
Analytical 3d - Introduction

Antoine Manzanera

ENSTA Paris

ROB317 - 3d Computer Vision
September 2023

A. Manzanera (ENSTA Paris) Analytical 3d: Introduction 1 / 43



Motivations: 3d Reconstruction from Videos

Reconstructing the scene geometry from videos is useful in many applications: Robot
navigation (obstacle detection), Metrology, 3d Cartography, Medicine...

+ It is a cheap and flexible approach: One single passive camera, Adaptive baseline,...

− It strongly relies on scene structure (texture) and precise camera positioning.
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Presentation Outline

1 Projective Geometry and Camera Matrices
Projective Geometry in P2

2d Projective transformations
Projective Geometry in P3

2 Homographies: Practical cases
Rotation around the optical centre
Plane viewed from different poses

3 Estimation of a homography
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Projective Geometry in P2

Homogeneous coordinates → additional component → non injective representation

Affine transformations represented by linear functions → simpler operations

Points and lines at infinity represented with finite coordinates
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Projective Geometry in P2
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Projective Geometry in P2
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Projective transformations

A projective transformation h of the plane is characterized by the fact that: if three
point m1, m2 and m3 are aligned, h(m1), h(m2) and h(m3) are aligned too.

A function h : P2 7→ P2 is a projective transformation if and only if there exists a non
singular 3× 3 matrix H such that ∀m ∈ P2, h(m) = Hm.
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Projective transformations 1: Translations

H =

1 0 tx
0 1 ty
0 0 1


with t = (tx ty )T translation vector

2 degrees of freedom
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Projective transformations 2: Isometries

H =

cos(θ) −ε sin(θ) tx
sin(θ) ε cos(θ) ty

0 0 1


with t = (tx ty )T translation vector

θ rotation angle

ε = ±1→ direct / indirect isometry

3 degrees of freedom

preserves: angles, lengths, areas
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Projective transformations 3: Similarities

H =

s cos(θ) −s sin(θ) tx
s sin(θ) s cos(θ) ty

0 0 1


with t = (tx ty )T translation vector

θ rotation angle

s homothety factor

4 degrees of freedom

preserves: angles, ratios of lengths/areas, parallel lines
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Projective transformations 4: Affine transformations

H =

a11 a21 tx
a12 a22 ty
0 0 1


6 degrees of freedom

preserves: ratios of areas, parallel lines

(Figure from Wikipedia)
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Projective transformations 5: Homographies

H =

a11 a21 tx
a12 a22 ty
v1 v2 1


v = (v1 v2)T relates to the action on points/lines
at infinity

8 degrees of freedom

preserves: cross-ratios of four points on a line:

AC × BD

BD × AC
=

A′C ′ × B ′D ′

B ′D ′ × A′C ′

(Figure from Wikipedia)
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Homographies on points/lines at infinity

Consider a line at infinity l∞ = (l1 l2 0)T

When applied an affine transformation:a11 a21 tx
a12 a22 ty
0 0 1

l1
l2
0

 =

l1a
1
1 + l2a

2
1

l1a
1
2 + l2a

2
2

0


A line at infinity remains at infinity!
When applied a general homography:a11 a21 tx

a12 a22 ty
v1 v2 1

l1
l2
0

 =

l1a
1
1 + l2a

2
1

l1a
1
2 + l2a

2
2

l1v1 + l2v2


A line at infinity becomes finite!
This allows to observe vanishing points and horizon lines.
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Projective Geometry in P3

R3 ↔ P3: (X ,Y ,Z )→ (X ,Y ,Z , 1) ; (u/h, v/h,w/h)← (u, v ,w , h)

Duality point / plane: M = (X ,Y ,Z , 1)t / Π = (a, b, c , d).

Lines are defined from 2 points or from 2 planes!

P3 allows to express
linearly affine
transformations:
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Camera (Calibration) Matrix: Intrinsics
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Projection and Back-Projection Matrices

M = (X ,Y ,Z )t ∈ R3

m = (x , y)t ∈ R2, and m̃ = (x , y , 1)t ∈ P2

Camera (Projection) Matrix

m = π(M) =
(
f X
Z + cx , f

X
Z + cx

)
Equivalent to:

m̃ = KM

with: K =

f 0 cx
0 f cy
0 0 1



Back-Projection Matrix

M = π−1(m,Z ) =
(
Z x−cx

f ,Z
y−cy
f ,Z

)
Equivalent to:

M = Z︸︷︷︸
Depth

K−1m̃︸ ︷︷ ︸
Direction

with: K−1 =

1
f 0 − cx

f
0 1

f − cy
f

0 0 1
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Displacement Matrix: Extrinsics
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Homographies

Homography → Most general case of 2d projective transformation

m̃′ = Hm̃

8 degrees of freedom → At least four non colinear 2d points!

Corresponds to 2 particular cases of image pairs:
I 3d scene viewed under pure rotation around the optical centre (t = O3).
I Same plane viewed under two different 3d poses.

A. Manzanera (ENSTA Paris) Analytical 3d: Introduction 20 / 43



Rotation around the optical centre

In the case of a pure rotation around the optical centre (t = O3), the projected image
transformation is a homography:

Figure from [Hartley and Zisserman 2004]
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Rotation around the optical centre

Since t = O3 we get:
m̃ =

(
K O3

)
M̃

m̃′ =
(
K O3

)( R O3

Ot
3 1

)
M̃

which can be written more simply:

m̃ = KM

m̃′ = KRM = KRK−1︸ ︷︷ ︸
H

m̃
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Rotation around the optical centre

Note the difference between rotation around the optical centre ((a) to (b)), and translation
((a) to (c)):

Images from [Hartley and Zisserman 2004]
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Rotation around the optical centre
Since there is no parallax, the images can be stitched to form a mosaic:
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Plane viewed from different poses

x̃ = Hπ,1X

x̃ ′ = Hπ,2X

x̃ ′ = Hπ,2H
−1
π,1x̃ = Hπ x̃
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Plane viewed from different poses

Let us first assume that K = I3 (i.e. f = 1, cx = cy = 0). Then if the pose of the right
camera is given by rotation matrix R and translation vector t, we get:

m̃ = PM̃ =
(
I3 O3

)
M̃

m̃′ = P ′M̃ =
(
R t

)
M̃

Every point on the ray Mz = (mt , z) (parameterized by z) projects on m.
If the point Mz is on the plane π, it must satisfy: πt .M̃z = 0.
If the coordinates of the plane are given as π = (nt , d)t , so that for points M on the plane,
we have: ntM + d = 0,
then the point of the ray backprojected from m and intersecting plane π is:

M̃π =

(
m̃t ,−ntm̃

d

)t
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Plane viewed from different poses
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Plane viewed from different poses
The point of the ray backprojected from m and intersecting plane π is:

M̃π =

(
m̃t ,−ntm̃

d

)t

And then:
m̃′ = P ′M̃π =

(
R t

)
M̃π

= Rm̃ − tnt

d m̃

=

(
R − tnt

d

)
︸ ︷︷ ︸

Hπ

m̃

Finally, by considering the internal parameter matrix K of a single camera moved with
rotation R and translation t, the homography related to the plane π = (nt , d)t is given by:

H = K

(
R − tnt

d

)
K−1
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Estimation of a Homography

Now we wish to estimate the parameters of a homography using a set of correspondances
from a pair of images: x ′

y ′

1

 =

a11 a21 tx
a12 a22 ty
v1 v2 1

x
y
1


In the following practical session we will use a the Direct Linear Transform (DLT)
resolved by Singular Values Decomposition (SVD).

The next slides are adapted from Gianni Franchi’s 2022 course.
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Estimation by Direct Linear Transformation (DLT)

Let us rearrange the equation x ′y ′
1

 =

h11 h12 h13
h21 h22 h23
h31 h32 h33

xy
1


we use auxiliary 1× 3 vectors h1, h2 and h3:

x′ =

h1h2
h3

 x

u′v ′
w ′

 =

h1xh2x
h3x
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Estimation by Direct Linear Transformation (DLT)

x ′y ′
1

 =

u′v ′
w ′

 =

h1xh2x
h3x


x ′ =

u′

w ′
=

h1x

h3x

y ′ =
v ′

w ′
=

h2x

h3x
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Estimation by Direct Linear Transformation (DLT)

We can rewrite the equations: {
−h1x +x ′h3x = 0

−h2x +y ′h3x = 0

we want to estimate h1, h2 and h3
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Estimation by Direct Linear Transformation (DLT)

Let us write h =
[
h1 h2 h3

]t
. h is a vector of size 9× 1.

We can rewrite the previous system with h, as follows:{
atxh = 0
atyh = 0

with
atx =

[
−xt 0t3 x ′xt

]
atx =

[
−x −y −1 0 0 0 x ′x x ′y x ′

]
aty =

[
0t3 −xt y ′xt

]
aty =

[
0 0 0 −x −y −1 y ′x y ′y y ′

]
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Estimation by Direct Linear Transformation (DLT)
Now let us consider that we have multiple pairs of points indexed by i :

atxi =
[
−xti 0t x ′i x

t
i

]
atyi =

[
0t −xti y ′i x

t
i

]
We can rewrite the previous system for the N pairs of points:

atx1h = 0
aty1h = 0
...
atxNh = 0
atyNh = 0

Collecting everything together we have:

A︸︷︷︸
2N×9

h︸︷︷︸
9×1

= 0︸︷︷︸
9×1
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Estimation by Direct Linear Transformation (DLT)

if we use N = 4 then we have an exact solution

if we use N > 4 then we have an over-determined solution. There are no exact
solution, hence we need to find approximate solution.

Additional constraint is needed to avoid 0, e.g. ‖h‖22 = 1
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Estimation of h: Minimisation

In the case of redundant observations we get inconsistencies (due to the noise).
Let us write Ah = w.
Our goal is to find h such that:

ĥ = arg min
h

wtw

ĥ = arg min
h

htAtAh

with ‖h‖22 = 1
How do we minimize the loss?
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Estimation of h: Singular Value Decomposition

The eigenvector belonging to the smallest eigenvalue of AtA provides the solution of the
over-determined, constrained system of linear equations:

A︸︷︷︸
2N×9

= U︸︷︷︸
2N×9

S︸︷︷︸
9×9

V︸︷︷︸
9×9

=
9∑

i=1

siuiv
t
i

with UtU = I9 and VtV = I9
The vector vi are orthonormal since

viv
t
j =

{
0 if i 6= j
1 if i = j

So, h is equal to v9, with s9 the smallest eigen value.

A. Manzanera (ENSTA Paris) Analytical 3d: Introduction 38 / 43



Estimation of h: Singular Value Decomposition

The estimate of h is given by
ĥ =

[
ĥ1 ĥ2 ĥ3

]t
= v9

This leads to the estimated projection matrix.
No solution if too many points xi are on a line.
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DLT + SVD algorithm

Objective:
Given N ≥ 4 2d to 2d point correspondences (xi , x

′
i ), determine the 2d homography matrix

H such that x′i = Hxi .
Algorithm:

For each correspondence (xi , x
′
i ) compute Ai . Usually only two first rows needed.

Assemble N 2× 9 matrices Ai into a single 2N × 9 matrix A

Obtain SVD of A. Solution for h is the last line of V

Determine H from h
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Estimation of h: Data ranges

At
i =

[
−x −y −1 0 0 0 x ′x x ′y x ′

0 0 0 −x −y −1 y ′x y ′y y ′

]
102 102 1 102 102 1 104 104 102

Dependence of error distribution on the dimensions of images.

How to transform them so that the coordinates are within [−1, 1]?
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Estimation of h: Data normalisation
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Normalised DLT algorithm

Objective:
Given N ≥ 4 2d to 2d point correspondences (xi , x

′
i ), determine the 2d homography matrix

H such that x′i = Hxi .
Algorithm:

Apply the normalisation x̃i = Tnormxi and x̃′i = Tnormx′i
apply DLT with (x̃i , x̃

′
i )

Denormalise the homography: H = T−1normH̃Tnorm
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