Transformadas de distancias discretas: Algoritmos y aplicaciones

Antoine Manzanera ENSTA ParisTech

- The second sec

Introducción

Formalismo, Definiciones y Notaciones Transformadas de distancia: Algoritmos Aplicaciones de las transformadas de distancia Conclusión

Objetivos del curso

- Introducción a la geometría discreta.
 - Distancia discreta
 - Topología discreta
- Transformada de distancia discreta: Algoritmos
 - Distancias relacionadas a la topología
 - Distancias casi euclidianas
- Transformada de distancia discreta: Aplicaciones
 - Análisis de imágenes: filtrado, segmentación
 - Representación de patrones: código, reconocimiento

Introducción

Formalismo, Definiciones y Notaciones Transformadas de distancia: Algoritmos Aplicaciones de las transformadas de distancia Conclusión

Problemática

La función distancia o «Transformada de distancia» es relacionada a un objeto (o conjunto, o patrón) X en un espacio E. Asocia a cada elemento de X su distancia al complementario de X en E: $X^c = E \setminus X$. Esta función está obviamente vinculada a una distancia d definida sobre $E \times E$. Nos interesamos en el cálculo de esta función en el espacio E discreto, asi como su uso.

Narpula Scobie Narrapula - Women's

body ceremony (Australia)

ln trodu cción

Formalismo, Definiciones y Notaciones Transformadas de distancia: Algoritmos Aplicaciones de las transformadas de distancia Conclusión

Applicaciones

- Procesamiento de imágenes.
 - Filtrados: operadores morfológicos
 - Segmentación: Zonas de influencia
 - Evolución de regiones o contornos activos
- Representación de patrones.
 - Esqueletos
 - Código, compresión
 - Reconocimiento, indexación

Introducción

Formalismo, Definiciones y Notaciones Transformadas de distancia: Algoritmos Aplicaciones de las transformadas de distancia Conclusión

Índice

- 1 Formalismo, Definiciones y Notaciones
 - Teselaciones y Imágenes discretas
 - Topologías en la malla cuadrada
 - Distancias en \mathbb{Z}^n
- 2 Transformadas de distancia: Algoritmos
 - Algoritmos básicos
 - Distancias casi euclidianas
- 3 Aplicaciones de las transformadas de distancia
 - Operadores morfológicos
 - Esqueleto morfológico y erosión última
 - Esqueletos conexos multi escala

4 Conclusión

Teselaciones y Imágenes discretas Topologías en la malla cuadrada Distancias en Zⁿ

Índice

- Formalismo, Definiciones y Notaciones
 - Teselaciones y Imágenes discretas
 - Topologías en la malla cuadrada
 - Distancias en \mathbb{Z}^n
- 💿 Transformadas de distancia: Algoritmos
 - Algoritmos básicos
 - Distancias casi euclidianas
- 3 Aplicaciones de las transformadas de distancia
 - Operadores morfológicos
 - Esqueleto morfológico y erosión última
 - Esqueletos conexos multi escala

4 Conclusión

Teselación del espacio

Teselaciones y Imágenes discretas Topologías en la malla cuadrada Distancias en \mathbb{Z}^n

Una teselación es una *partición* del espacio \mathbb{R}^n en un conjunto de partidas $\{P_i\}_{i\in I}$:

•
$$\bigcup_{i\in I} P_i = \mathbb{R}^n$$

•
$$\forall (i,j) \in I^2, P_i \cap P_j = \emptyset$$

Las *P_i* son denominadas *teselas* (o píxeles, o vóxeles).

Pajarita - Alhambra (Granada)

Teselación aperiódica de Penrose

A (10) < (10) </p>

Teselaciones y Imágenes discretas Topologías en la malla cuadrada Distancias en \mathbb{Z}^n

Teselación del plano

En el caso del plano \mathbb{R}^2 , solo existen 3 *teselaciones regulares*, es decir que respetan las condiciones siguientes:

- los P_i son todos idénticos.
- los P_i son polígonos regulares (i.e. convexos, lados iguales, ángulos iguales).
- cada vértice de P_i está en contacto con otros vértices.

Teselaciones y Imágenes discretas Topologías en la malla cuadrada Distancias en \mathbb{Z}^n

Teselación y grafo

A toda teselación se puede associar un *grafo* cuyos *vértices* representan las teselas, y cuyas *aristas* representan la relación de adyacencia entre teselas (2 teselas son *adyacentes* si comparten un lado). Un tal grafo es denominado *malla* del plano.

Teselación y mallas regulares son representaciones duales del plano discreto:

4 **A b b b b b**

Teselaciones y Imágenes discretas Topologías en la malla cuadrada Distancias en \mathbb{Z}^n

Propriedades de las teselaciones regulares

La elección del tipo de teselación regular en análisis de imagenes se hace según ciertas propriedades:

- Conformidad a la geometría del sensor.
- Recursividad (multi-resolución).
- Número de direcciones representadas.
- Extensión a las dimensiones superiores.
- Representación en \mathbb{Z}^n .

Teselaciones y Imágenes discretas Topologías en la malla cuadrada Distancias en \mathbb{Z}^n

La malla cúbica

Por esas razones, la malla cadruada (en 2d), o cúbica (en 3d) es la mas usada en análisis de imágenes.

El espacio discreto está, pues, representado por \mathbb{Z}^n .

Un $p(xel (2d) \circ v \delta xel (3d) es un elemento de <math>\mathbb{Z}^n$.

Teselación 2d

Malla 2d

Teselación 3d

Malla 3d

Teselaciones y Imágenes discretas. Topologías en la malla cuadrada Distancias en \mathbb{Z}^n

Imágen binaria

Presentación «Teselas»

Presentación «Malla»

Sea \mathbb{Z}^n el espacio discreto.

Una imágen binaria I está definida como un subconjunto de \mathbb{Z}^n :

$$I \subset \mathbb{Z}^n$$

El píxel $p \in \mathbb{Z}^n$ está representado en negro si y solo si $p \in I$.

lmágen digital

Teselaciones y Imágenes discretas Topologías en la malla cuadrada Distancias en \mathbb{Z}^n

Sea \mathbb{Z}^n el espacio discreto. Una imágen digital F está definida como una función de \mathbb{Z}^n de valores enteras: $F: \mathbb{Z}^n \to \mathbb{N}$ El píxel $p \in \mathbb{Z}^n$ está representado con un

nivel de gris proporcional a F(p).

_										
_				_		_				
_										
_		_								
_		_								
_										

Teselaciones y Imágenes discretas Topologías en la malla cuadrada Distancias en \mathbb{Z}^n

Topologías en la malla cuadrada

La topología en las imágenes discretas está definida a partir de la relación de conectividad inducida por el grafo de la malla (X, S), donde X representa los vértices y S las aristas.

$$X\subset \mathbb{Z}^2$$
; $S\subset X^2$

Sean x e y 2 puntos de X, por definición x e y son adyacentes si:

$$x \approx y \Leftrightarrow (x, y) \in S$$

En la malla cuadrada, 2 tipos de relaciones de adyacencia poden ser considerados:

Teselaciones y Imágenes discretas Topologías en la malla cuadrada Distancias en \mathbb{Z}^n

Caminos y componentes conexos

La cerradura transitiva de la relación de adyacencia \approx es una relación de equivalencia: «existe un *camino conexo* entre x e y» :

 $x \sim y \Leftrightarrow \exists \{x_1, \ldots, x_n\}, x \approx x_1, \ldots, x_i \approx x_{i+1}, \ldots, x_n \approx y$

Camino 4-conexo Camino 8-conexo

Las clases de equivalencia de la relación « \sim » se denominan las componentes conexas de X.

イロト イポト イヨト イヨト

Teselaciones y Imágenes discretas Topologías en la malla cuadrada Distancias en \mathbb{Z}^n

Huecos y Teorema de Jordan

En la malla cuadrada, la noción de hueco en un conjunto X $(X \subset \mathbb{Z}^2)$, que debe corresponder a una componente conexa finita del complementario X^c , no está bien definida...

8-conectividad 4-conectividad

Teselaciones y Imágenes discretas Topologías en la malla cuadrada Distancias en \mathbb{Z}^n

Huecos y Teorema de Jordan

...a no ser que se considere diferentes tipos de conectividad para X y para X^c :

El Teorema de Jordan es valido por la (8-4)-conectividad y por la (4,8)conectividad.

8-conectividad 4-conectividad

Teselaciones y Imágenes discretas Topologías en la malla cuadrada Distancias en \mathbb{Z}^n

Huecos y Teorema de Jordan

Ejemplo : ¿ Cuantas componentes conexas, y cuantos huecos, (1) por la (8-4)-conectividad, (2) por la (4,8)-conectividad ?

Teselaciones y Imágenes discretas Topologías en la malla cuadrada Distancias en \mathbb{Z}^n

Distancias y bolas discretas

Distancia en \mathbb{Z}^n

$$d: \mathbb{Z}^n \times \mathbb{Z}^n \text{ es una } distancia \\ \Leftrightarrow \begin{cases} d(x, y) = d(y, x) \\ d(x, y) = 0 \Leftrightarrow x = y \\ d(x, z) \le d(x, y) + d(y, z) \end{cases}$$

Bola discreta

Sea *d* una distancia de \mathbb{Z}^n , $x \in \mathbb{Z}^n$, $r \in \mathbb{N}$. La *bola* de centro x y de radio *r* está definida por: $B_r^d(x) = \{y \in \mathbb{Z}^n; d(x, y) \le r\}.$

イロト イポト イヨト イヨト

Teselaciones y Imágenes discretas Topologías en la malla cuadrada Distancias en \mathbb{Z}^n

Distancia euclidiana

Distancia euclidiana en \mathbb{Z}^2

$$d_E(x,y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$$

 $d_{\mathcal{E}}(A,B) = \sqrt{5^2 + 3^2} = \sqrt{34} \qquad B_{\sqrt{10}}^{d_{\mathcal{E}}}(C) = \{y \in \mathbb{Z}^n; d_{\mathcal{E}}(C,y) \le \sqrt{10}\}$

(日) (同) (目) (日)

Distancia d_4

Teselaciones y Imágenes discretas Topologías en la malla cuadrada Distancias en \mathbb{Z}^n

Si se define la distancia entre 2 puntos x e y como la largura del camino conexo mas corto entre x e y, la topología 4-conexa induce una distancia d_4 . Ponderando todas las aristas del grafo de la malla por el valor 1, resulta:

Distancia d_4 en \mathbb{Z}^2 $d_4(x,y) = |x_1 - y_1| + |x_2 - y_2|$

イロト イポト イヨト イヨト

Teselaciones y Imágenes discretas Topologías en la malla cuadrada Distancias en \mathbb{Z}^n

Distancia d_4

Distancia d_4 en \mathbb{Z}^2

$$d_4(x,y) = |x_1 - y_1| + |x_2 - y_2|$$

 $d_4(A,B) = 5 + 3 = 8$ $B_3^{d_4}(C) = \{y \in \mathbb{Z}^n; d_4(C,y) \le 3\}$

(日) (同) (日) (日) (日)

Teselaciones y Imágenes discretas Topologías en la malla cuadrada Distancias en \mathbb{Z}^n

Distance d_8

Del mismo modo la topología 8-conexa induce una distancia d_8 definida por:

Distancia d_8 en \mathbb{Z}^2

 $d_8(x,y) = \max(|x_1 - y_1|, |x_2 - y_2|)$

 $d_4(A,B) = \max(5,3) = 5$ $B_3^{d_8}(C) = \{y \in \mathbb{Z}^n ; d_8(C,y) \le 3\}$

Algoritmos básicos Distancias casi euclidianas

Índice

- Formalismo, Definiciones y Notaciones
 - Teselaciones y Imágenes discretas
 - Topologías en la malla cuadrada
 - Distancias en Zⁿ
- 2 Transformadas de distancia: Algoritmos
 - Algoritmos básicos
 - Distancias casi euclidianas
- 3 Aplicaciones de las transformadas de distancia
 - Operadores morfológicos
 - Esqueleto morfológico y erosión última
 - Esqueletos conexos multi escala

4 Conclusión

Algoritmos básicos Distancias casi euclidianas

Transformada de distancia

Transformada de distancia

Sea *d* una distancia en \mathbb{Z}^n , $X \subset \mathbb{Z}^n$ una imágen binaria. La *transformada de distancia* f_d^X está definida por : $f_d^X : \mathbb{Z}^n \to \mathbb{N}$ $x \mapsto d(x, X^c)$

・ 同 ト ・ ヨ ト ・ ヨ ト

Algoritmos básicos Distancias casi euclidianas

Transformada de distancia d_4

Sea X una imágen binaria de dimensiones $W \times H$. La transformada de distancia d_4 sobre X está calculada por el algoritmo recursivo siguiente, según 2 secuencias sucesivas : (1) Secuencia causal

for j = 1 to H
for i = 1 to W
if
$$(i,j) \in X : F_4^X(i,j) = \infty$$
;
else $F_4^X(i,j) = 0$
 $F_4^X(i,j) = \min(F_4^X(i,j), F_4^X(i-1,j)+1, F_4^X(i,j-1)+1)$;
endfor

endfor

Algoritmos básicos Distancias casi euclidianas

Transformada de distancia d_4

(2) Sequencia anticausal

for j = H downto 1
for i = W downto 1

$$F_4^X(i,j) = \min(F_4^X(i,j), F_4^X(i+1,j)+1, F_4^X(i+1,j)+1);$$

endfor
endfor

La complexidad del algoritmo es de 2 comparaciones por píxel.

Algoritmos básicos Distancias casi euclidianas

Transformada de distancia d_4 : ilustración

0	0	0	0	0	0	0	0
0	80	-00	80	-00	8		0
0	00	~	00	~		~	0
0	~	~	0	0		~	0
0	00	~~	00	~~		~	0
0	~	~	~	~		~	0
0	0	0	0	0	0	0	0

0	0	0	0	0	0	0	0
0	1	1	1	1	1	1	0
0	1	2	2	2	2	2	0
0	1	2	0	0	1	2	0
0	1	2	1	1	2	3	0
0	1	2	2	2	3	4	0
0	0	0	0	0	0	0	0

0	0	0	0	0	0	0	0
0	1	1	1	1	1	1	0
0	1	2	1	1	2	1	0
0	1	1	0	0	1	1	0
0	1	2	1	1	2	1	0
0	1	1	1	1	1	1	0
0	0	0	0	0	0	0	0

(0) Initialización

(1) Después secuencia causal

(2) Después 2 secuencias

A B A A B

Algoritmos básicos Distancias casi euclidianas

Transformada de distancia d_4 : ilustración

Algoritmos básicos Distancias casi euclidianas

Transformada de distancia d_4 : illustración

• • = • • =

Algoritmos básicos Distancias casi euclidianas

Transformada de distancia d_4 : ilustración

lzquierda: transformada de distancia d_4 del complementario de un conjunto reducido a un píxel (centro de la imágen).

Derecha: lineas de niveles r (en color) de la transformada de distancia : círculos discretos de radios r.

Algoritmos básicos Distancias casi euclidianas

Transformada de distancia d_8

Del mismo modo, la transformada de distancia d₈ sobre una imágen binaria X se calcula de la manera siguiente: (1) Secuencia causal

,

•

for j = 1 to H
for i = 1 to W
if
$$(i,j) \in X : F_8^X(i,j) = \infty$$
;
else $F_8^X(i,j) = 0$;
 $F_8^X(i,j) = \min(F_8^X(i,j), F_8^X(i-1,j-1) + 1, F_8^X(i,j-1) + 1, F_8^X(i+1,j-1) + 1, F_8^X(i-1,j) + 1)$;

Image: A matrix and a matrix

endfor endfor

Algoritmos básicos Distancias casi euclidianas

Transformada de distancia d_8

(2) Secuencia anticausal

for j = H downto 1
for i = W downto 1

$$F_8^X(i,j) = \min(F_8^X(i,j), F_8^X(i+1,j+1)+1, F_8^X(i,j+1)+1, F_8^X(i-1,j+1)+1, F_8^X(i-1,j+1)+1, F_8^X(i+1,j)+1);$$

endfor

・ 同 ト ・ ヨ ト ・ ヨ

endfor

La complexidad del algoritmo es de 4 comparaciones por píxel.

Algoritmos básicos Distancias casi euclidianas

Transformada de distancia *d*₈: ilustración

• = • •

34/109

Algoritmos básicos Distancias casi euclidianas

Transformada de distancia d₈: ilustración

lzquierda: transformada de distancia d_8 del complementario de un conjunto reducido a un píxel (centro de la imágen).

Derecha: lineas de niveles r (en color) de la transformada de distancia : círculos discretos de radios r.

A (1) > A (1) > A

Algoritmos básicos Distancias casi euclidianas

Comparación distancias d_4 y d_8

transformada de distancia d_4

transformada de distancia d_8

36 / 109
Distancias de chamfer

Algoritmos básicos Distancias casi euclidianas

Las distancias de chamfer son una tentativa por reducir el carácter anisotrópico de las distancias d_4 et d_8 , y por acercarse de la distancia euclidiana. El principio consiste tambien en definir la distancia como la largura del camino mas corto entre dos puntos, pero con una ponderación de las aristas diferente según el tipo. Por ejemplo, la distancia de chamfer d_{3-4} (arriba) Tambien se puede considerar mallas mas complexas, i.e. vecindades mas grandes: d_{5-7-11}

(*medio*), o aún $d_{14-20-31-44}$ (*abajo*).

Algoritmos básicos Distancias casi euclidianas

Transformada de distancia d_{3-4}

Por ejemplo, la transformada de distancia d₃₋₄ sobre una imágen binaria X se calcula de la manera siguiente: (1) Sequencia causal

for j = 1 to H
for i = 1 to W
if
$$(i,j) \in X : F_{3-4}^{X}(i,j) = \infty;$$

else $F_{3-4}^{X}(i,j) = 0;$
 $F_{3-4}^{X}(i,j) = \min(F_{3-4}^{X}(i,j), F_{3-4}^{X}(i-1,j-1) + 4, F_{3-4}^{X}(i,j-1) + 3, F_{3-4}^{X}(i+1,j-1) + 4, F_{3-4}^{X}(i-1,j) + 3);$

・ 同 ト ・ 三 ト ・ 三

endfor endfor

Algoritmos básicos Distancias casi euclidianas

Transformada de distancia d_{3-4}

(2) Secuencia anticausal

for j = H downto 1
for i = W downto 1
$$F_{3-4}^{X}(i,j) = \frac{1}{3} \times \min(F_{3-4}^{X}(i,j), F_{3-4}^{X}(i+1,j+1)+4, F_{3-4}^{X}(i,j+1)+3, F_{3-4}^{X}(i-1,j+1)+4, F_{3-4}^{X}(i-1,j+1)+4, F_{3-4}^{X}(i+1,j)+3);$$

endfor

endfor

La complexidad del algoritmo es de 4 comparaciones por píxel. Observe la división por 3 para normalizar.

Algoritmos básicos Distancias casi euclidianas

Distancias de chamfer: ilustraciones

transformada de distancia d_{3-4}

transformada de distancia d_{5-7-11}

Algoritmos básicos Distancias casi euclidianas

Distancias de chamfer: ilustraciones

Máscaras de cálculo (causal) y transformada de distancia del complementario del píxel central, por las 3 primeras distancias de chamfer.

Algoritmos básicos Distancias casi euclidianas

Distancias de chamfer: ilustraciones

Máscaras de cálculo (causal) et círculos discretos (radios 25, 75 et 125), por las 3 primeras distancias de chamfer.

・ロト ・ 同ト ・ ヨト ・ 日

Algoritmos básicos Distancias casi euclidianas

Transformada de distancia euclidiana

Problema: ¿ Puede calcularse una transformada de distancia euclidiana *exacta* sobre cualquiera imágen binaria *X* por una secuencia de pasadas involviendo únicamente cálculos el la vecindad 3 × 3 ? **Respuesta :** ¡ NO !

・ロト ・ 同ト ・ ヨト ・ ヨト

Algoritmos básicos Distancias casi euclidianas

Transformada de distancia euclidiana

 $\begin{aligned} &d_E(R_1,A) < d_E(R_1,B), \\ &d_E(R_2,C) < d_E(R_2,B) \text{ pero} \\ &d_E(Q,B) < d_E(Q,A) \text{ y} \\ &d_E(Q,B) < d_E(Q,C). \\ &\text{Entonces no se puede decidir localmente de la transformada de distancia en el punto } Q. \end{aligned}$

.

Algoritmos básicos Distancias casi euclidianas

Algoritmo de Danielsson-Leymarie

Sin embargo, se puede calcular de esta forma una muy buena aproximación de la transformada de distancia euclidiana.

El algoritmo de Danielsson-Leymarie (DL) consiste en calcular, por cada píxel (x, y) de X, las coordenadas relativas $(R_x(x, y), R_y(x, y))$ del píxel de contorno mas cercano, es decir que el píxel de X^c lo mas cerca de (x, y) habra coordenadas $(x + R_x(x, y), y + R_y(x, y))$. La transformada de distancia euclidiana de (x, y) vale entonces: $F_F^x(x, y) = \sqrt{R_x(x, y)^2 + R_y(x, y)^2}$

Algoritmos básicos Distancias casi euclidianas

Algoritmo de Danielsson-Leymarie

El algoritmo DL propaga, por cálculos recursivos, los valores de las coordenadas relativas (R_x, R_y) .

46 / 109

Algoritmos básicos Distancias casi euclidianas

Algoritmo de Danielsson-Leymarie

El cuadrado de la transformada de distancia euclidiana es calculado por sumación marginal: cuando un número z aumenta de 1, su cuadrado aumenta de 2z + 1.

$$\begin{aligned} (|R_x| + |a|)^2 + (|R_y| + |b|)^2 &= \\ R_x^2 + R_y^2 + 2|aR_x| + 2|bR_y| + a^2 + b^2 \\ \text{Entonces:} \\ F_E^X (x+a, y+b)^2 &= F_E^X (x, y)^2 + 2|aR_x| + 2|bR_y| + a^2 + b^2 \end{aligned}$$

・ 同 ト ・ 三 ト ・ 三

Algoritmos básicos Distancias casi euclidianas

Algoritmo de Danielsson-Leymarie

Notaciones: Se denota la vecindad causal $V^- = \{(-1, -1), (0, -1), (+1, -1), (-1, 0)\}$, y la vecindad anticausal $V^+ = \{(+1, 0), (-1, +1), (0, +1), (+1, +1)\}$. Se denota $\Delta f^{(a,b)}(x, y) = 2(|aR_x(x + a, y + b)| + |bR_y(x + a, y + b)|) + a^2 + b^2$ el aumentación marginal dal cuadrado de la transformada de distancia euclidiana al pasar del punto (x + a, y + b) al punto (x, y).

Algoritmos básicos Distancias casi euclidianas

Algoritmo de Danielsson-Leymarie

Inicialización

por cada píxel (x, y): si $(x, y) \notin X$: {f(x, y) = 0; $R_x(x, y) = 0$; $R_y(x, y) = 0$; } si $(x, y) \in X$: { $f(x, y) = \infty$; $R_x(x, y) = 0$; $R_y(x, y) = 0$; } Pasada causal por y de 0 a H: por x de 0 a W: (1) $(a,b) = \arg \min_{(u,v) \in V^-} [f(x+u,y+v) + \Delta f^{(u,v)}(x,y)]$ (2) $R_x(x, y) = R_x(x + a, y + b) + a$ $R_{v}(x,y) = R_{v}(x+a,y+b) + b$ (3) $f(x, y) = f(x + a, y + b) + \Delta f^{(a,b)}(x, y)$

b) 4 30

Algoritmos básicos Distancias casi euclidianas

Algoritmo de Danielsson-Leymarie

Pasada anticausal

por y de H a 0 :
por x de W a 0 :
(1)
$$(a, b) = \arg \min_{(u,v) \in V^+} [f(x + u, y + v) + \Delta f^{(u,v)}(x, y)]$$

(2) $R_x(x, y) = R_x(x + a, y + b) + a$
 $R_y(x, y) = R_y(x + a, y + b) + b$
(3) $f(x, y) = f(x + a, y + b) + \Delta f^{(a,b)}(x, y)$

A = A A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Algoritmos básicos Distancias casi euclidianas

Algoritmo de Danielsson-Leymarie

En realidad, las 2 pasadas producen errores en los valores de la transformada de distancia, que pueden ser corregidos por pasadas suplementales:

5	4	5	8	13	20	29	40	53	74	89
2	1	2	5	10	17	26	37	52	65	80
1	0	1	4	9	16	25	34	45	58	73
1	0	1	4	8	13	20	29	40	53	68
1	0	1	2	5	10	17	26	37	50	65
2	1	0	1	4	9	16	25	36	49	64
4	1	0	1	4	9	16	25	36	49	64
4	1	0	1	4	9	16	25	36	49	64

transformada de distancia obtenida después de 2 pasadas:

El valor «52» del píxel está atribuida por referencia al vecino con valor «34» : $34 = 25 + 9(R_x = -5; R_y = +3)$, y entonces $52 = 36 + 16(R_x = -5 - 1; R_y = +3 + 1)$, por qué el valor «37» solo aparece después de la segunda pasada (anticausal).

4 日 5 - 4 周 5 - 4 戸 5 - 4 戸 5

Algoritmos básicos Distancias casi euclidianas

Algoritmo de Danielsson-Leymarie

2 pasadas suplementales aumentan la precisión:

-										
5	4	5	8	13	20	29	40	53	68	85
2	1	2	5	10	17	26	37	50	65	80
1	0	1	4	9	16	25	34	45	58	73
1	0	1	4	8	13	20	29	40	53	68
1	0	1	2	5	10	17	26	37	50	65
2	1	0	1	4	9	16	25	36	49	64
4	1	0	1	4	9	16	25	36	49	64
4	1	0	1	4	9	16	25	36	49	64

transformada de distancia obtenida después de 4 pasadas:

El valor «50» del píxel está atribuida por referencia al vecino con valor «37» : 37 = 36 + $1(R_x = -6; R_y = +1)$ y entonces 50 = 49 + $1(R_x = -6 - 1; R_y = +1 + 0)$

4 日 5 - 4 周 5 - 4 戸 5 - 4 戸 5

Algoritmos básicos Distancias casi euclidianas

Algoritmo de Danielsson-Leymarie

Pasada causal ; con retorno cada línea por v de 0 a H: por x de 0 a W: (1) $(a,b) = \arg \min_{(u,v) \in V^-} [f(x+u,y+v) + \Delta f^{(u,v)}(x,y)]$ (2) $R_{x}(x, y) = R_{x}(x + a, y + b) + a$ $R_{v}(x,y) = R_{v}(x+a,y+b) + b$ (3) $f(x, y) = f(x + a, y + b) + \Delta f^{(a,b)}(x, y)$ por x de W a 0 : Si $f(x+1, y) + \Delta f^{(1,0)}(x, y) < f(x, y)$: $R_{x}(x,y) = R_{y}(x+1,y) + 1$; $R_{y}(x,y) = R_{y}(x+1,y)$ $f(x, y) = f(x + 1, y) + \Delta f^{(1,0)}(x, y)$

Algoritmos básicos Distancias casi euclidianas

Algoritmo de Danielsson-Leymarie

Pasada anticausal : con retorno cada línea por y de H = 0: por x de W = 0: (1) $(a, b) = \arg \min_{(u,v) \in V^+} [f(x + u, y + v) + \Delta f^{(u,v)}(x, y)]$ (2) $R_{x}(x, y) = R_{x}(x + a, y + b) + a$ $R_{v}(x,y) = R_{v}(x+a,y+b) + b$ (3) $f(x, y) = f(x + a, y + b) + \Delta f^{(a,b)}(x, y)$ por x de 0 a W: Si $f(x-1, y) + \Delta f^{(-1,0)}(x, y) < f(x, y)$: $R_{x}(x,y) = R_{y}(x-1,y) - 1$; $R_{y}(x,y) = R_{y}(x-1,y)$ $f(x, y) = f(x - 1, y) + \Delta f^{(-1,0)}(x, y)$

Algoritmos básicos Distancias casi euclidianas

Transformada de distancia euclidiana: ilustración

Transformada de distancia euclidiana calculada con el algoritmo DL (después del cálculo de la raiz cuadrada).

A = A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Algoritmos básicos Distancias casi euclidianas

Transformada de distancia euclidiana: ilustración

Transformada de distancia del complementario del píxel central, y círculos discretos (radios 25, 75 et 125), obtenidos con el algoritmo DL.

A (1) > A (1) > A

Operadores morfológicos Esqueleto morfológico y erosión última Esqueletos conexos multi escala

Índice

- Formalismo, Definiciones y Notaciones
 Teselaciones y Imágenes discretas
 Tenelogías en la malla suadrada
 - Topologías en la malla cuadrada
 - Distancias en Zⁿ
- 2 Transformadas de distancia: Algoritmos
 - Algoritmos básicos
 - Distancias casi euclidianas
- 3 Aplicaciones de las transformadas de distancia
 - Operadores morfológicos
 - Esqueleto morfológico y erosión última
 - Esqueletos conexos multi escala

Conclusión

Operadores morfológicos Esqueleto morfológico y erosión última Esqueletos conexos multi escala

Erosión y dilatación

El erosión y la dilatación son los operadores fundamentales del procesamiento morfológico de las imágenes. Sea $X \subset \mathbb{Z}^n$ una imágen binaria ; $B \subset \mathbb{Z}^n$ un elemento estructurante.

Erosión morfológica

$$\varepsilon_B(X) = \bigcap_{b \in B} X_{-b} = \{ z \in \mathbb{Z}^n; \forall b \in B, \exists x \in X : z = x - b \}$$

Dilatación morfológica

$$\delta_B(X) = \bigcup_{b \in B} X_{-b} = \{ z \in \mathbb{Z}^n; \exists b \in B, \exists x \in X : z = x - b \}$$

イロト イポト イヨト イヨト

Operadores morfológicos Esqueleto morfológico y erosión última Esqueletos conexos multi escala

Erosión y dilatación

Cuando el elemento estructurante *B* es una bola de la distancia *d* : $B_{\lambda}(x) = \{y \in \mathbb{Z}^n; d(x, y) \leq \lambda\}$, el erosión y la dilatación se calculan por *umbrales* de la transformada de distancia:

Erosión por una bola

$$\varepsilon_{B_{\lambda}}(X) = \{z \in \mathbb{Z}^n; d(z, X^c) \geq \lambda\}$$

Dilatación por una bola

$$\delta_{B_{\lambda}}(X) = \{z \in \mathbb{Z}^n; d(z, X) < \lambda\}$$

Operadores morfológicos Esqueleto morfológico y erosión última Esqueletos conexos multi escala

Erosión morfológica

Erosión por una bola euclidiana de radio $\lambda = 20$:

(日) (同) (日) (日) (日)

Operadores morfológicos Esqueleto morfológico y erosión última Esqueletos conexos multi escala

Dilatación morfológica

Dilatación por une bola euclidiana de radio $\lambda = 50$:

Operadores morfológicos Esqueleto morfológico y erosión última Esqueletos conexos multi escala

Máximos locales y máximos regionales

Máximos locales

Los máximos locales de una imágen digital F son los píxeles p cuyor valor F(p) es superior o igual a los de sus vecinos.

Máximos locales de una función digital 1d (azul).

A (1) > A (1) > A

Operadores morfológicos Esqueleto morfológico y erosión última Esqueletos conexos multi escala

Máximos locales y máximos regionales

Máximos regionales

Los *máximos regionales* de una imágen digital *F* son las «plataformas» (regiones conexas de valor constante), al borde de las cuales el valor *disminuye estrictamente*.

Máximos regionales de una función digital 1d (rojo).

Operadores morfológicos Esqueleto morfológico y erosión última Esqueletos conexos multi escala

Cálculo de los máximos locales

Los máximos locales se calculan *de manera local*. Son asociados a una topología: 4-conexa o 8-conexa :

Máximos locales 4-conexa

$$m_4(F) = \{z \in \mathbb{Z}^2; \forall q, d_4(q, z) = 1 : F(z) \geq F(q)\}$$

Máximos locales 8-conexa

$$m_8(F) = \{z \in \mathbb{Z}^2; \forall q, d_8(q, z) = 1 : F(z) \ge F(q)\}$$

イロト イポト イヨト イヨト

Operadores morfológicos Esqueleto morfológico y erosión última Esqueletos conexos multi escala

Cálculo de los maximos regionale 1/2

Los máximos regionales se calculan *de manera no local*. Por ejemplo, aquí está el algoritmo de cálculo de los máximos regionales 4-conexos.

(1) Inicialización de una cola (FIFO): máximos estrictos (i.e bordes de los máximos regionales) por y de 0 a H : por x de 0 a W : Si $\forall (a, b), |a| + |b| = 1, F(x, y) > F(x + a, y + b):$ $M_4 = M_4 \cup \{(x, y)\}$ $L = L \cup \{(x, y)\}$

Operadores morfológicos Esqueleto morfológico y erosión última Esqueletos conexos multi escala

Cálculo de los máximos regionales 2/2

(2) Exploración de la cola: propagación de los máximos por cada $(x, y) \in L$: por cada (a, b), |a| + |b| = 1, F(x, y) = F(x + a, y + b): Si $(x + a, y + b) \notin M_4$: $M_4 = M_4 \cup \{(x + a, y + b)\}$ $L = L \cup \{(x + a, y + b)\}$ $L = L \setminus \{(x, y)\}$

Al final, *M*₄ contiene los máximos regionales de *F*, en el sentido de la 4-conectividad.

Operadores morfológicos Esqueleto morfológico y erosión última Esqueletos conexos multi escala

Máximos locales y esqueletos morfológicos

Los máximos locales de la transformada de distancia coinciden con el conjunto de los centros de bolas máximas, denominado *esqueletos morfológicos*

Esqueletos morfológicos

$$S_d(X) = \{z \in \mathbb{Z}^2; \exists n \in \mathbb{N}, B_d(z, n) \subset X, \forall (q, m) \in \mathbb{Z}^2 \times \mathbb{N}, B_d(z, n) \subset B_d(q, m) \subset X \Rightarrow (q, m) = (z, n)\}$$

Propriedad

$$S_{d_4}(X) = m_4(F_4^X)$$

 $S_{d_8}(X) = m_8(F_8^X)$

Operadores morfológicos Esqueleto morfológico y erosión última Esqueletos conexos multi escala

Máximos locales y esqueletos morfológicos

Propriedad

$$S_{d_4}(X) = m_4(F_4^X)$$

 $S_{d_8}(X) = m_8(F_8^X)$

Operadores morfológicos Esqueleto morfológico y erosión última Esqueletos conexos multi escala

Máximos locales y esqueletos morfológicos

Aplicación : Código de una imágen binaria. El conocimiento de la transformada de distancia sobre el esqueleto morfológico provee una representacion compacta de la imágen binaria:

$$X = \bigcup_{z \in S_d(X)} B(z, F_d^X(z))$$

Operadores morfológicos Esqueleto morfológico y erosión última Esqueletos conexos multi escala

Esqueleto morfológico: ilustraciones

esqueleto morfológicos: negro (Imágen original X: gris).

Operadores morfológicos Esqueleto morfológico y erosión última Esqueletos conexos multi escala

Máximos regionales y erosión última

Los máximos regionales de la transformada de distancia d coinciden con el conjunto denominado *erodados últimos*, correspondiente a la únion de las componentes conexas que desaparecen enteramente bajo la acción de una secuencia de erosiones reiteradas por la bola de radio 1 de la distancia d.

71/109

Operadores morfológicos Esqueleto morfológico y erosión última Esqueletos conexos multi escala

Máximos regionales y erosión última

Aplicación: La erosión última sirve a singularizar partículas que se recubren mutualmente. *Ejemplo: enumeracion de células en análisis cuantitativo*

4 E N 4 E N 4 E N 4
Operadores morfológicos Esqueleto morfológico y erosión última Esqueletos conexos multi escala

Esqueletos euclidianos multi escala

Una de la mas potentes aplicaciones de las transformadas de distancia es el *esqueleto euclidiano multi escala*. El principio es el siguiente:

- Associar una etiqueta única a cada píxel de contorno.
- 2 Propagar el valor de las etiquetas a los píxeles mas cercanos.
- Calcular una función de choque local según la diferencia de etiquetas entre píxeles adyacentes.
- El esqueleto es obtenido por umbral de la función de choque.

マボン イラン イラ

Operadores morfológicos Esqueleto morfológico y erosión última Esqueletos conexos multi escala

Etiquetaje de contornos

Sea X una imágen binaria.

Contorno en 4-conectividad

$$\partial_X^4 = \{z \in X; \exists q, d_4(z,q) = 1, q \notin X\}$$

Contorno en 8-conectividad

$$\partial_X^8 = \{z \in X; \exists q, d_4(8,q) = 1, q \notin X\}$$

Observe: El contorno en 4-conectividad forma una curva cerrada 8-conexa por cada componente conexa de X. El contorno en 8-conectividad forma una curva cerrada 4-conexa por cada componente conexa de X.

イロト イポト イヨト イヨト

Operadores morfológicos Esqueleto morfológico y erosión última Esqueletos conexos multi escala

Etiquetaje de contornos

Sea X una imágen binaria. Sea ∂_X el contorno de X. El etiquetaje de contornos de X consiste en attribuir una pareja de etiquetas (Λ, λ) a cada píxel de ∂_X , tal como:

- Λ identifica las componentes conexas de ∂_X .
- λ attribuye un número distinto a cada píxel de cada componente, según cierto trayecto (e.g. sentido trigonométrico).

Operadores morfológicos Esqueleto morfológico y erosión última Esqueletos conexos multi escala

Etiquetaje de contornos: Λ

(日) (同) (日) (日) (日)

Operadores morfológicos Esqueleto morfológico y erosión última Esqueletos conexos multi escala

Etiquetaje de contornos: λ

→ 3 → < 3</p>

77 / 109

A D > A A P >

Operadores morfológicos Esqueleto morfológico y erosión última Esqueletos conexos multi escala

Etiquetaje de contornos 1/2

Inicialización

por y de 0 a H :
por x de 0 a W :
Si
$$(x, y) \in \partial_X^4$$

 $\Lambda(x, y) = \infty$
Indice = 0

(1日) (1日) (1日)

Operadores morfológicos Esqueleto morfológico y erosión última Esqueletos conexos multi escala

Etiquetaje de contornos 2/2

Exploración de los contornos conexos por y de 0 a H : por x de 0 a W : Si $\Lambda(x, y) = \infty$ Indice = Indice + 1 ; $\Lambda(x, y)$ = Indice ; Numero = 1 ; $\lambda(x, y)$ = Numero ; Mientras $\exists (x', y'), d_8((x, y), (x', y')) = 1, \Lambda(x', y') = \infty$ $\Lambda(x', y')$ = Indice ; Numero = Numero + 1 ; $\lambda(x', y')$ = Numero ; (x, y) = (x', y') ;

イロト イポト イヨト イヨト

Operadores morfológicos Esqueleto morfológico y erosión última Esqueletos conexos multi escala

Propagación de las etiquetas

La propagación de las etiquetas a los píxeles mas cercanos se hace simplemente usando el algoritmo de cálculo de la función distancia dsobre el complementario del contorno $(\partial_X)^c$, asociando a cada píxel (x, y) las coordenadas relativas $(R_x(x, y), R_y(x, y))$ del píxel de ∂_X el más cerca de (x, y).

Si *L* es una función etiqueta sobre ∂_X , la propagación de la etiqueta *L* según la distancia *d* es la función definida sobre *X* como sigue:

$$\Pi_d^L(x,y) = L(x + R_x, y + R_y)$$

Operadores morfológicos Esqueleto morfológico y erosión última Esqueletos conexos multi escala

Propagación de las etiquetas: Ilustración

 $\partial^4 X$

Operadores morfológicos Esqueleto morfológico y erosión última Esqueletos conexos multi escala

Propagación de las etiquetas: SKIZ et esqueletos

- La propagación de la etiqueta Λ (componente conexa) provee la partición de X en zonas de influencia (ou SKIZ).
- La propagación de la etiqueta λ (enumeración de contorno) calcula las zonas de influencia de cada píxel de ∂_X , lo que por diferenciación, proveerá el esqueleto de X.

Operadores morfológicos Esqueleto morfológico y erosión última Esqueletos conexos multi escala

Propagación de las etiquetas Λ : SKIZ

Operadores morfológicos Esqueleto morfológico y erosión última Esqueletos conexos multi escala

Propagación de las etiquetas λ

Operadores morfológicos Esqueleto morfológico y erosión última Esqueletos conexos multi escala

Propagación de las etiquetas: detalle

Operadores morfológicos Esqueleto morfológico y erosión última Esqueletos conexos multi escala

Propagación de las etiquetas: detalle

Operadores morfológicos Esqueleto morfológico y erosión última Esqueletos conexos multi escala

Función de choque

- La función de choque asocia a cada píxel p un valor proportional a la «lejanía» máxima entre el píxel de contorno correspondiente a la etiqueta de p y los que corresponden a la etiqueta de los píxeles adyacentes a p.
- La lejanía es asociada a una función de costo κ sobre ∂_X × ∂_X, donde cada píxel del contorno ∂_X está identificado por su pareja de etiquetas (Λ_X, λ_X).

Se denota $\mathcal{N}_X(p) = (p + R_x(p), p + R_y(p))$, i.e. el punto de ∂_X el más cerca de p.

4 日 5 - 4 周 5 - 4 戸 5 - 4 戸 5

Operadores morfológicos Esqueleto morfológico y erosión última Esqueletos conexos multi escala

Función de choque

Función de choque 8-conexa

$$S_8(p) = \max_{d_4(p,q)=1} \kappa(\mathcal{N}_X(p), \mathcal{N}_X(q))$$

Función de choque 4-conexa

$$S_4(p) = \max_{d_8(p,q)=1} \kappa(\mathcal{N}_X(p), \mathcal{N}_X(q))$$

Observe la dualidad: se calcula el valor máximo en la 4-vecindad para un esqueleto 8-conexo, y recíprocamente.

イロト イポト イヨト イヨト

Operadores morfológicos Esqueleto morfológico y erosión última Esqueletos conexos multi escala

Función de choque

La función de costo κ asociada es la *distancia geodésica* entre los dos píxeles $p_1 = \mathcal{N}_X(p)$ y $p_2 = \mathcal{N}_X(q)$ al largo del contorno ∂_X :

Función de costo «distancia geodésica»

 $\kappa(p_1,p_2)=d_{\partial_X}(p_1,p_2)$

イロト イポト イヨト イヨト

Operadores morfológicos Esqueleto morfológico y erosión última Esqueletos conexos multi escala

Función de choque

La función de choque se calcula muy simplemente comparando las etiquetas Λ_X y λ_X de los píxeles adyacentes:

(1) Si $\Lambda_X(p) \neq \Lambda_X(q)$, entonces p está a la frontera de una zona de influencia de un contorno conexa, y: $r(\Lambda_Y(p), \Lambda_Y(q)) = \infty$

Operadores morfológicos Esqueleto morfológico y erosión última Esqueletos conexos multi escala

Función de choque

(2) Si $\Lambda_X(p) = \Lambda_X(q)$ entonces la función de costo es igual a la diferencia de las etiquetas λ_X , módulo el número total de píxeles del contorno:

Función de costo simétrica

$$\kappa(\mathcal{N}_X(p),\mathcal{N}_X(q)) = |\Pi_E^{\lambda_X}(p) - \Pi_E^{\lambda_X}(q)|(\mod |\partial_X|)$$

Función de costo asimétrica

$$\kappa(\mathcal{N}_X(p),\mathcal{N}_X(q))=\Pi_E^{\lambda_X}(p)-\Pi_E^{\lambda_X}(q)(\mod |\partial_X|)$$

La función de costo simétrica produce un esqueleto centrado pero de espesor 2, la función de costo asimétrica produce un esqueleto de espesor 1, con un error posible de ubicación de medio píxel.

ヘロン 人間 とうせい 人口 とう

Operadores morfológicos Esqueleto morfológico y erosión última Esqueletos conexos multi escala

Función de choque

 $S_8(\Pi_E^{\lambda_X})$

Operadores morfológicos Esqueleto morfológico y erosión última Esqueletos conexos multi escala

Esqueleto multi escala

Una vez la función de choque S definida, el esqueleto de la escala σ está definido como el umbral de la función S al valor σ :

Esqueleto de la escala σ

 $Sk_{\sigma}(X) = \{z; S(z) \ge \sigma\}$

(1日) (1日) (1日)

Operadores morfológicos Esqueleto morfológico y erosión última Esqueletos conexos multi escala

Conectividad de los esqueletos multi escala

Propriedad: La función de choque asociada a la distancia geodésica al largo del contorno es *conexa-monótona*, es decir que por todo número entero n, el conjunto de los píxeles cuya función de choque es superior a n forma el mismo número de componentes conexas que la imágen X inicial.

Operadores morfológicos Esqueleto morfológico y erosión última Esqueletos conexos multi escala

Conectividad de los esqueletos multi escala

La propriedad de conexa-monotonía de la función de choque es debida al hecho que las zonas de influencia de los píxeles del contorno son *conexas*.

La conectividad de las zonas de influencia de los píxeles implica el crecimiento de la función de choque al largo de las curvas del esqueleto a partir de las extremidades:

Operadores morfológicos Esqueleto morfológico y erosión última Esqueletos conexos multi escala

Conectividad de los esqueletos multi escala

La conectividad de las zonas de influencia tambien es una condición necesaria de conectividad de los esqueletos multi escala. Pues el algoritmo DL es *más adecuado* que una distancia euclidiana exacta para el cálculo de los esqueletos conexos.

Basándose sobre las distancias euclidianas exactas, se puede construir un camino conexo vinculando A, B y C, que tendrá un esqueleto deconectado:

Operadores morfológicos Esqueleto morfológico y erosión última Esqueletos conexos multi escala

Esqueleto multi escala

(日) (同) (日) (日) (日)

Operadores morfológicos Esqueleto morfológico y erosión última Esqueletos conexos multi escala

Reconstrucción multi escala

La reconstrucción de la escala σ está obtenida por la fórmula de inversión del esqueleto:

Reconstrucción de la escala σ

$$R_{\sigma}(X) = \bigcup_{z \in Sk_{\sigma}(X)} B_{z}(F_{X}^{E}(z))$$

(1日) (1日) (1日)

Operadores morfológicos Esqueleto morfológico y erosión última Esqueletos conexos multi escala

Reconstrucción multi escala

Escala 1

Escala 20

Escala 100

• = • •

Operadores morfológicos Esqueleto morfológico y erosión última Esqueletos conexos multi escala

Mapa de reconstrucción

Todas las reconstrucciónes multi escala pueden ser obtenidas muy rapidamente a partir de la mapa de reconstrucción definida por:

Mapa de reconstrucción

$$M_X(p) = \max_{z \in Sk_1(X); p \in B_z(F_X^E(z))} S_X(z)$$

Pues la reconstrucción de la escala σ se calcula por simple umbral de la función M_X :

Reconstrucción de la escala σ

$$R_{\sigma}(X) = \{z; M_X(z) \geq \sigma\}$$

イロト イポト イヨト イヨト

Operadores morfológicos Esqueleto morfológico y erosión última Esqueletos conexos multi escala

Mapa de reconstrucción

A (1) > A (1) > A

101/109

Operadores morfológicos Esqueleto morfológico y erosión última Esqueletos conexos multi escala

¿ Extensión 3d o n-d ?

El cálculo de las transformadas de distancia se generalizan facilmente a las dimensiones superiores:

Adaptando la vecindad de cálculo :

 V^- en 3d (14 vóxels) V^+ en 3d (14 vóxels)

2 Modificando la función de incremente $\Delta f^{a}(\mathbf{x})$:

$$F_{E}^{X}(\mathbf{x} + \mathbf{a}) = F_{E}^{X}(\mathbf{x}) + \Delta f^{\mathbf{a}}(\mathbf{x}) = F_{E}^{X}(\mathbf{x}) + \sum_{i=1}^{n} 2|a_{i}R_{x_{i}}| + a_{i}^{2}$$

con $\mathbf{x} = (x_{1}, \dots, x_{n}), \ \mathbf{a} = (a_{1}, \dots, a_{n}).$

Esqueleto morfológico y erosión última Esqueletos conexos multi escala

¿ Extensión 3d o n-d ?

En cambio, la función de choque usada en 2d no sirve en 3d: En 3d, la distancia geodésica al largo del contorno entre 2 puntos del contorno ya no puede calcularse con simple diferencia de las etiquetas, como en 2d: S(q) =

 $\kappa(p_1, p_2) = d_{\partial_{\mathbf{x}}}(p_1, p_2)$

4 E N 4 E N 4 E N 4

Operadores morfológicos Esqueleto morfológico y erosión última Esqueletos conexos multi escala

¿ Extensión 3d o n-d ?

Por esta razón, se usará en 3d una función de choque más facilmente calculable:

Se puede definir otra función de choque a partir de la medida del ángulo entre los 2 puntos de contorno más cercanos: $S(q) = \kappa(p_1, p_2) = \widehat{p_1qp_2}$

Observe: ¡ pero la preservación de la topología ya no está asegurada !

Operadores morfológicos Esqueleto morfológico y erosión última Esqueletos conexos multi escala

- Código, compresión, síntesis de patrones
- Identificación de modelos geométricos, topológicos.
- Morfometría.

(from A. Sud et al, Univ. North Carolina)

(from P. de Koninck, Univ. Laval)

Índice

- Formalismo, Definiciones y Notaciones
 Teselaciones y Imágenes discretas
 Topologías en la malla cuadrada
 Distancias en Zⁿ
- 2 Transformadas de distancia: Algoritmos
 - Algoritmos básicos
 - Distancias casi euclidianas
- 3 Aplicaciones de las transformadas de distancia
 - Operadores morfológicos
 - Esqueleto morfológico y erosión última
 - Esqueletos conexos multi escala

106 / 109

- Transformada de distancia: herramiento potente para el procesamiento, el análisis y la síntesis de patrones.
- algoritmos eficaces: complexidad linear, extensión multi dimensional.
- Perspectivas: teselaciones irregulares, grafos cualquieres.

Bibliografía

ROSENFELD, A. AND PFLATZ, J. Distance functions on digital pictures Pattern Recognition 1 (1), 33-61. (1968)

DANIELSSON, P.-E.

Euclidean distance mapping. Computer Graphics and Image Processing. 14, 227-248. (1980)

🔋 SERRA, J.

Image Analysis and Mathematical Morphology - Vol. I Academic Press, London. (1982)
Introducción Formalismo, Definiciones y Notaciones Transformadas de distancia: Algoritmos Aplicaciones de las transformadas de distancia Conclusión

Bibliografía

BORGEFORS, G.

Distance transformations in digital images.

Computer Vision, Graphics, and Image Processing, 34, 344-371. (1986)

LEYMARIE, F. AND LEVINE, M. D.

Fast raster scan distance propagation on the discrete rectangular lattice.

Computer Vision and Image Understanding 55, 1. (1992)

🔋 DA FONTOURA COSTA, L.

Robust Skeletonization through Exact Euclidean Distance Transform and its Application to Neuromorphometry. Real-Time Imaging 6(6), 415-431. (2000)