delineation obtained by the presented

method (red) and the expert reference (green).

4.3.4.1 Evaluation of training data

In a first experiment, by using the 30 patient randomly selected from the 116 avail-

able cases a DSC leave-one-out cross validation exploratory analysis was performed.

Since DSC estimates the percentage of overlapping area between the evaluated seg-

mentations, the obtained score is strongly dependent on the volume of the organs to

be evaluated. Figure 3 shows the results obtained when comparing the presented ap-

proach with the three atlas based methods. The graph depicts the mean DSC and

standard deviation for the four different automatic methods. The average score ob-

served for the proposed method was of 0.91±0.033 for the prostate, 0.94±0.028 for the

bladder, and 0.89± 0.022 for the Rectum. Overall, in terms of the DSC, the presented

approach outperforms the atlas-based method (using the Demons) for the the prostate

and rectum, by 9 %, and 9.2 % (p < 0.001), respectively, while for the bladder a slight

gain of 1.2 % was observed. Likewise, it should be noted that in all cases the standard

deviation of the proposed approach is much smaller than the atlas based approaches.

Figure 4-16: Dice scores comparison for vote vs the proposed approach

An additional comparison was performed by computing the Hausdorff Distance, which

allows for the compactness of the segmentation to be compared since this measure

penalizes the isolated voxels that are far from the ground truth. Table 4-11 sum-

marizes the obtained performance for the three target organs, with smaller values for

the proposed method in any case, indicating that the method coherently finds shapes

compatible with the knowledge stored in the bank of shape organs. These results in

addition illustrate that the presented approach systematically obtains shape segmen-

tations with average distances of 5.98 for the prostate, 19.09 for the bladder and 7.52

for the rectum, while with the best atlas approach, the average distances were 9.33 for

the prostate, 79.42 for the bladder and 61.44 for the rectum. It should be strengthen

out that the Hausdorff distance evaluates not only the superposition of two shapes but

also the quantity of scattered voxels that are outside of the segmented prostate: the

larger the measure the higher the number of outlier voxels.
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Segmentation method Prostate Bladder Rectum

Vote(Rigid) 16.61±5.6 102.02±26 66.87±10.3

Vote(FFD) 14.27±4.2 78.63±20.1 65.22±6.1

Vote(Demons) 9.33±3.2 79.42±18.2 61.44±5.8

proposed approach 5.98±2.2 19.09±3.1 7.52±2.3

Table 4-11: The Hausdorff distances obtained with the multi-atlas majority-vote

method using rigid, FFD or a demons registration and with the proposed

approach

The results, obtained with this metric, point put the importance of using structural

priors that define a particular topology. The bladder segmentation, calculated with

the three atlas-based approaches and compared with the gold standard under the DSC

metric, seemed to be appropriate, but when using the Hausdorff distance, larger dif-

ferences appeared and produced a very large error of 79.42 mm in the present study.

4.3.4.2 Evaluation of test data

Once a particular organ model was set, its generalization capacity was also evaluated.

The best prior, determined by the PCA in the previous experiment with 30 patients,

was used in a second test group with 86 patients, a larger data set with different shape

organs, presence of artifacts or contrast changes in CT. Quantitative results, with the

previously introduced metrics, are reported in table 4-12. In general terms, the ob-

tained results show a segmentation, with an averaged DSC of 0.86 and an averaged

Hausdorff Distance of 16.19. The befitting obtained segmentations are consistent with

what was observed in the training data, i.e. with a best score for the bladder. This

fact can also be attributed to the overlapping measure since results depend on the or-

gan volume. Although the obtained score errors are slightly larger for the three organ

segmentations, the proposed approach properly captures the shape variability. The

Hausdorff distance, on the other hand, shows that the proposed approach produces

more stable segmentations, meaning that voxels belong mostly to a single shape since

the measurement penalizes the isolated or outlier voxels. Unlike the atlas based ap-

proaches, this method reaches a tolerable margins of error, an important element when

planning the radiation therapy. Finally, in both quantitative metrics, the obtained

standard deviation was lower, evidencing coherency in the obtained segmentations.
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Prostate Bladder Rectum

Hausdorff Distance (mm) 9.98±3.4 25.07±4.6 13.52 ± 5.1

Dice score (DSC) 0.87 ± 0.071 0.89 ± 0.083 0.82 ± 0.062

Table 4-12: The Dise score and the Hausdorff distances obtained the proposed ap-

proach in using the test data

4.3.5 Discussion

An automatic method for segmentation of pelvic organs in CT images was presented.

Under a Bayesian framework, a geometrical likelihood function mapped a set of global

observations, built from a structural multi-scale analysis [186], to a prior shape space

that stored the shape organ knowledge. This prior captured the principal shape vari-

ation modes, constituting an organ space with samples that represent the 96 % of

the shape variability [62, 134]. Observations were automatically captured from RoIs

around each specific organ, namely, the prostate, the bladder and the rectum. Each of

these RoIs is pre-processed by an adapted non-local filter which regularizes the region

by considering only two principal pixel distributions: the organ and the background.

This filter allows for artifact reduction coming from gas in the rectum, several filling

bladder states or bone parts randomly captured within the RoI. Afterward, a set of

structural observations, the Hu moments, are calculated from a multi-edge-scale fea-

ture. The obtained Hu-based descriptor is a global shape representation that is used

by a geometrical likelihood function to find the most likely organ shape given the set of

observations. The likelihood function rules out the null Hu moments and redistributes

the organ space using a log-Euclidean metrics and thereby it matches the most similar.

In general, state-of-the-art methods attempt to obtain more accurate segmentations by

integrating a prior to the CT image information, for instance the CT or MRI manual

expert delineations or CT salient morphological points. The Bayesian approach herein

presented may be included in statistical shape models family since the organ shape

prior is mapped to the CT through a geometrical likelihood. Several statistical models,

for segmenting CT registered structures, have been proposed. Among them, a semi-

automatic Bayesian method that matches a set of organ templates and finds the most

probable template transformation using an iterative increasing and bending algorithm

may be found in [156]. Each of these templates is characterized by a medial axis

relationship at different resolution scales. However, the media axis result in many

cases very simple shape representation that can lead to wrong segmentations since the

growing iterative algorithm can easily overflow the pelvic organ boundary. Likewise,

segmentation of the prostate and rectum has been also approximated using a histogram
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learning representation under a Bayesian framework [56], achieving an average volume

overlapping of 0.89 and 0.71, for the prostate and rectum, respectively. These low

figures can be attributed to the histogram representation since (1) it is not robust to

contamination with any complex noise, (2) some bladder states and bone structures

show practically the same gray level, (3) there exists a high inter patient variability

regarding the bladder state and (4) it completely misses the spatial relationships.

Essentially, the proposed approach combines both a multi-scale (global) and derivative

estimations (local) to obtain the real organ edges. Since organ boundaries in the

CT images are usually very blurred and even experts can miss actual boundaries,

the proposed approach sets a proper edge estimation using a likelihood function that

uses global metrics (The Hu moment characterization) of the searched shape and then

corrects for the possible edge mismatches. Another advantage of the proposed approach

is the use of prior shapes by the likelihood function so that voxels belonging to any

organ shape are always connected. This investigation has extended the usual prostate

segmentation to the whole set of organs at risk, with very little change in the required

parameters. The method has demonstrated to be robust to many types of noise and

adaptable to different organs, with comparable accuracy values when segmenting the

prostate, the bladder or the rectum. The approach was compared to 3 different atlas

based methods which also included geometrical prior information, using the DSC and

Hausdorff distance calculated between the automatic organ segmentation and a manual

delineation carried out by a radiologist expert. Patients were grouped in training and

test groups, and in both scenarios the proposed approach outperformed the other

methods.

Finally, several pre-processing strategies have been proposed to overcome the natural

high intra and inter patient organ appareance variability, for instance, Davis et al [70]

cope with the bowel gas problem by defining a binary mask containing the regions

with gas. Then, they apply a “deflation” transformation, based on the flow computed

or induced by the binary image mask, and doing that this region tend to converge to

the center of these regions. These approximation allows to reduce the bowel gas effect

but without taking into account that very often this phenomenon appears as scattered

in small regions. In the proposed approach, a new non-local filter which replaces the

RoI artifacts was introduced. Taking advantage of the redundancy and assuming that

a segmented RoI is composed of two tissues: organ and background. This facilitates

the organ segmentation, above all because some organs like the bladder or rectum are

composed of different objects that result in different distributions, this filter allows to

homogenize the organ texture and to isolate the concept. After this filter, an organ

and background pixel distribution are may be facilitated and used thereafter. Last but

not least, the obtained results are highly encouraging and demonstrate the method
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usefulness in clinical scenarios as a support of the final delineation that dramatically

decreases the expert burden in the daily radiotherapy planning.

4.3.6 Conclusions and Perspectives

In this work we presented a new methodology to segment pelvic structures in CT scans.

The Bayesian method combines a deformable prostate model, learned from examples,

and a geometrical likelihood strategy that maps actual observation into the space of

model organs and selects the best shape to superimpose it in the original CT image.

The presented results offer that this segmentation technique may be suitable to use as a

oncologist’s support. This approach may be easily extended to other structures in CT

images. Future works includes a more robust CT characterization by the association

of edge observation and pixel distributions in order to find more likely shapes in the

organ space and also develop a more reliable local shape adjustment.
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This thesis has formulated, developed and largely validated a computational frame-

work that characterizes complex dynamic patterns using different level of analysis. By

emulating main motion perception mechanisms, the framework integrated three in-

dependent and complementary modules that process temporal information, capturing

motion patterns and spatio-temporal relationships. Each module was extensively eval-

uated in diverse artificial vision tasks, such as classification, simulation, recognition

and segmentation.

The first module temporally correlates visual information between consecutive frames,

recovering shapes in motion and performing a global spatio-temporal analysis that was

successfully used to classify normal and pathological gaits, to segment and measure

polyps in video-endoscopy sequences and to segment the right ventricle in cine-MRI

sequences.

The second module characterizes dynamic patterns from dense optical flow represen-

tations. In such analysis it was proposed a set of motion descriptors based on the

statistical quantification of velocity flow orientations. These descriptors were success-

fully applied in video-surveillance applications to classify and recognize human action

activities in uncontrolled scenarios. Optical flow representation were also used to com-

pute kinematic patterns of the hummingbird during flight from a markerless standpoint

and over cardiac sequences to classify normal and cardiac movements.

In the third module, prior models and simplified representations of the real world were

explored. Integration of prior gait models with captured video observations was used to

effectively track the center of mass during walking, achieving a proper correlation with

ground truth trajectories. In addition, it was proposed a fusion model that simulates

normal and pathological gait patterns from learned patient trajectories and physical

gait models. This dynamical analysis was also extended to delineate the prostate in

radiotherapy planning by warping a shape into a deformation model according to a set

of observations.

The set of computational tools of this computational framework has opened new ways

to motion analysis. Regarding human and animal motion analysis, the proposed strate-

gies calculated salient dynamic patterns without altering the natural gestures of motion.

This kind of analysis also characterizes particular patterns under non-controlled sce-
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narios in surveillance applications. From biomedical analysis standpoint, the proposed

strategies correlated physiological heart conditions with captured motion patterns, and

identify and measure neoplastic polyps in typical endoscopy routine. These analysis

may be useful as a support to diagnosis and can be easily integrated with common

routine analysis. Finally, the dynamical analysis herein proposed was extended to seg-

mentation task, classical treated from an appearance analysis perspective, obtaining

remarkable results.

5.1 Perspectives

This thesis was developed attempting to construct a computational framework for

quantitative and qualitative motion analysis, emulating main perception mechanisms.

The analogy with visual systems has resulted in an efficient characterization of natural

dynamic patterns, even in noisy scenarios. Yet understanding of these complex mecha-

nisms has recently dramatically increased, many visual mechanisms are still unknown.

Therefore, new motion perception areas would allow to complement the proposed com-

putational framework and characterize dynamic patterns in terms of efficiency and

robust representation. Overall, during this work several artificial problems were at-

tacked proposing new directions. Some of them might be:

1. Discovering hidden dynamic patterns: Classical motion analysis attempts

to capture specific motion trajectories from noisy measures. However it is well

accepted that particular motion patterns come from hidden complex relationships

among different subsystems and their interaction with the environment. In this

work, motion patterns were captured from a markerless standpoint, achieving a

better understanding of particular dynamics. Additional researches aimed to the

discovery of new spatio-temporal relationships of objects in motion will permits

the suitable analysis of pathological and abnormal trajectories correlated with

physiological conditions or singular behaviours.

2. Efficient motion representations:

A remarkable characteristic of the visual systems is their aptness to efficiently

represent the world with a minimum number of primitives. A series of poorly

understood mechanisms highlights the salient information, reconstructing infor-

mation in very noisy and occluded scenarios. An important line of research in

the future should then be directly related with emulating visual models and for-

mulating representations that allow a robust capture of dynamic patterns and

prediction of complex patterns of objects in motion.
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3. Fusion to build robust priors:

In real scenarios, any task is usually accomplished using two sources of informa-

tion, actual observations and a sort of world models. The fusion of multimodal

sources of information can lead to a better characterization of complex motions.

Such multimodal analysis can be extended to diverse scenarios in which the ob-

ject is followed from different point of views. For instance, the combination of

kinematic, kinetic and consumption energy patterns may facilitate the diagnosis,

treatment and following of pathological gait patterns. Also the heart function can

be better understoog by combining different medical sequence modalities such as

tagged images, cine-MRI sequences and echo-cardiograms.

4. Development of tools to quantify and analyze motion in real scenarios

Overall, the framework proposed in this work have solved real problems in di-

verse scenarios. In other bio-medical applications, the proposed analysis can

support the diagnosis and following up of several pathologies of the motor sys-

tem. Such strategies may be used in an on-line fashion to quantitatively cap-

ture regions in motion. In other contexts, motion analysis strategies can be

directly applied to remotely monitoring human activities useful in surveillance

and telemedicine/healthcare applications.

5. Performance validation in other scenarios and large datasets

Motion analysis is a very relevant topic in many areas since the dynamic pattern

characterization results fundamental in problems such as tracking, recognition

or classification, among others. Although a wide spectrum of applications was

herein covered, many other scenarios would take advantage of the experience

herein developed to complement classical approaches or to solve problems from

a dynamical analysis perspective. Since the herein approached problems present

a large variability, a extended validation with other datasets also may be useful

to reach significant statistical conclusions and to capture additional patterns.
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2
o, F.: Towards automatic polyp de-

tection with a polyp appearance model. In: Pattern Recognition 45 (2012), Nr.

9, S. 3166 – 3182. – ISSN 0031–3203. – Best Papers of Iberian Conference on

Pattern Recognition and Image Analysis (IbPRIA’2011)

[32] Bilmes, Jeff: A Gentle Tutorial of the EM Algorithm and its Application to

Parameter Estimation for Gaussian Mixture and Hidden Markov Models. In:

Tech. Rep. (1998)

[33] Blickhan, R.: The Spring-mass model for running and hopping. In: Journal

of Biomechanics 22 (1989), S. 1217 – 1227

[34] Bobick, A. ; Davis, J.: Real-time recognition of activity using temporal tem-

plates. In: Applications of Computer Vision, 1996. WACV ’96., Proceedings 3rd

IEEE Workshop on (1996), dec., S. 39 –42. http://dx.doi.org/10.1109/ACV.

1996.571995. – DOI 10.1109/ACV.1996.571995

[35] Bobick, Aaron F. ; Davis, James W.: The Recognition of Human Movement

Using Temporal Templates. In: IEEE Trans. Pattern Anal. Mach. Intell. 23

(2001), März, Nr. 3, 257–267. http://dx.doi.org/10.1109/34.910878. – DOI

10.1109/34.910878. – ISSN 0162–8828

[36] Bomphrey, Richard J.: Advances in Animal Flight Aerodynamics Through

Flow Measurement. In: Evolutionary Biology. 39(1) (2011), S. 1–11



Bibliography 153

[37] Borges, P.V.K. ; Conci, N. ; Cavallaro, A: Video-Based Human Behavior

Understanding: A Survey. In: Circuits and Systems for Video Technology, IEEE

Transactions on 23 (2013), Nov, Nr. 11, S. 1993–2008. http://dx.doi.org/

10.1109/TCSVT.2013.2270402. – DOI 10.1109/TCSVT.2013.2270402. – ISSN

1051–8215

[38] Bos, F. M. ; Lentink, D. ; Van Oudheusden, B. W. ; Bijl, H.: Influence

of wing kinematics on aerodynamic performance in hovering insect flight. In:

Journal of fluid mechanics 594(1) (2008), S. 341–368

[39] Boyd, Jeffrey E.: Synchronization of Oscillations for Machine Percep-

tion of Gaits. In: Comput. Vis. Image Underst. 96 (2004), Oktober,

Nr. 1, 35–59. http://dx.doi.org/10.1016/j.cviu.2004.04.004. – DOI

10.1016/j.cviu.2004.04.004. – ISSN 1077–3142

[40] Buczek, Frank L. ; Cooney, Kevin M. ; Walker, Matthew R. ; Rainbow,

Michael J. ; Concha, M. C. ; Sanders, James O.: Performance of an inverted

pendulum model directly applied to normal human gait. In: Clinical Biome-

chanics 21 (2006), Nr. 3, S. 288 – 296. http://dx.doi.org/DOI:10.1016/j.

clinbiomech.2005.10.007. – DOI DOI: 10.1016/j.clinbiomech.2005.10.007. –

ISSN 0268–0033

[41] Burges, Christopher J. C.: A tutorial on support vector machines for pattern

recognition. In: Data Mining and Knowledge Discovery 2 (1998), S. 121–167

[42] Bussey, T J. ; Saksida, L M.: Memory, perception, and the ventral visual-

perirhinal-hippocampal stream: thinking outside of the boxes. In: Hippocampus

17 (2007), Nr. 9, S. 898–908

[43] Canny, John: A Computational Approach to Edge Detection. In: Pattern

Analysis and Machine Intelligence, IEEE Transactions on PAMI-8 (1986), Nr.

6, S. 679–698. http://dx.doi.org/10.1109/TPAMI.1986.4767851. – DOI

10.1109/TPAMI.1986.4767851. – ISSN 0162–8828

[44] Canny, John: A Computational Approach to Edge Detection. In: Pattern

Analysis and Machine Intelligence, IEEE Transactions on PAMI-8 (1986), Nov,

Nr. 6, S. 679–698. http://dx.doi.org/10.1109/TPAMI.1986.4767851. – DOI

10.1109/TPAMI.1986.4767851. – ISSN 0162–8828

[45] Cao, T. ; Wu, X. ; Guo, J. ; Yu, S. ; Xu, Y.: Abnormal crowd motion analysis.

In: Int. Conf. on Robotics and Biomimetics, 2009, S. 1709–1714



154 Bibliography

[46] Cao, Xiaochun ; Zhang, Hua ; Deng, Chao ; Liu, Qiguang ; Liu, Hanyu: Ac-

tion Recognition Using 3D DAISY Descriptor. In: Mach. Vision Appl. 25 (2014),

Januar, Nr. 1, 159–171. http://dx.doi.org/10.1007/s00138-013-0545-6. –

DOI 10.1007/s00138–013–0545–6. – ISSN 0932–8092

[47] Carson, M.C. ; Harrington, M.E. ; Thompson, N. ; O’Connor, J.J. ;

Theologis, T.N.: Kinematic analysis of a multi-segment foot model for research

and clinical applications: a repeatability analysis. In: Journal of Biomechanics

34 (2001), S. 1299Ã¯Â¿Â1
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