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3d Reconstruction from Videos

Reconstructing the scene geometry from videos is useful in many applications: Robot
navigation (obstacle detection), Metrology, 3d Cartography, Medicine...

+ It is a cheap and flexible approach: One single passive camera, Adaptive baseline,...

− It strongly relies on scene structure (texture) and precise camera positioning.
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Principles of Analytical Methods

The geometry of the camera
(intrinsic parameters) identifies the
projection line of any point in the
focal plane.
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Principles of Analytical Methods

Another position of the
camera (extrinsic parameters)
allows to recover the 3d
position of a point projected
on the two focal planes:

ΩP = ΩΩ′
sin Ω̂′

sin P̂

Ω′P = ΩΩ′
sin Ω̂

sin P̂
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Principles of Analytical Methods

The epipolar constraints may
reduce the search area for
matching points. It is
expressed by the fundamental
matrix F in the projective
geometry framework:
Qt

2FQ1 = 0.

FQ1: epipolar line n.2.

Qt
2F: epipolar line n.1.
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In-plane Ideal Stereovision

Ideal or Rectified or Plenoptic (Single-Lens) Stereovision
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Scale Ambiguity
Without knowledge of focal and baseline, depth can at best be estimated up to scale factor!
(But look at the contextual clues...):

Aerial view of Chambord Castle and 1/30-scale model miniature model in La France Miniature

From [PhD C. Pinard 2019]
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Projective Geometry in P2: Reminder
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Projective Geometry in P3

R3 ↔ P3: (X ,Y ,Z )→ (X ,Y ,Z , 1) ; (u/h, v/h,w/h)← (u, v ,w , h)

Duality point / plane: M = (X ,Y ,Z , 1)t / Π = (a, b, c , d).

Lines are defined from 2 points or from 2 planes!

P3 allows to express
linearly affine
transformations:
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Camera (Calibration) Matrix: Intrinsics
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Projection and Back-Projection Matrices

M = (X ,Y ,Z )t ∈ R3

m = (x , y)t ∈ R2, and m̃ = (x , y , 1)t ∈ P2

Camera (Projection) Matrix

m = π(M) =
(
f X
Z + cx , f

X
Z + cx

)
Equivalent to:

m̃ = KM

with: K =

f 0 cx
0 f cy
0 0 1



Back-Projection Matrix

M = π−1(m,Z ) =
(
Z x−cx

f ,Z
y−cy
f ,Z

)
Equivalent to:

M = Z︸︷︷︸
Depth

K−1m̃︸ ︷︷ ︸
Direction

with: K−1 =

1
f 0 − cx

f
0 1

f − cy
f

0 0 1


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Displacement Matrix: Extrinsics
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Epipolar Geometry

Ω, m, M, m′ and Ω′ are coplanar.

The epipolar plane cuts each focal plane through the epipolar line.

Each point M has its own epipolar plane.

All epipolar planes (epipolar pencil) intersect at the baseline (ΩΩ′)
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Epipolar Geometry

The right (resp. left) epipole is the projection of the left (resp. right) optical centre on
the right (resp. left) focal plane.

All epipolar lines intersect at the epipole.
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Example 1: Converging Cameras

Figure from [Hartley and Zissermann 2003]
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Example 2: In-Focal-Plane Moving Camera

Figure from [Hartley and Zissermann 2003]
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Example 3: Radially Moving Camera

Figure from [Hartley and Zissermann 2003]
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Fundamental matrix derived from a plane
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Fundamental matrix derived from the camera matrices

A. Manzanera (ENSTA Paris) 3d Reconstruction 24 / 49



Fundamental matrix from the camera matrices - Essential matrix

Starting from the equation F = [e ′]×P
′P+

λ , if we consider one single moving camera with
projection matrix K , and right pose given by displacement matrix R, we use e ′ = KRΩ,
P ′ = KR, and P+

λ = K−1m, and then:

l ′ = [KRΩ]×KRK
−1m

= (KR)−t [Ω]×K
−1m

And so:
F = (KR)−t [Ω]×K

−1

In the calibrated case (i.e. when K is known beforehand), we can use the essential matrix,
which only depends on the displacement of the camera, and is defined as:

E = K tFK = R−t [Ω]×
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Fundamental Matrix Summary

For 2 images captured by cameras with distinct optical centres, the fundamental matrix is
the unique 3× 3 rank 2 matrix F that satisfies m′tFm = 0, for all corresponding pairs of

points (m,m′).

Epipolar lines: l ′ = Fm and l = m′tF are the right and left epipolar lines respectively.

Epipoles: Since e ′ ∈ l ′, we have ∀m, e ′tFm = 0. Then e ′tF = 0. Similarly, Fe = 0.

Rank: F is an homogeneous (8 DoF) 3× 3 matrix, and has rank 2 (detF = 0), so it
actually has 7 DoF.
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Estimation of Fundamental Matrix F
Each correspondence m↔ m′ provides one scalar equation:

m′tFm = 0

The developed equation writes:

xx ′f11 + x ′yf12 + x ′f13 + y ′xf21 + yy ′f22 + y ′f23 + xf31 + yf32 + f33 = 0

Or, by separating data and unknowns:(
x ′x x ′y x ′ y ′x y ′y y ′ x y 1

)t︸ ︷︷ ︸
d

(
f11 f12 f13 f21 f22 f23 f31 f32 f33

)︸ ︷︷ ︸
f

= 0

And, by using N correspondence pairs {mi ↔ m′i}1≤i≤N :

Df =

d1
...

dN

 f = ON
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Estimation of Fundamental Matrix F

The system Df = ON is solved using SVD.

Since the columns of D range over several order of magnitudes, it is better to normalise
the data, for numerical stability purposes.

Once F is estimated, it is usually imposed that: e ′tF = 0, Fe = 0, and rank(F ) = 2.
I This is done by finding F ′ such that F ′ = arg min

G ;rank(G)=2
||F − G ||F

RANSAC is used to minimise the number of outliers in the N correspondences
{mi ↔ m′i}1≤i≤N .
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Estimation of Fundamental Matrix F - Rank Constraint

Once F is estimated, it is usually imposed that: e ′tF = 0, Fe = 0, and rank(F ) = 2.
I This is done by finding F ′ such that F ′ = arg min

G ;rank(G)=2
||F − G ||F

Rank 3 Rank 2
Figure from [Hartley and Zissermann 2003]
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Estimation of Fundamental Matrix F - RANSAC

From [Hartley and Zissermann 2003] - There are ≈ 500 keypoints on each image.
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Estimation of Fundamental Matrix F - RANSAC

RANSAC is used to minimise the number of outliers in the N correspondences
{mi ↔ m′i}1≤i≤N .

188 Matches (<< 500!) 89 Outliers 99 Inliers
Figure from [Hartley and Zissermann 2003]
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Details on RANSAC: Algorithm

Randomly sample the number of points required to fit
the model

Solve for model parameters using sample

Score the model by the ratio of inliers
I → points that fit the model up to a certain threshold

Repeat 1-3 until the best model is found with high
confidence

These slides are from Gianni Franchi
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Details on RANSAC: Parameters

The size of the sample set n (minimum size to define the model)

Error tolerance threshold δ

Minimum consensus (ratio of inliers w) for a model to be acceptable

Number of iteration k

The proportion of inliers w has to be empirically defined as well as the tolerance threshold δ.

These slides are from Gianni Franchi
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RANSAC: Setting the number of iterations k

Let us write P(inlier) = w the probability of choosing an inlier.
Then for a sample set of size n: P(a Subset with no outlier) = wn.
And then P(a Subset with outlier(s) ) = 1−wn.
So, the probability of choosing a subset with outliers in all k repetitions is :
P(k Subset with outlier(s) ) = (1−wn)k.
So the probability of successful run is P(success) = 1− (1−wn)k.
Finally we get:

k =
log(1− P(success))

log(1− wn)

These slides are from Gianni Franchi
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RANSAC: number of iteration k with P(success) = 0.99
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Stereo Rectification

From [Pollefeys 2002]

Objective: come back to the ideal stereo case.

Find the homography H that makes epipolar lines parallel.

H transfers the epipole to infinity: He =
(
1 0 0

)t
.

Numerical problems when e is close to (or inside!) the image.
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Polar Rectification (Pollefeys et al 1999)

Solution: Polar re-parameterization of the two images around their epipoles.

Original Rectified
From [Pollefeys 2002]
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Polar Rectification (Pollefeys et al 1999)

From [Pollefeys 2002]
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Disparity and Depth estimation

Rectify the two images.

Compute the dense correspondence between the two images along each epipolar line.

The horizontal shift between the two images is the disparity.

The depth is inversely proportional to the disparity.

Left Disparity Right
From [Pollefeys 2004]
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Epipolar Flow Estimation

[Garrigues 17]
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Epipolar Flow Estimation

[Garrigues 17]:

Real-Time semi-dense optical flow and
relative depth estimation.

Was ranked #1 on Kitti 2012 Optical
Flow dataset (on sparse optical flow
category).
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Conclusion: Limitations of analytical methods

Estimation strongly relies on local structure (texture), then depth estimation on
textureless areas depends on complicated regularization methods.

Depth calculation depends on the apparent displacement (speed) of a point with respect
to the epipole (i.e. the Focus of Expansion FoE, that indicates the translation direction
of the camera). Such calculation turns undetermined when the point gets close to the
FoE.
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DNN for 3d reconstruction

Like Optical Flow, Depth can benefit from Deep Networks dense prediction capabilities.

Training can be easily done on synthetic or real RGB-d data, and loss function is also
relatively straightforward.

One determining benefit of DNN is their ability to exploit potentially all the depth
indices: parallax, perspective, size and texture gradients, shading,...

...See next lecture on Machine Learning based Depth Estimation!
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