Analytical 3d - Introduction

Antoine Manzanera

ENSTA Paris

ROB317-3d Computer Vision

Motivations: 3d Reconstruction from Videos

Reconstructing the scene geometry from videos is useful in many applications: Robot navigation (obstacle detection), Metrology, 3d Cartography, Medicine...

+ It is a cheap and flexible approach: One single passive camera, Adaptive baseline,...
- It strongly relies on scene structure (texture) and precise camera positioning.

Presentation Outline

(1) Projective Geometry and Camera Matrices

- Projective Geometry in \mathbb{P}^{2}
- 2d Projective transformations
- Projective Geometry in \mathbb{P}^{3}
(2) Homographies: Practical cases
- Rotation around the optical centre
- Plane viewed from different poses
(3) Estimation of a homography

Presentation Outline

(1) Projective Geometry and Camera Matrices

- Projective Geometry in \mathbb{P}^{2}
- 2d Projective transformations
- Projective Geometry in \mathbb{P}^{3}
(2) Homographies: Practical cases
- Rotation around the optical centre
- Plane viewed from different poses
(3) Estimation of a homography

Projective Geometry in \mathbb{P}^{2}

- Homogeneous coordinates \rightarrow additional component \rightarrow non injective representation
- Affine transformations represented by linear functions \rightarrow simpler operations
- Points and lines at infinity represented with finite coordinates

Projective Geometry in \mathbb{P}^{2}

- Equivalence classes: $\forall \lambda \neq 0 \quad \lambda x \equiv x$
- Duality pornt/eine:

$$
m=(x, y, 1)^{t} \quad l=(a, b, c)^{t}
$$

- Ideal points: $(x, y, 0)^{t}$
- Lire at infinity: $(0,0,1)^{t}$

Projective Geometry in \mathbb{P}^{2}

Projective transformations

- A projective transformation h of the plane is characterized by the fact that: if three point m_{1}, m_{2} and m_{3} are aligned, $h\left(m_{1}\right), h\left(m_{2}\right)$ and $h\left(m_{3}\right)$ are aligned too.
- A function $h: \mathbb{P}^{2} \mapsto \mathbb{P}^{2}$ is a projective transformation if and only if there exists a non singular 3×3 matrix H such that $\forall m \in \mathbb{P}^{2}, h(m)=H m$.

Projective transformations 1: Translations

$$
H=\left(\begin{array}{ccc}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right)
$$

- with $\mathbf{t}=\left(t_{x} t_{y}\right)^{T}$ translation vector
- 2 degrees of freedom

Projective transformations 2: Isometries

$$
H=\left(\begin{array}{ccc}
\cos (\theta) & -\varepsilon \sin (\theta) & t_{x} \\
\sin (\theta) & \varepsilon \cos (\theta) & t_{y} \\
0 & 0 & 1
\end{array}\right)
$$

- with $\mathbf{t}=\left(t_{x} t_{y}\right)^{T}$ translation vector
- θ rotation angle
- $\varepsilon= \pm 1 \rightarrow$ direct / indirect isometry
- 3 degrees of freedom
- preserves: angles, lengths, areas

Projective transformations 3: Similarities

$$
H=\left(\begin{array}{ccc}
s \cos (\theta) & -s \sin (\theta) & t_{x} \\
s \sin (\theta) & s \cos (\theta) & t_{y} \\
0 & 0 & 1
\end{array}\right)
$$

- with $\mathbf{t}=\left(t_{x} t_{y}\right)^{T}$ translation vector
- θ rotation angle
- s homothety factor
- 4 degrees of freedom
- preserves: angles, ratios of lengths/areas, parallel lines

Projective transformations 4: Affine transformations

$$
H=\left(\begin{array}{ccc}
a_{1}^{1} & a_{1}^{2} & t_{x} \\
a_{2}^{1} & a_{2}^{2} & t_{y} \\
0 & 0 & 1
\end{array}\right)
$$

- 6 degrees of freedom
- preserves: ratios of areas, parallel lines
(Figure from Wikipedia)

Projective transformations 5: Homographies

$$
H=\left(\begin{array}{lll}
a_{1}^{1} & a_{1}^{2} & t_{x} \\
a_{2}^{1} & a_{2}^{2} & t_{y} \\
v_{1} & v_{2} & 1
\end{array}\right)
$$

- $\mathbf{v}=\left(v_{1} v_{2}\right)^{T}$ relates to the action on points/lines at infinity
- 8 degrees of freedom
- preserves: cross-ratios of four points on a line:

$$
\frac{A C \times B D}{B D \times A C}=\frac{A^{\prime} C^{\prime} \times B^{\prime} D^{\prime}}{B^{\prime} D^{\prime} \times A^{\prime} C^{\prime}}
$$

(Figure from Wikipedia)

Homographies on points/lines at infinity

Consider a line at infinity $\mathbf{I}_{\infty}=\left(\begin{array}{lll}I_{1} & I_{2} & 0\end{array}\right)^{T}$
When applied an affine transformation:

$$
\left(\begin{array}{ccc}
a_{1}^{1} & a_{1}^{2} & t_{x} \\
a_{2}^{1} & a_{2}^{2} & t_{y} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
l_{1} \\
l_{2} \\
0
\end{array}\right)=\left(\begin{array}{c}
l_{1} a_{1}^{1}+l_{2} a_{1}^{2} \\
l_{1} a_{2}^{1}+l_{2} a_{2}^{2} \\
0
\end{array}\right)
$$

A line at infinity remains at infinity!
When applied a general homography:

$$
\left(\begin{array}{lll}
a_{1}^{1} & a_{1}^{2} & t_{x} \\
a_{2}^{1} & a_{2}^{2} & t_{y} \\
v_{1} & v_{2} & 1
\end{array}\right)\left(\begin{array}{l}
l_{1} \\
l_{2} \\
0
\end{array}\right)=\left(\begin{array}{l}
l_{1} a_{1}^{1}+l_{2} a_{1}^{2} \\
l_{1} a_{2}^{1}+l_{2} a_{2}^{2} \\
l_{1} v_{1}+l_{2} v_{2}
\end{array}\right)
$$

A line at infinity becomes finite!
This allows to observe vanishing points and horizon lines.

Projective Geometry in \mathbb{P}^{3}

- $\mathbb{R}^{3} \leftrightarrow \mathbb{P}^{3}:(X, Y, Z) \rightarrow(X, Y, Z, 1) ;(u / h, v / h, w / h) \leftarrow(u, v, w, h)$
- Duality point / plane: $M=(X, Y, Z, 1)^{t} / \Pi=(a, b, c, d)$.
- Lines are defined from 2 points or from 2 planes!
\mathbb{P}^{3} allows to express linearly affine transformations:

Camera (Calibration) Matrix: Intrinsics

Projection and Back-Projection Matrices

$$
\begin{aligned}
& M=(X, Y, Z)^{t} \in \mathbb{R}^{3} \\
& m=(x, y)^{t} \in \mathbb{R}^{2}, \text { and } \tilde{m}=(x, y, 1)^{t} \in \mathbb{P}^{2}
\end{aligned}
$$

Camera (Projection) Matrix

$$
m=\pi(M)=\left(f^{X} \frac{X}{Z}+c_{X}, f \frac{X}{Z}+c_{x}\right)
$$

Equivalent to:

$$
\tilde{m}=K M
$$

with: $K=\left(\begin{array}{ccc}f & 0 & c_{x} \\ 0 & f & c_{y} \\ 0 & 0 & 1\end{array}\right)$

Back-Projection Matrix

$$
M=\pi^{-1}(m, Z)=\left(Z \frac{x-c_{x}}{f}, Z \frac{y-c_{y}}{f}, Z\right)
$$

Equivalent to:

$$
M=\underbrace{Z}_{\text {Depth }} \underbrace{K^{-1} \tilde{m}}_{\text {Direction }}
$$

with: $K^{-1}=\left(\begin{array}{ccc}\frac{1}{f} & 0 & -\frac{c_{x}}{f_{x}} \\ 0 & \frac{1}{f} & -\frac{c_{y}}{f} \\ 0 & 0 & 1\end{array}\right)$

Displacement Matrix: Extrinsics

Presentation Outline

(1) Projective Geometry and Camera Matrices

- Projective Geometry in \mathbb{P}^{2}
- 2d Projective transformations
- Projective Geometry in \mathbb{P}^{3}
(2) Homographies: Practical cases
- Rotation around the optical centre
- Plane viewed from different poses
(3) Estimation of a homography

Homographies

- Homography \rightarrow Most general case of 2d projective transformation

$$
\tilde{m}^{\prime}=H \tilde{m}
$$

- 8 degrees of freedom \rightarrow At least four non colinear 2d points!
- Corresponds to 2 particular cases of image pairs:
- 3d scene viewed under pure rotation around the optical centre $\left(\mathbf{t}=O_{3}\right)$.
- Same plane viewed under two different 3d poses.

Rotation around the optical centre

In the case of a pure rotation around the optical centre $\left(\mathbf{t}=\mathrm{O}_{3}\right)$, the projected image transformation is a homography:

Figure from [Hartley and Zisserman 2004]

Rotation around the optical centre

Since $\mathbf{t}=O_{3}$ we get:

$$
\begin{gathered}
\tilde{m}=\left(K \mid O_{3}\right) \tilde{M} \\
\tilde{m}^{\prime}=\left(K \mid O_{3}\right)\left(\frac{R \mid O_{3}}{O_{3}^{t} \mid 1}\right) \tilde{M}
\end{gathered}
$$

which can be written more simply:

$$
\begin{aligned}
\tilde{m} & =K M \\
\tilde{m}^{\prime} & =K R M=\underbrace{K R K^{-1}}_{H} \tilde{m}
\end{aligned}
$$

Rotation around the optical centre

Note the difference between rotation around the optical centre ((a) to (b)), and translation ((a) to (c)):

a

b

C

Images from [Hartley and Zisserman 2004]

Rotation around the optical centre

Since there is no parallax, the images can be stitched to form a mosaic:

Plane viewed from different poses

$$
\begin{gathered}
\tilde{x}=H_{\pi, 1} X \\
\tilde{x}^{\prime}=H_{\pi, 2} X \\
\tilde{x}^{\prime}=H_{\pi, 2} H_{\pi, 1}^{-1} \tilde{x}=H_{\pi} \tilde{x}
\end{gathered}
$$

Plane viewed from different poses

Let us first assume that $K=I_{3}$ (i.e. $f=1, c_{x}=c_{y}=0$). Then if the pose of the right camera is given by rotation matrix R and translation vector \mathbf{t}, we get:

$$
\begin{aligned}
& \tilde{m}=P \tilde{M}=\left(I_{3} \mid O_{3}\right) \tilde{M} \\
& \tilde{m}^{\prime}=P^{\prime} \tilde{M}=(R \mid \mathbf{t}) \tilde{M}
\end{aligned}
$$

Every point on the ray $M_{z}=\left(m^{t}, z\right)$ (parameterized by z) projects on m. If the point M_{z} is on the plane π, it must satisfy: $\pi^{t} . \tilde{M}_{z}=0$.
If the coordinates of the plane are given as $\pi=\left(\mathbf{n}^{t}, d\right)^{t}$, so that for points M on the plane, we have: $\mathbf{n}^{t} M+d=0$, then the point of the ray backprojected from m and intersecting plane π is:

$$
\tilde{M}_{\pi}=\left(\tilde{m}^{t},-\frac{\mathbf{n}^{t} \tilde{m}}{d}\right)^{t}
$$

Plane viewed from different poses

Plane viewed from different poses

The point of the ray backprojected from m and intersecting plane π is:

$$
\tilde{M}_{\pi}=\left(\tilde{m}^{t},-\frac{\mathbf{n}^{t} \tilde{m}}{d}\right)^{t}
$$

And then:

$$
\begin{aligned}
\tilde{m}^{\prime} & =P^{\prime} \tilde{M}_{\pi}=(R \mid \mathbf{t}) \tilde{M}_{\pi} \\
& =R \tilde{m}-\frac{\mathbf{t n}^{t}}{d} \tilde{m} \\
& =\underbrace{\left(R-\frac{\mathbf{t n}^{t}}{d}\right)}_{H_{\pi}} \tilde{m}
\end{aligned}
$$

Finally, by considering the internal parameter matrix K of a single camera moved with rotation R and translation \mathbf{t}, the homography related to the plane $\pi=\left(\mathbf{n}^{t}, d\right)^{t}$ is given by:

$$
H=K\left(R-\frac{\mathbf{t n}^{t}}{d}\right) K^{-1}
$$

Presentation Outline

(1) Projective Geometry and Camera Matrices

- Projective Geometry in \mathbb{P}^{2}
- 2d Projective transformations
- Projective Geometry in \mathbb{P}^{3}
(2) Homographies: Practical cases
- Rotation around the optical centre
- Plane viewed from different poses
(3) Estimation of a homography

Estimation of a Homography

Now we wish to estimate the parameters of a homography using a set of correspondances from a pair of images:

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right)=\left(\begin{array}{lll}
a_{1}^{1} & a_{1}^{2} & t_{x} \\
a_{2}^{1} & a_{2}^{2} & t_{y} \\
v_{1} & v_{2} & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)
$$

- In the following practical session we will use a the Direct Linear Transform (DLT) resolved by Singular Values Decomposition (SVD).
- The next slides are adapted from Gianni Franchi's 2022 course.

Estimation by Direct Linear Transformation (DLT)

Let us rearrange the equation

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{lll}
h_{11} & h_{12} & h_{13} \\
h_{21} & h_{22} & h_{23} \\
h_{31} & h_{32} & h_{33}
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]
$$

we use auxiliary 1×3 vectors $\mathbf{h}_{\mathbf{1}}, \mathbf{h}_{\mathbf{2}}$ and $\mathbf{h}_{\mathbf{3}}$:

$$
\begin{gathered}
\mathbf{x}^{\prime}=\left[\begin{array}{l}
\mathbf{h}_{1} \\
\mathbf{h}_{2} \\
\mathbf{h}_{3}
\end{array}\right] \mathbf{x} \\
{\left[\begin{array}{c}
u^{\prime} \\
v^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{h}_{1} \mathbf{x} \\
\mathbf{h}_{2} \mathbf{x} \\
\mathbf{h}_{3} \mathbf{x}
\end{array}\right]}
\end{gathered}
$$

Estimation by Direct Linear Transformation (DLT)

$$
\begin{gathered}
{\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{c}
u^{\prime} \\
v^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{h}_{1} \mathbf{x} \\
\mathbf{h}_{2} \mathbf{x} \\
\mathbf{h}_{3} \mathbf{x}
\end{array}\right]} \\
x^{\prime}=\frac{u^{\prime}}{w^{\prime}}=\frac{\mathbf{h}_{1} \mathbf{x}}{\mathbf{h}_{3} \mathbf{x}} \\
y^{\prime}=\frac{v^{\prime}}{w^{\prime}}=\frac{\mathbf{h}_{2} \mathbf{x}}{\mathbf{h}_{3} \mathbf{x}}
\end{gathered}
$$

Estimation by Direct Linear Transformation (DLT)

We can rewrite the equations:

$$
\left\{\begin{array}{rll}
-\mathbf{h}_{1} x & & +x^{\prime} \mathbf{h}_{3} \mathbf{x}=0 \\
& -\mathbf{h}_{2} \mathbf{x} & +y^{\prime} \mathbf{h}_{3} \mathbf{x}=0
\end{array}\right.
$$

we want to estimate $\mathbf{h}_{\mathbf{1}}, \mathbf{h}_{\mathbf{2}}$ and $\mathbf{h}_{\mathbf{3}}$

Estimation by Direct Linear Transformation (DLT)

Let us write $\mathbf{h}=\left[\begin{array}{lll}\mathbf{h}_{\mathbf{1}} & \mathbf{h}_{\mathbf{2}} & \mathbf{h}_{\mathbf{3}}\end{array}\right]^{t} . \mathbf{h}$ is a vector of size 9×1.
We can rewrite the previous system with \mathbf{h}, as follows:

$$
\left\{\begin{array}{l}
\mathbf{a}_{x}^{t} \mathbf{h}=0 \\
\mathbf{a}_{y}^{t} \mathbf{h}=0
\end{array}\right.
$$

with

$$
\left.\left.\begin{array}{c}
\mathbf{a}_{x}^{t}=\left[\begin{array}{llllll}
-\mathbf{x}^{t} & \mathbf{0}_{3}^{t} & x^{\prime} \mathbf{x}^{t}
\end{array}\right] \\
\mathbf{a}_{x}^{t}=\left[\begin{array}{lllllll}
-x & -y & -1 & 0 & 0 & 0 & x^{\prime} x
\end{array} x^{\prime} y\right. \\
x^{\prime}
\end{array}\right]\right] .\left[\begin{array}{llllllll}
\mathbf{a}_{y}^{t}=\left[\begin{array}{llllll}
\mathbf{0}_{3}^{t} & -\mathbf{x}^{t} & y^{\prime} \mathbf{x}^{t}
\end{array}\right] \\
\mathbf{a}_{y}^{t}=\left[\begin{array}{lllllll}
0 & 0 & 0 & -x & -y & -1 & y^{\prime} x
\end{array} y^{\prime} y\right. & y^{\prime}
\end{array}\right] .
$$

Estimation by Direct Linear Transformation (DLT)

Now let us consider that we have multiple pairs of points indexed by i :

$$
\begin{aligned}
& \mathbf{a}_{x_{i}}^{t}=\left[\begin{array}{lll}
-\mathbf{x}_{i}^{t} & \mathbf{0}^{t} & x_{i}^{\prime} \mathbf{x}_{i}^{t}
\end{array}\right] \\
& \mathbf{a}_{y_{i}}^{t}=\left[\begin{array}{lll}
\mathbf{0}^{t} & -\mathbf{x}_{i}^{t} & y_{i}^{\prime} \mathbf{x}_{i}^{t}
\end{array}\right]
\end{aligned}
$$

We can rewrite the previous system for the N pairs of points:

$$
\left\{\begin{array}{l}
\mathbf{a}_{x_{1}}^{t} \mathbf{h}=0 \\
\mathbf{a}_{y_{1}}^{t} \mathbf{h}=0 \\
\vdots \\
\mathbf{a}_{x_{N}}^{t} \mathbf{h}=0 \\
\mathbf{a}_{y_{N}}^{t} \mathbf{h}=0
\end{array}\right.
$$

Collecting everything together we have:

Estimation by Direct Linear Transformation (DLT)

- if we use $N=4$ then we have an exact solution
- if we use $N>4$ then we have an over-determined solution. There are no exact solution, hence we need to find approximate solution.
- Additional constraint is needed to avoid 0 , e.g. $\|\mathbf{h}\|_{2}^{2}=1$

Estimation of \mathbf{h} : Minimisation

In the case of redundant observations we get inconsistencies (due to the noise).
Let us write $\mathbf{A h}=\mathbf{w}$.
Our goal is to find \mathbf{h} such that:

$$
\begin{gathered}
\hat{\mathbf{h}}=\arg \min _{\mathbf{h}} \mathbf{w}^{t} \mathbf{w} \\
\hat{\mathbf{h}}=\arg \min _{\mathbf{h}} \mathbf{h}^{t} \mathbf{A}^{t} \mathbf{A} \mathbf{h}
\end{gathered}
$$

with $\|h\|_{2}^{2}=1$
How do we minimize the loss?

Estimation of \mathbf{h} : Singular Value Decomposition

The eigenvector belonging to the smallest eigenvalue of $\mathbf{A}^{t} \mathbf{A}$ provides the solution of the over-determined, constrained system of linear equations:

$$
\underbrace{\mathbf{A}}_{2 N \times 9}=\underbrace{\mathbf{U}}_{2 N \times 9} \underbrace{\mathbf{S}}_{9 \times 9} \underbrace{\mathbf{V}}_{9 \times 9}=\sum_{i=1}^{9} s_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{t}
$$

with $\mathbf{U}^{t} \mathbf{U}=\mathbf{I}_{9}$ and $\mathbf{V}^{t} \mathbf{V}=\mathbf{I}_{9}$
The vector v_{i} are orthonormal since

$$
v_{i} v_{j}^{t}=\left\{\begin{array}{l}
0 \text { if } i \neq j \\
1 \text { if } i=j
\end{array}\right.
$$

So, \mathbf{h} is equal to v_{9}, with s_{9} the smallest eigen value.

Estimation of \mathbf{h} : Singular Value Decomposition

The estimate of \mathbf{h} is given by

$$
\hat{\mathbf{h}}=\left[\begin{array}{lll}
\hat{\mathbf{h}_{1}} & \hat{\mathbf{h}_{2}} & \hat{\mathbf{h}_{3}}
\end{array}\right]^{t}=v_{9}
$$

This leads to the estimated projection matrix. No solution if too many points x_{i} are on a line.

DLT + SVD algorithm

Objective:

Given $N \geq 42 \mathrm{~d}$ to 2 d point correspondences $\left(\mathbf{x}_{i}, \mathbf{x}_{i}^{\prime}\right)$, determine the 2d homography matrix \mathbf{H} such that $\mathbf{x}_{i}^{\prime}=\mathbf{H} \mathbf{x}_{i}$.

Algorithm:

- For each correspondence $\left(\mathbf{x}_{i}, \mathbf{x}_{i}^{\prime}\right)$ compute \mathbf{A}_{i}. Usually only two first rows needed.
- Assemble $\mathrm{N} 2 \times 9$ matrices \mathbf{A}_{i} into a single $2 N \times 9$ matrix \mathbf{A}
- Obtain SVD of \mathbf{A}. Solution for \mathbf{h} is the last line of \mathbf{V}
- Determine \mathbf{H} from \mathbf{h}

Estimation of \mathbf{h} : Data ranges

$$
\begin{aligned}
& \mathbf{A}_{i}^{t}=\left[\begin{array}{ccccccccc}
-x & -y & -1 & 0 & 0 & 0 & x^{\prime} x & x^{\prime} y & x^{\prime} \\
0 & 0 & 0 & -x & -y & -1 & y^{\prime} x & y^{\prime} y & y^{\prime}
\end{array}\right] \\
& \begin{array}{lllllllll}
10^{2} & 10^{2} & 1 & 10^{2} & 10^{2} & 1 & 10^{4} & 10^{4} & 10^{2}
\end{array} \\
& +{ }_{+++^{+}}^{+}+
\end{aligned}
$$

Dependence of error distribution on the dimensions of images.

How to transform them so that the coordinates are within $[-1,1]$?

Estimation of \mathbf{h} : Data normalisation

Normalised DLT algorithm

Objective:

Given $N \geq 42 \mathrm{~d}$ to 2 d point correspondences $\left(\mathbf{x}_{i}, \mathbf{x}_{i}^{\prime}\right)$, determine the 2d homography matrix \mathbf{H} such that $\mathbf{x}_{i}^{\prime}=\mathbf{H} \mathbf{x}_{i}$.

Algorithm:

- Apply the normalisation $\tilde{\mathbf{x}}_{i}=\mathbf{T}_{\text {norm }} \mathbf{x}_{i}$ and $\tilde{\mathbf{x}}_{i}^{\prime}=\mathbf{T}_{\text {norm }} \mathbf{x}_{i}^{\prime}$
- apply DLT with ($\tilde{\mathbf{x}}_{i}, \tilde{\mathbf{x}}_{i}^{\prime}$)
- Denormalise the homography: $\mathbf{H}=\mathbf{T}_{\text {norm }}^{-1} \tilde{\mathbf{H}} \mathbf{T}_{\text {norm }}$

