Complements on Homographies

Antoine Manzanera

ENSTA Paris

ROB313 - Robotic Vision January 2023

э

• • = • • = •

Complements on Homographies

 $\bullet~\textbf{Homography} \rightarrow \text{Most general case of 2d projective transformation}$

$$\tilde{m}' = H \tilde{m}$$

- \bullet 8 degrees of freedom \rightarrow At least four non colinear 2d points!
- Corresponds to 2 particular cases of image pairs:
 - ▶ 3d scene viewed under pure rotation around the optical centre ($\mathbf{t} = O_3$).
 - Same plane viewed under two different 3d poses.

Presentation Outline

A. Manzanera (ENSTA Paris)

Presentation Outline

(ペロ) (日) (日) (日) (日) (日)

A. Manzanera (ENSTA Paris)

In the case of a pure rotation around the optical centre $(t = O_3)$, the projected image transformation is a homography:

Figure from [Hartley and Zisserman 2004]

Since $\mathbf{t} = O_3$ we get:

$$\begin{split} \tilde{m} &= \left(\begin{array}{c|c} K & O_3 \end{array} \right) \tilde{M} \\ \tilde{m}' &= \left(\begin{array}{c|c} K & O_3 \end{array} \right) \left(\begin{array}{c|c} R & O_3 \end{array} \right) \left(\begin{array}{c|c} R & O_3 \end{array} \right) \tilde{M} \end{split}$$

which can be written more simply:

$$\widetilde{m} = KM$$

 $\widetilde{m}' = KRM = \underbrace{KRK^{-1}}_{H}\widetilde{m}$

э

イロト 人間ト イヨト イヨト

Note the difference between rotation around the optical centre ((a) to (b)), and translation ((a) to (c)):

Images from [Hartley and Zisserman 2004]

Since there is no parallax, the images can be stitched to form a mosaic:

Presentation Outline

Rotation around the optical centre

$$egin{aligned} & ilde{x} = H_{\pi,1}X \ & ilde{x}' = H_{\pi,2}X \ & ilde{x}' = H_{\pi,2}H_{\pi,1}^{-1} ilde{x} = H_{\pi} ilde{x} \end{aligned}$$

Let us first assume that $K = I_3$ (i.e. $f = 1, c_x = c_y = 0$). Then if the pose of the right camera is given by rotation matrix R and translation vector \mathbf{t} , we get:

$$\tilde{m} = P\tilde{M} = (I_3 \mid O_3)\tilde{M}$$
$$\tilde{m}' = P'\tilde{M} = (R \mid \mathbf{t})\tilde{M}$$

Every point on the ray $M_z = (m^t, z)$ (parameterized by z) projects on m. If the point M_z is on the plane π , it must satisfy: $\pi^t . \tilde{M}_z = 0$. If the coordinates of the plane are given as $\pi = (\mathbf{n}^t, d)^t$, so that for points M on the plane, we have: $\mathbf{n}^t M + d = 0$,

then the point of the ray backprojected from m and intersecting plane π is:

$$ilde{M}_{\pi} = \left(ilde{m}^t, -rac{\mathbf{n}^t ilde{m}}{d}
ight)^t$$

イロト 不得 トイヨト イヨト 二日

The point of the ray backprojected from m and intersecting plane π is:

$$ilde{M}_{\pi} = \left(ilde{m}^t, -rac{\mathbf{n}^t ilde{m}}{d}
ight)^t$$

And then:

$$\begin{split} \tilde{m}' &= P' \tilde{M}_{\pi} = \left(\begin{array}{c} R \mid \mathbf{t} \end{array} \right) \tilde{M}_{\pi} \\ &= R \tilde{m} - \frac{\mathbf{t} \mathbf{n}^{t}}{d} \tilde{m} \end{split}$$

Finally, by considering the internal parameter matrix K of a single camera moved with rotation R and translation \mathbf{t} , the homography related to the plane $\pi = (\mathbf{n}^t, d)^t$ is given by:

$$H = K\left(R - \frac{\mathbf{tn}^t}{d}\right)K^{-1}$$

A. Manzanera (ENSTA Paris)