
Transformers DNN

Gianni FRANCHI
ENSTA-Paris

Gianni FRANCHI Transformers DNN 1 / 18



ViT [web1]

Figure: Representation structure of ViT

Gianni FRANCHI Transformers DNN 2 / 18



ViT [web1]

Figure: Detailed structure of ViT
Gianni FRANCHI Transformers DNN 3 / 18



ViT [web1]

ViT B corresponds to ViT base, ViT L corresponds to ViT large,
and ViT H corresponds to ViT huge. patch size is the size of the
image slice (there are also in the source code) 32 × 32 ); layers is
the number of times the encoder block is stacked; Hidden size is
the length of the token vector; The MLP size is four times the
hidden size, that is, the number of nodes in the first full connection
layer of the MLP block in the encoder block; Heads is the number
of heads in multi head attention.

Gianni FRANCHI Transformers DNN 4 / 18



Analyzing layer representations of CNNs vs VIT
[Raghu2021]

Analyzing (hidden) layer representations of neural networks is
challenging because their features are distributed across a large
number of neurons. So they propose to study a kind of correlation
between on layer X and one layer Y .

Gianni FRANCHI Transformers DNN 5 / 18



Analyzing layer representations of CNNs vs VIT
[Raghu2021]

Figure: Representation structure of ViTs and convolutional networks show
significant differences, with ViTs having highly similar representations
throughout the model, while the ResNet models show much lower
similarity between lower and higher layers

Gianni FRANCHI Transformers DNN 6 / 18



Analyzing layer representations of CNNs vs ViT
[Raghu2021]

Figure: Representation structure of ViTs vs ResNet illustrate that a
larger number of lower layers in the ResNet are similar to a smaller
set of the lowest ViT layers

Gianni FRANCHI Transformers DNN 7 / 18



Local and Global Information in Layer Representations
[Raghu2021]

How much global information is aggregated by early self-attention
layers in ViT?
Analyzing Attention Distances:
Each self-attention layer comprises multiple self-attention heads,
and for each head we can compute the average distance between
the query patch position and the locations it attends to. This
reveals how much local vs global information each self-attention
layer is aggregating for the representation. Specifically, they weight
the pixel distances by the attention weights for each attention
head and average over 5000 datapoints.

Gianni FRANCHI Transformers DNN 8 / 18



Local and Global Information in Layer Representations
[Raghu2021]

Figure: With less training data, lower attention layers do not learn to
attend locally.

Gianni FRANCHI Transformers DNN 9 / 18



Local and Global Information in Layer Representations
[Raghu2021]

We observe that even in the lowest layers of ViT, self-attention
layers have a mix of local heads (small distances) and global heads
(large distances). This is in contrast to CNNs, which are hardcoded
to attend only locally in the lower layers.

Gianni FRANCHI Transformers DNN 10 / 18



Effective Receptive Fields [Raghu2021]

Figure: ResNet effective receptive fields are highly local and grow
gradually; ViT effective receptive fields shift from local to global.

Gianni FRANCHI Transformers DNN 11 / 18



ViT vs CNN [Ghiasi2022]

They show that :
patch-wise image activation patterns for ViT features
essentially behave like saliency maps
the behavior of ViTs and CNNs, finding that ViTs make better
use of background information and rely less on high-frequency,
textural attributes.
investigate the effect of natural language supervision with
CLIP on the types of features extracted by ViTs. They find
CLIP-trained models include various features clearly catered to
detecting components of images corresponding to caption text,
such as prepositions, adjectives, and conceptual categories.

Gianni FRANCHI Transformers DNN 12 / 18



What is CLIP [Radford2021]

Figure: Summary of our approach. While standard image models jointly
train an image feature extractor and a linear classifier to predict some
label, CLIP jointly trains an image encoder and a text encoder to predict
the correct pairings of a batch of (image, text) training examples. At test
time the learned text encoder synthesizes a zero-shot linear classifier by
embedding the names or descriptions of the target dataset’s classes.

Gianni FRANCHI Transformers DNN 13 / 18



What is CLIP [Radford2021]

Figure: Numpy-like pseudocode for the core of an implementation of
CLIP.

Gianni FRANCHI Transformers DNN 14 / 18



What is CLIP [Radford2021]

Figure: Zero-shot CLIP is competitive with a fully supervised
baseline. Across a 27 dataset eval suite, a zero-shot CLIP classifier
outperforms a fully supervised linear classifier fitted on ResNet-50
features on 16 datasets, including ImageNet

Gianni FRANCHI Transformers DNN 15 / 18



ViT representation [Ghiasi2022]

Figure: Visualization of ViT-base-patch16

Gianni FRANCHI Transformers DNN 16 / 18



ViT representation [Ghiasi2022]

Figure: Visualization of a CLIP model with ViT-base-patch16 as its visual
part.

Gianni FRANCHI Transformers DNN 17 / 18



Bibliography

[web1] https://programmer.group/613ada5f581ff.html

[Raghu2021] Raghu, M., Unterthiner, T., Kornblith, S., Zhang,
C., & Dosovitskiy, A. (2021). Do vision transformers see like
convolutional neural networks?. Advances in Neural Information
Processing Systems, 34, 12116-12128.

[Ghiasi2022] Ghiasi, A., Kazemi, H., Borgnia, E., Reich, S., Shu,
M., Goldblum, M., ... & Goldstein, T. (2022). What do Vision
Transformers Learn? A Visual Exploration. arXiv preprint
arXiv:2212.06727.

[Radford2021] Radford, A., Kim, J. W., Hallacy, C., Ramesh, A.,
Goh, G., Agarwal, S., ... & Sutskever, I. (2021, July). Learning
transferable visual models from natural language supervision. In
International conference on machine learning (pp. 8748-8763).
PMLR.

Gianni FRANCHI Transformers DNN 18 / 18



Introduction to Generative Adversarial Networks (GAN)

Introduction to Generative Adversarial Networks
(GAN)

IA716 - Perception pour les systemes autonomes

Gianni Franchi

24/04/2023

1 / 70



Introduction to Generative Adversarial Networks (GAN)

Approximate Bayesian Computation

Let us consider that we have a set {Xi} of data that follow a distribution
P(X ). Our goal is to generate new data from this distribution but.
Let us assume we have access to a model of distribution P(X/θ) then we
can generate new data X. This distribution is called the likelihood.
However, for particular problems, we may find that we can not express
the likelihood in closed-form, or it is prohibitively costly to compute it.

2 / 70



Introduction to Generative Adversarial Networks (GAN)

Approximate Bayesian Computation

A solution is to approximate the likelihood.
We aim at using a function δ(·) to obtain a practically good enough
approximation to the true likelihood:

limϵ→0δ(X , X̂ , ϵ) = P(X/θ)

We introduce a tolerance parameter ϵ because the chance of generating a
synthetic data-set X̂ being equal to the observed data X is virtually null
for most problems

3 / 70



Introduction to Generative Adversarial Networks (GAN)

GAN principle: Why Generative learning

We’ve only seen discriminative models in the past
Given an image X , predict a label Y ;
Estimate P(Y |X ).

Discriminative models have several key limitations
Can’t model P(X ) , i.e. the probability of seeing a certain image;
Thus, can’t sample from P(X ), i.e. can’t generate new images;
Fixed loss.

Generative models (in general) cope with all of above
Can model P(X )

Can generate new images.
Learned loss link with perception (perceptual loss)

4 / 70



Introduction to Generative Adversarial Networks (GAN)

GAN principle

In generative adversarial networks (GANs), the task of learning a
generative model is expressed as a two-player zero-sum game between
two networks.

Figure: Principle of the GAN [Goodfellow2014]

With a random noise.

5 / 70



Introduction to Generative Adversarial Networks (GAN)

GAN principle1

Figure: Principle of the GAN [Goodfellow2014]

We need two DNNs.

1Gilles Louppe
6 / 70



Introduction to Generative Adversarial Networks (GAN)

GAN principle : training [Goodfellow2014]

The first network is called a generator g(·; θ) : Z → X , mapping a latent
space equipped with a prior distribution p(z) to the data space, thereby
inducing a distribution

x ∼ q(x; θ) ⇔ z ∼ p(z), x = g(z; θ)

The second network d(·;ϕ) : X → [0, 1] is a classifier called discriminator
trained to distinguish between true samples x ∼ p(x) and generated
samples x ∼ q(x; θ).

7 / 70



Introduction to Generative Adversarial Networks (GAN)

GAN principle : training [Goodfellow2014]

For a fixed generator g , the discriminator d can be trained by generating
a two-class training set
d = {(x1, y = 1), ..., (xN , y = 1), (g(z1; θ), y = 0), ..., (g(zN ; θ), y = 0)},
and minimizing the cross-entropy loss

L(ϕ) = − 1
2N

N∑
i=1

[log d(xi ;ϕ) + log (1 − d(g(zi ; θ);ϕ))]

≈ −Ex∼p(x) [log d(x;ϕ)]− Ez∼p(z) [log(1 − d(g(z; θ);ϕ))] .

However, the situation is slightly more complicated since we also want to
train g to fool the discriminator, which is equivalent to maximize d ’s loss.

8 / 70



Introduction to Generative Adversarial Networks (GAN)

GAN principle : training [Goodfellow2014]

Let us consider the value function

V (ϕ, θ) = Ex∼p(x) [log d(x;ϕ)] + Ez∼p(z) [log(1 − d(g(z; θ);ϕ))] .

For a fixed g , V (ϕ, θ) is high if d is good at recognizing true from
generated samples.
d is the best classifier given g , and if V is high, then this implies that the
generator is bad at reproducing the data distribution.
Conversely, g will be a good generative model if V is low when d is a
perfect opponent.

9 / 70



Introduction to Generative Adversarial Networks (GAN)

GAN principle : training [Goodfellow2014]

Therefore, the ultimate goal is optmized this minimax loss:

θ∗ = argmin
θ

max
ϕ

V (ϕ, θ).

10 / 70



Introduction to Generative Adversarial Networks (GAN)

GAN principle : training [Goodfellow2014]
Here I change d(x ;ϕ) by D(x) and also g(x ; θ) by G (x)

V (ϕ, θ) = Ex∼p(x) [log d(x;ϕ)] + Ez∼p(z) [log(1 − d(g(z; θ);ϕ))]

V (G ,D) = Ex∼p(x) [logD(x)] + Ez∼p(z) [log(1 − D(G (z)))]

Remember : If we have
I a real interval;
φ : [a, b] → I a derivable function and whose derivative has an
integral;
I a real interval;
f : I → R a continuous function.

then : ∫ b

a

f (φ(t))φ′(t) dt =
∫ φ(b)

φ(a)

f (x) dx .

11 / 70



Introduction to Generative Adversarial Networks (GAN)

GAN principle : training [Goodfellow2014]

So
Ez∼p(z) [log(1 − D(G (z)))] = Ex∼pg (x) [log(1 − D(x)))]

So we have

V (G ,D) =

∫
x

(p(x) log(D(x)) + pg (x) log(1 − D(x)))dx

Let us fix the generator and look for the best discriminator D∗

∂V (G ,D)

∂D
=

∂

∂D

∫
x

(p(x) log(D(x)) + pg (x) log(1 − D(x)))dx

12 / 70



Introduction to Generative Adversarial Networks (GAN)

GAN principle : training [Goodfellow2014]

We want to find

∂

∂D
p log(D) + pg log(1 − D) = 0

p

D
− pg

(1 − D)
= 0

D

(1 − D)
=

pg
p

D =
pg

p + pg

When the generator is perfectly driven p = pg then D = 1/2

13 / 70



Introduction to Generative Adversarial Networks (GAN)

GAN principle : training [Goodfellow2014]

Optimal solution to the adversarial game:
Generator distribution = data distribution
D = 1/2

14 / 70



Introduction to Generative Adversarial Networks (GAN)

GAN results

15 / 70



Introduction to Generative Adversarial Networks (GAN)

GAN issues:

Disadvantages of Generative Adversarial Networks (GANs):
Training Instability: GANs can be difficult to train, with the risk of
instability, mode collapse, or failure to converge.
Computational Cost: GANs can require a lot of computational
resources and can be slow to train, especially for high-resolution
images or large datasets.
Overfitting: GANs can overfit the training data, producing synthetic
data that is too similar to the training data and lacking diversity.
Bias and Fairness: GANs can reflect the biases and unfairness
present in the training data, leading to discriminatory or biased
synthetic data.
Interpretability and Accountability: GANs can be opaque and
difficult to interpret or explain, making it challenging to ensure
accountability, transparency, or fairness in their applications.

16 / 70



Introduction to Generative Adversarial Networks (GAN)

GAN issues: Mode collapse [Srivastava2017]
Training a standard GAN often results in pathological behaviors:

Oscillations without convergence: contrary to standard loss
minimization, alternating stochastic gradient descent has no
guarantee of convergence.
Vanishing gradients: when the classifier d is too good, the value
function saturates and we end up with no gradient to update the
generator.
Mode collapse: the generator g models very well a small
sub-population, concentrating on a few modes of the data
distribution.
Performance is also difficult to assess in practice.

17 / 70



Introduction to Generative Adversarial Networks (GAN)

GAN issues: Mode collapse [jonathan-hui]

Real-life data distributions are multimodal. For example, in MNIST,
there are 10 major modes from digit ’0’ to digit ’9’. The samples below
are generated by two different GANs. The top row produces all 10 modes
while the second row creates a single mode only (the digit ’6’). This
problem is called mode collapse when only a few modes of data are
generated.

18 / 70



Introduction to Generative Adversarial Networks (GAN)

GAN issues: Mode collapse [jonathan-hui]

The objective of the GAN generator is to create images that can fool the
discriminator D the most.

19 / 70



Introduction to Generative Adversarial Networks (GAN)

GAN issues: Mode collapse [jonathan-hui]

But let’s consider one extreme case where G is trained extensively
without updates to D. The generated images will converge to find the
optimal image x∗ that fool D the most, the most realistic image from the
discriminator perspective. In this extreme, x∗ will be independent of z .

20 / 70



Introduction to Generative Adversarial Networks (GAN)

GAN issues: Mode collapse [jonathan-hui]

When we restart the training in the discriminator, the most effective way
to detect generated images is to detect this single mode. Since the
generator desensitizes the impact of z already, the gradient from the
discriminator will likely push the single point around for the next most
vulnerable mode. This is not hard to find. The generator produces such
an imbalance of modes in training that it deteriorates its capability to
detect others. Now, both networks are overfitted to exploit short-term
opponent weakness.

21 / 70



Introduction to Generative Adversarial Networks (GAN)

GAN issues: Vanishing Gradient [jonathan-hui]

Recall that when the discriminator is optimal, the objective function for
the generator is:

V (G ,D∗) = 2DJS [p||pg ] + cst

22 / 70



Introduction to Generative Adversarial Networks (GAN)

GAN issues: Vanishing Gradient [jonathan-hui]

Let’s consider an example in which p and pg are Gaussian distributed and
the mean of p is zero. Let’s consider pg with different means to study the

gradient of DJS [p||pg ]. We denote these distribution q1, q2, q3

23 / 70



Introduction to Generative Adversarial Networks (GAN)

GAN issues: Vanishing Gradient [jonathan-hui]

As shown below, the gradient for the JS-divergence vanishes from q1 to
q3. The GAN generator will learn extremely slow to nothing when the
cost is saturated in those regions.

24 / 70



Introduction to Generative Adversarial Networks (GAN)

DCGAN [Radford2015]

Replace FC hidden layers with Convolutions/deconvolutional layers.

25 / 70



Introduction to Generative Adversarial Networks (GAN)

DCGAN [Radford2015]

Generations of realistic bedrooms pictures, from randomly generated
latent variables

26 / 70



Introduction to Generative Adversarial Networks (GAN)

DCGAN [Radford2015]

Interpolation in between points in latent space.

27 / 70



Introduction to Generative Adversarial Networks (GAN)

DCGAN [Radford2015]

Convolutional GAN - Arithmetic

28 / 70



Introduction to Generative Adversarial Networks (GAN)

DCGAN [Radford2015]

Convolutional GAN - Arithmetic

29 / 70



Introduction to Generative Adversarial Networks (GAN)

Conditional GAN [Mirza2014]

Conditional generative adversarial network, or cGAN, is a type of GAN
that involves the conditional generation of images by a generator model.

Hence you can control the kind of output you want

30 / 70



Introduction to Generative Adversarial Networks (GAN)

Optimal transport [alexhwilliams]

A fundamental problem in statistics and machine learning is to come up
with useful measures of ’distance’ between pairs of probability
distributions. One can compute the Kullback-Lieibler (KL) divergence
from Q to P is defined by :

DKL(P ∥ Q) =
∑
x∈X

P(x) log

(
P(x)

Q(x)

)
While the KL divergence is incredibly useful and fundamental in
information theory, it also has its shortcomings.
For instance, one of the first things we learn about the KL divergence is
that it is not symmetric A bigger problem is that the divergence may be
infinite if the support of P and Q are not equal.

31 / 70



Introduction to Generative Adversarial Networks (GAN)

Optimal transport [alexhwilliams]

One of the nice aspects of optimal transport theory is that it can be
grounded in physical intuition through the following thought experiment.
Suppose we are given the task of filling several holes in the ground. The
image below shows an overhead 2D view of this scenario - the three red
regions correspond to dirt piles, and the eight blue regions correspond
to holes.

32 / 70



Introduction to Generative Adversarial Networks (GAN)

Optimal transport [alexhwilliams]

Our goal is to come up with the most efficient transportation plan to
which moves the dirt to fill all the holes. We assume the total volume
of the holes is equal to the total volume of the dirt piles.

33 / 70



Introduction to Generative Adversarial Networks (GAN)

Optimal transport [alexhwilliams]

The "most efficient" plan is the one that minimizes the total
transportation cost. To quantify this, let’s say the transportation cost C
of moving 1 unit of dirt from (x0, y0) → (x1, y1) is given by the squared
Euclidean distance:

C (x0, y0, x1, y1) = (x0 − x1)
2 + (y0 − y1)

2

Now we’ll define the transportation plan T , which tells us how many
units of dirt to move from (x0, y0) → (x1, y1) which is given by

T (x0, y0, x1, y1) = ω

34 / 70



Introduction to Generative Adversarial Networks (GAN)

Optimal transport [alexhwilliams]

35 / 70



Introduction to Generative Adversarial Networks (GAN)

Optimal transport [alexhwilliams]

The transportation plan, T , specifies an arrow like this from every
possible starting position to every possible destination. Further, in
addition to being non negative, the plan must satisfy the following two
conditions: ∫ ∫

T (x0, y0, x , y)dxdy = p(x0, y0) ∀x0, y0∫ ∫
T (x , y , x1, y1)dxdy = q(x1, y1) ∀x1, y1

Where p(·, ·) and q(·, ·) are density functions encoding the units of dirt
and hole depth at each 2D location. Intuitively, the first constraint says
that the amount of piled dirt at is "used up" or transported somewhere.
The second constraint says that the hole at is "filled up" with the
required amount of dirt (no more and no less).

36 / 70



Introduction to Generative Adversarial Networks (GAN)

Optimal transport [alexhwilliams]

Suppose we are given a function T that satisfies all of these conditions
(i.e. we are given a feasible transport plan). Then the overall transport
cost is given by:

total cost =
∫ ∫ ∫ ∫

C (x0, y0, x1, y1)T (x0, y0, x1, y1)dx0dy0dx1dy1

Xe multiply the amount of dirt transported, given by T , by the per unit
transport cost, given by C . Integrating over all possible origins and
destinations gives us the total cost.

37 / 70



Introduction to Generative Adversarial Networks (GAN)

Optimal transport [alexhwilliams]

Given two probability distributions µ0 and µ1, and a positive cost
function c : RD × RD → R+ The Wasserstein distances is given by

OP(µ0, µ1) = inf
γ∈Π(µ0,µ1)

∫
c(x , y)dγ(x , y)

where Π(µ0, µ1) is the set of probability distributions γ with marginal
distributions µ0 and µ1.

38 / 70



Introduction to Generative Adversarial Networks (GAN)

Optimal transport [Arjovsky2017]

When using c(x , y) = ∥x − y∥p one defines Wasserstein distances.
The p-Wasserstein distance W p between µ0 and µ1is defined as

W p(µ0, µ1) = inf
γ∈Π(µ0,µ1)

∫
∥x − y∥p dγ(x , y)

Which is similar to solve the dual following dual problem for p = 1

W p(µ0, µ1) = sup
ϕ∈Lip1

[Ex∼µ0(ϕ(x))− Ex∼µ0(ϕ(x))]

with

Lip1 = {f : RD → R such that ∀(x , y)∥f (x)− f (y)∥ ≤ ∥x − y∥}

39 / 70



Introduction to Generative Adversarial Networks (GAN)

Wassestein GAN [Arjovsky2017]

GAN (Vanilla):

min
Dθ

max
Gϕ

Ex∼p(x) [logD(x)] + Ez∼p(z) [log(1 − D(G (z)))]

Wassestein GAN :

min
Dθ

max
Gϕ

Ex∼p(x) [D(x)]− Ez∼p(z) [(D(G (z)))]

We just got rid of the log and D is not a probability... but we now have a
constrained optimization D ∈ Lip1 The original WGAN paper uses weight
clipping to restrict the Lipschitz constant (heuristic)

40 / 70



Introduction to Generative Adversarial Networks (GAN)

Cycle GAN [geeksforgeeks]

We use two Conditional GAN:

GY→X : Y → X

GX→Y : X → Y

41 / 70



Introduction to Generative Adversarial Networks (GAN)

Cycle GAN [geeksforgeeks]

More specifically the CycleGAN architecture is different from other GANs
in a way that it contains 2 mapping function (G or GY→X and F or
GX→Y ) that acts as generators and their corresponding Discriminators
(Dx and Dy ): The generator mapping functions are as follows:

42 / 70



Introduction to Generative Adversarial Networks (GAN)

Cycle GAN [geeksforgeeks]

43 / 70



Introduction to Generative Adversarial Networks (GAN)

Cycle GAN [geeksforgeeks]

44 / 70



Introduction to Generative Adversarial Networks (GAN)

Cycle GAN [geeksforgeeks]

Each CycleGAN generator has three sections:
Encoder
Transformer
Decoder

45 / 70



Introduction to Generative Adversarial Networks (GAN)

Cycle GAN [geeksforgeeks]

The input image is passed into the encoder. The encoder extracts
features from the input image by using Convolutions and compressed the
representation of image but increase the number of channels.
Then the output of encoder after activation function is applied is passed
into the transformer. The transformer contains 6 or 9 residual blocks
based on the size of input.
The output of transformer is then passed into the decoder which uses 2
-deconvolution block of fraction strides to increase the size of
representation to original size.

46 / 70



Introduction to Generative Adversarial Networks (GAN)

Cycle GAN [geeksforgeeks]

47 / 70



Introduction to Generative Adversarial Networks (GAN)

Cycle GAN [geeksforgeeks]

In discriminator the authors use PatchGAN discriminator. The
difference between a PatchGAN and regular GAN discriminator is that
rather the regular GAN maps from a 256 × 256 image to a single scalar
output, which signifies ’real’ or ’fake’, whereas the PatchGAN maps from
256 × 256to an N × N (here 70 × 70) array of outputs X, where each Xij

signifies whether the patch ij in the image is real or fake.

48 / 70



Introduction to Generative Adversarial Networks (GAN)

Cycle GAN losses

Cycle GAN losses has several losses : First, the standard loss function for
cGAN training is defined as follows:

LcGAN(θG , θD) = Ex [logDx(x | y)] + Ez [log(1 − Dx(GY→X (z | y)))],
(1)

49 / 70



Introduction to Generative Adversarial Networks (GAN)

Cycle GAN losses

Cycle GAN losses has several losses : Secondly, in addition to the
adversarial loss defined, it also have a cycle loss defined by:

LL2(θG ) = E(x,y)[∥y − GX→Y ((GY→X (y)) ∥2] + E(x,y)[∥x − GY→X ((GX→Y (x)) ∥2] (2)

50 / 70



Introduction to Generative Adversarial Networks (GAN)

Cycada [Hoffman2018]

51 / 70



Introduction to Generative Adversarial Networks (GAN)

Pix2Pix [Phillip2017]

52 / 70



Introduction to Generative Adversarial Networks (GAN)

Pix2Pix [Phillip2017]

it is composed of a Conditional Generator and one discriminator. For
Pix2Pix the discriminator is PatchGan and the Generator is a Unet.

53 / 70



Introduction to Generative Adversarial Networks (GAN)

Pix2Pix [Phillip2017]

Pix2pix has the following two losses :

LcGAN(θG , θD) = Ex [logDx(x | y)] + Ez [log(1 − Dx(GY→X (z | y)))],
(3)

In addition to the adversarial loss defined, an L1 loss, is added to the cost
function of cGANs to reduce blur:

LL1(θG ) = E(x,y ,z)[∥x − G (z | y)∥1]. (4)

54 / 70



Introduction to Generative Adversarial Networks (GAN)

Remember: regularization with Batch normalization

For every channel c we estimate

µc =
1

NHW

N∑
i=1

H∑
j=1

W∑
K=1

xicjk and σc =
1

NHW

N∑
i=1

H∑
j=1

W∑
K=1

(xicjk − µc)
2 (5)

x̂ =
x − µc√
σ2
c + ϵ

(6)

55 / 70



Introduction to Generative Adversarial Networks (GAN)

Remember: regularization Instance Normalization

For every channel c we estimate

µnc =
1

HW

H∑
j=1

W∑
K=1

xncjk and σnc =
1

HW

H∑
j=1

W∑
K=1

(xncjk − µnc)
2 (7)

x̂ =
x − µnc√
σ2
nc + ϵ

(8)

56 / 70



Introduction to Generative Adversarial Networks (GAN)

Remember: Batch normalization or Instance
Normalization

After we have assess x̂ we to de-normalise the data

BN(x) = γ
x − µ(x)√
σ2(x) + ϵ

+ β (9)

IN(x) = γ
x − µ(x)√
σ2(x) + ϵ

+ β (10)

where γ and β are affine parameters learned during the training

57 / 70



Introduction to Generative Adversarial Networks (GAN)

Batch normalization vs Instance Normalization

58 / 70



Introduction to Generative Adversarial Networks (GAN)

adaptive instance normalization (AdaIN) [Huang2017]

AdaIN receives a content input x and a style input y, and simply aligns
the channelwise mean and variance of x to match those of y.

AdaIN(x , y) = γ(y)
x − µ(x)√
σ2(x) + ϵ

+ β(y) (11)

in which we simply scale the normalized content input with γ(y), and
shift it with β(y). Similar to IN, these statistics are computed across
spatial locations.

59 / 70



Introduction to Generative Adversarial Networks (GAN)

SPatially-Adaptive (DE)normalization (SPADE)
[Park2019]

Spade(x , label) = γ(label)
x − µ(x)√
σ2(x) + ϵ

+ β(label) (12)

60 / 70



Introduction to Generative Adversarial Networks (GAN)

SPatially-Adaptive (DE)normalization (SPADE)
[Park2019]

In the SPADE generator, each normalization layer uses the segmentation
mask to modulate the layer activations.

The SPADE generator contains a series of the SPADE residual blocks
with upsampling layers ant it is just a decoder.

61 / 70



Introduction to Generative Adversarial Networks (GAN)

Style GAN [geeksforgeeks]

62 / 70



Introduction to Generative Adversarial Networks (GAN)

Style GAN Novelties [geeksforgeeks]

Baseline Progressive Growing GANs: Style GAN uses baseline
progressive GAN architecture which means the size of generated image
increases gradually from a very low resolution (4 × 4) to high resolution
(1024 × 1024). This is done by adding a new block to both the models
to support the larger resolution after fitting the model on smaller
resolution to make it more stable.

63 / 70



Introduction to Generative Adversarial Networks (GAN)

Style GAN Novelties [geeksforgeeks]

Mapping Network and Style Network: The goal of the mapping
network is to generate the input latent vector into the intermediate
vector whose different element control different visual features. Instead of
directly providing latent vector to input layer the mapping is used. In this
paper, the latent vector (z) of size 512 is mapped to another vector of
512 (w). The mapping function is implemented using 8-layer MLP (8-
fully connected layers). The output of mapping network (w) then passed
through a learned affine transformation (A) before passing into the
synthesis network which AdaIN (Adaptive Instance Normalization)
module. This model converts the encoded mapping into the generated
image.

64 / 70



Introduction to Generative Adversarial Networks (GAN)

Style GAN Novelties [geeksforgeeks]

Removing traditional (Latent) input: Most previous style transfer
model uses the random input to create the initial latent code of the
generator i.e. the input of the 4 × 4 level. However the style-GAN
authors concluded that the image generation features are controlled by w
and AdaIN. Therefore they replace the initial input with the constant
matrix of 4 × 4 × 512. This also contributed to increase in the
performance of the network.

65 / 70



Introduction to Generative Adversarial Networks (GAN)

Style GAN Novelties [geeksforgeeks]

Addition of Noisy: Input A Gaussian noise (represented by B) is added
to each of these activation maps before the AdaIN operations. A
different sample of noise is generated for each block and is interpreted on
the basis of scaling factors of that layer.

66 / 70



Introduction to Generative Adversarial Networks (GAN)

Style GAN Novelties [Karras2019]

67 / 70



Introduction to Generative Adversarial Networks (GAN)

Bibliography

[Srivastava2017] Srivastava, A., Valkov, L., Russell, C., Gutmann, M.
U.,& Sutton, C. (2017). Veegan: Reducing mode collapse in gans using
implicit variational learning. Advances in neural information processing
systems, 30.

[Goodfellow2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., ... & Bengio, Y. (2014). Generative
adversarial nets. Advances in neural information processing systems, 27.

[Radford2015] Radford, A., Metz, L., & Chintala, S. (2015).
Unsupervised representation learning with deep convolutional generative
adversarial networks. arXiv preprint arXiv:1511.06434.

68 / 70



Introduction to Generative Adversarial Networks (GAN)

Bibliography

[Hoffman2018] Hoffman, J., Tzeng, E., Park, T., Zhu, J. Y., Isola, P.,
Saenko, K., ... & Darrell, T. (2018, July). Cycada: Cycle-consistent
adversarial domain adaptation. In International conference on machine
learning (pp. 1989-1998). PMLR.

[Mirza2014] Mirza, M., & Osindero, S. (2014). Conditional generative
adversarial nets. arXiv preprint arXiv:1411.1784.

[jonathan-hui] https://jonathan-hui.medium.com/gan-why-it-is-so-hard-
to-train-generative-advisory-networks-819a86b3750b

[geeksforgeeks] https://www.geeksforgeeks.org/

[alexhwilliams]
http://alexhwilliams.info/itsneuronalblog/2020/10/09/optimal-
transport/

[Phillip2017] Isola, Phillip, et al. "Image-to-image translation with
conditional adversarial networks." Proceedings of the IEEE conference on
computer vision and pattern recognition. 2017.

69 / 70



Introduction to Generative Adversarial Networks (GAN)

Bibliography

[Huang2017] Huang, Xun, and Serge Belongie. "Arbitrary style transfer
in real-time with adaptive instance normalization." Proceedings of the
IEEE international conference on computer vision. 2017.

[Park2019] Park, Taesung, et al. "Semantic image synthesis with
spatially-adaptive normalization." Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. 2019.

[Karras2019] Karras, Tero, Samuli Laine, and Timo Aila. "A style-based
generator architecture for generative adversarial networks." Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition.
2019.

[Arjovsky2017] Arjovsky, Martin, Soumith Chintala, and LÃ©on
Bottou. "Wasserstein generative adversarial networks." International
conference on machine learning. PMLR, 2017.

70 / 70



Autoencoder
Variational Inference

Variational Autoencoders

Variational AutoEncoders (VAE)

Gianni FRANCHI
ENSTA-Paris

Gianni FRANCHI Variational AutoEncoders (VAE) 1 / 46



Autoencoder
Variational Inference

Variational Autoencoders

Autoencoders

Before we start talking about VAEs, let us quickly revisit
autoencoders

An autoencoder contains an encoder which takes the input X
and maps it to a hidden representation
The decoder then takes this hidden representation and tries to
reconstruct the input from it.

Gianni FRANCHI Variational AutoEncoders (VAE) 2 / 46



Autoencoder
Variational Inference

Variational Autoencoders

Autoencoders [Roccatoward]

Gianni FRANCHI Variational AutoEncoders (VAE) 3 / 46



Autoencoder
Variational Inference

Variational Autoencoders

Autoencoders : Encoder

How do we choose the encoder?
Typically we choose classical DNN architecture. Resnet
[He2016], Inception network [Szegedy2016], VGG
[Simonyan2014].
The choice depends on the application.
But in general, we choose a pre-trained DNN.

Gianni FRANCHI Variational AutoEncoders (VAE) 4 / 46



Autoencoder
Variational Inference

Variational Autoencoders

Autoencoders : Decoder [Roccatoward]

How do we choose the Decoder?
Typically the decoder is smaller.
Decoder might have skip connection to improve the training.
Decoder might have multi-resolution feature maps.

Gianni FRANCHI Variational AutoEncoders (VAE) 5 / 46



Autoencoder
Variational Inference

Variational Autoencoders

Autoencoders : GOAL [Roccatoward]

What is the goal of an autoencoder?
Compress the data
Find a discriminative/interesting representation
Hide information

Gianni FRANCHI Variational AutoEncoders (VAE) 6 / 46



Autoencoder
Variational Inference

Variational Autoencoders

Autoencoders : Generation

Can we generate new images with an Auto encoder? NO! Encoder
encode a data and decoder just decode.

Gianni FRANCHI Variational AutoEncoders (VAE) 7 / 46



Autoencoder
Variational Inference

Variational Autoencoders

Autoencoders : Generation

Why do we need to learn to generate? What is different?

Gianni FRANCHI Variational AutoEncoders (VAE) 8 / 46



Autoencoder
Variational Inference

Variational Autoencoders

Generation

Generative Adversarial Network [Goodfellow2014]
Variational Autoencoders [Kingma2014]
Normalizing Flows [Rezende2015]

Gianni FRANCHI Variational AutoEncoders (VAE) 9 / 46



Autoencoder
Variational Inference

Variational Autoencoders

Variational Inference [Blei2017]

Let us consider a joint density of latent variables z = {z1 : zm} and
observations x = {x1 : xm} : P(x , z).
Using the Bayes’ theorem we have:

P(x , z) = P(z)P(x |z) (1)

P(z |x) = P(z)P(x |z)
P(x)

(2)

P(z) represents the Prior distribution;
P(x |z) represents the likelihood distribution;
P(z |x) represents the Posterior distribution.
P(x) represents the evidence distribution.

Gianni FRANCHI Variational AutoEncoders (VAE) 10 / 46



Autoencoder
Variational Inference

Variational Autoencoders

Variational Inference [Blei2017]

Unfortunately, this integral requires exponential time to compute as
it needs to be evaluated over all configurations of latent variables.
We therefore need to approximate this posterior distribution.
Variational inference approximates the posterior with a family of
distributions qλ(z | x) parametrized by a parameter λ
The optimal approximate posterior is thus:

q∗λ(z | x) = argminλKL(qλ(z | x) || p(z | x)) (3)

Gianni FRANCHI Variational AutoEncoders (VAE) 11 / 46



Autoencoder
Variational Inference

Variational Autoencoders

Variational Inference [Blei2017]

The Kullback-Leibler divergence between two discrete probability
distributions P and Q defined on the same probability space X , is
defined by :

KL(Q ‖ P) =
∑
x∈X

Q(x) log

(
Q(x)

P(x)

)
. (4)

Please be careful the Kullback-Leibler divergence is not symmetric.

Gianni FRANCHI Variational AutoEncoders (VAE) 12 / 46



Autoencoder
Variational Inference

Variational Autoencoders

Variational Inference [Blei2017]

Let us develop the calculus

KL(qλ(z | x) || p(z | x)) =
∑
z

qλ(z | x) log
(
qλ(z | x)
p(z | x)

)
. (5)

KL(qλ(z | x) || p(z | x)) = Eq[log qλ(z | x)]−Eq[log p(z | x)] (6)

using the fact that p(z | x) = p(x ,z)
p(x)

Gianni FRANCHI Variational AutoEncoders (VAE) 13 / 46



Autoencoder
Variational Inference

Variational Autoencoders

Variational Inference [Blei2017]

KL(qλ(z | x) || p(z | x)) = Eq[log qλ(z | x)]− Eq[log p(x , z)]︸ ︷︷ ︸
−ELBO(λ)

+ log p(x)︸ ︷︷ ︸
log evidence

(7)
ELBO= Evidence Lower BOund

log p(x) = ELBO(λ) +KL(qλ(z | x) || p(z | x)) (8)

Finding the parameter λ that minimizes the Kullback-Leibler
divergence is equivalent to finding λ that maximizes the ELBO.
Since KL() ≥ 0, then log p(x) ≥ ELBO(λ), this explain the name
of the loss.

Gianni FRANCHI Variational AutoEncoders (VAE) 14 / 46



Autoencoder
Variational Inference

Variational Autoencoders

Variational Inference [Blei2017]

ELBO(λ) = Eq[log p(x , z)]− Eq[log qλ(z | x)] (9)

using the fact that p(x , z) = p(x | z)p(z) we have :

ELBO(λ) = Eq[log p(x | z)]−Eq[log qλ(z | x)]+Eq[log p(z)] (10)

ELBO(λ) = −KL(qλ(z | x) || p(z)) + Eq[log p(x | z)] (11)

We can interpret the Kullback-Leibler divergence term as a
regularizer, and the expected likelihood term as a reconstruction
"loss".

Gianni FRANCHI Variational AutoEncoders (VAE) 15 / 46



Autoencoder
Variational Inference

Variational Autoencoders

Variational Autoencoders [Kingma2019]

Gianni FRANCHI Variational AutoEncoders (VAE) 16 / 46



Autoencoder
Variational Inference

Variational Autoencoders

Autoencoders

Gianni FRANCHI Variational AutoEncoders (VAE) 17 / 46



Autoencoder
Variational Inference

Variational Autoencoders

Variational Autoencoders [Kingma2019]

Gianni FRANCHI Variational AutoEncoders (VAE) 18 / 46



Autoencoder
Variational Inference

Variational Autoencoders

Variational Autoencoders [Kingma2019]

The Encoder: is a neural network that outputs a representation z
of data x . In probability model terms, the inference network
parametrizes the approximate posterior of the latent variables z .
The inference network outputs parameters to the distribution
q(z | x).
The Decoder is a neural net that learns to reconstruct the data x
given a representation z . In terms of probability models, the
likelihood of the data x given latent variables z is parametrized by a
generative network. The generative network outputs parameters to
the likelihood distribution p(x | z).

Gianni FRANCHI Variational AutoEncoders (VAE) 19 / 46



Autoencoder
Variational Inference

Variational Autoencoders

Reparametreziation trick [Kingma2019]

When we want to optimize a deep learning problem we often have
something to optimize of the following form :

L(θ) = Ep(z)[fθ(z)]

Let us say that we want to take the gradient L(θ) with respect to θ.
We consider that p is a density and fθ(z) is differentiate.
We can compute the gradient as the mean of gradients.

Gianni FRANCHI Variational AutoEncoders (VAE) 20 / 46



Autoencoder
Variational Inference

Variational Autoencoders

Reparametreziation trick [Kingma2019]

∇θL(θ) = ∇θEp(z)[fθ(z)]

∇θL(θ) = ∇θ
∫
[fθ(z)]p(z)dz

∇θL(θ) =
∫
∇θ[fθ(z)]p(z)dz

∇θL(θ) = Ep(z)[∇θfθ(z)]

But what happens if our density p is also parameterized by θ?

Gianni FRANCHI Variational AutoEncoders (VAE) 21 / 46



Autoencoder
Variational Inference

Variational Autoencoders

Reparametreziation trick [Kingma2019]

∇θL(θ) = ∇θEpθ(z)[fθ(z)]

∇θL(θ) = ∇θ
∫

fθ(z)pθ(z)dz

∇θL(θ) =
∫
∇θ[fθ(z)pθ(z)]dz

∇θL(θ) =
∫

fθ(z)∇θ[pθ(z)]dz + Epθ(z)[∇θfθ(z)]

The first term of the last equation is not guaranteed to be an
expectation.

Gianni FRANCHI Variational AutoEncoders (VAE) 22 / 46



Autoencoder
Variational Inference

Variational Autoencoders

Reparametreziation trick [Kingma2019]

The Reparametreziation trick consist in finding a random variable ε
that follow a distribution q(ε) and a function t such that :

z = t(θ, ε) ∼ pθ

We must have q(ε)dε = pθ(z)dz

Gianni FRANCHI Variational AutoEncoders (VAE) 23 / 46



Autoencoder
Variational Inference

Variational Autoencoders

Reparametreziation trick [Kingma2019]

Then we have

∇θL(θ) = ∇θ
∫

fθ(z)pθ(z)dz

∇θL(θ) = ∇θ
∫

fθ(z)qε(ε)dε

∇θL(θ) =
∫
∇θ[fθ(z)]qε(ε)dε

Please note that fθ(z) is function of two variables hence:
fθ(z) = f (z , θ). In addition z = t(θ, ε) so we have
fθ(z) = f (t(θ, ε), θ).

Gianni FRANCHI Variational AutoEncoders (VAE) 24 / 46



Autoencoder
Variational Inference

Variational Autoencoders

Reparametreziation trick [Kingma2019]

Let us write that f = h ◦ g
with h : R2 → R a differentiable function
(h : (x1, x2)→ f (x1, x2));
with g : R2 → R2 a differentiable function
(g : (ε, θ)→ (t(θ, ε), θ))
with f : R2 → R a differentiable function;

Hence, the chain rule results is:

∂f

∂θ
=

2∑
k=1

∂h

∂gk

∂gk
∂θ︸︷︷︸

recursive case

so we have:
∂fθ(z)

∂θ
=
∂fθ(z)

∂z

∂z

∂θ
+
∂fθ(z)

∂θ

Gianni FRANCHI Variational AutoEncoders (VAE) 25 / 46



Autoencoder
Variational Inference

Variational Autoencoders

Reparametreziation trick [Kingma2019]

∇θL(θ) = ∇θ
∫

fθ(z)]pθ(z)dz

∇θL(θ) = ∇θ
∫
∇θ[fθ(z)]qε(ε)dε

∇θL(θ) =
∫
∂fθ(z)

∂z

∂z

∂θ
+
∂fθ(z)

∂θ
qε(ε)dε

Gianni FRANCHI Variational AutoEncoders (VAE) 26 / 46



Autoencoder
Variational Inference

Variational Autoencoders

Reparametreziation trick [Kingma2019]

the encoder outputs the mean and standard deviation
qφ(x) = (µ(x), σ(x))

we generate a random noise ε ∼ N (0, 1)

we perform the reparametrization z = µ(x) + σ(x)× ε
the decoder generate the image pθ(x | z) = x̂

Figure: Reparametreziation trick1

1https://gregorygundersen.com/blog/2018/04/29/reparameterization/
Gianni FRANCHI Variational AutoEncoders (VAE) 27 / 46

https://gregorygundersen.com/blog/2018/04/29/reparameterization/


Autoencoder
Variational Inference

Variational Autoencoders

Results VAE on CIFAR [Kingma2019]

Gianni FRANCHI Variational AutoEncoders (VAE) 28 / 46



Autoencoder
Variational Inference

Variational Autoencoders

BETA VAE [Higgins2016]

They have been researches on disentangling the latent
representation.
What does it mean?
If each variable in the inferred latent representation z is only
sensitive to one single generative factor and relatively invariant to
other factors, we will say this representation is disentangled or
factorized.
Why do we want that?
One benefit that often comes with disentangled representation is
good interpretability and straightforward generalization to various
tasks.

Gianni FRANCHI Variational AutoEncoders (VAE) 29 / 46



Autoencoder
Variational Inference

Variational Autoencoders

BETA VAE [Higgins2016]

β−VAE [Higgins2016] is a modification of Variational
Autoencoder with a special emphasis to discover disentangled
latent space. The loss is

argmax
λ

= Eqλ [log pθ(x | z)] (12)

subject to KL(qλ(z | x) || p(z)) < δ (13)

They want the distance between the real and estimated posterior
distributions to be small.

Gianni FRANCHI Variational AutoEncoders (VAE) 30 / 46



Autoencoder
Variational Inference

Variational Autoencoders

BETA VAE [Higgins2016]

Using the Theorem of Lagrangian multiplier the loss become:

L(λ, θ) = Eqλ [log p(x | z)]− βKL(qλ(z | x) || p(z)) (14)

When β = 1, it is same as VAE. When β > 1, it applies a stronger
constraint on the latent bottleneck and limits the representation
capacity of z .
A higher β encourages more efficient latent encoding and further
encourages the disentanglement.

Gianni FRANCHI Variational AutoEncoders (VAE) 31 / 46



Autoencoder
Variational Inference

Variational Autoencoders

VQ-VAE [Oord2017]

The VQ-VAE ("Vector Quantised-Variational AutoEncoder"; model
learns a discrete latent variable by the encoder, since discrete
representations may be a more natural fit for problems like
language, speech, reasoning, etc.

Gianni FRANCHI Variational AutoEncoders (VAE) 32 / 46



Autoencoder
Variational Inference

Variational Autoencoders

VQ-VAE [Oord2017] [Yifan2020]

Gianni FRANCHI Variational AutoEncoders (VAE) 33 / 46



Autoencoder
Variational Inference

Variational Autoencoders

VQ-VAE [web1]

Gianni FRANCHI Variational AutoEncoders (VAE) 34 / 46



Autoencoder
Variational Inference

Variational Autoencoders

VQ-VAE

Encoder takes in images x: (n, h, w, c) and give outputs ze :
(n, h, w, d)
Vector Quantization layer takes ze and selects embeddings
from a dictionary based on distance and outputs zq
Decoder consumes zq and outputs x ′ trying to recreate input x

Gianni FRANCHI Variational AutoEncoders (VAE) 35 / 46



Autoencoder
Variational Inference

Variational Autoencoders

VQ-VAE [web1]

Gianni FRANCHI Variational AutoEncoders (VAE) 36 / 46



Autoencoder
Variational Inference

Variational Autoencoders

VQ-VAE

The total loss is actually composed of three components:
Reconstruction loss: reconstruction-loss = −log(p(x |zq))
Codebook loss codebook-loss = ‖sg [ze(x)]− e‖2 where sg
represents stop gradient operator meaning no gradient
Commitment (affectation of the code) loss
commitment-loss = β‖ze(x)− sg [e]‖2 β is a hyperparameter
that controls how much we want to weigh commitment loss
compared to other components

Gianni FRANCHI Variational AutoEncoders (VAE) 37 / 46



Autoencoder
Variational Inference

Variational Autoencoders

Results VQ-VAE [Oord2017]

Gianni FRANCHI Variational AutoEncoders (VAE) 38 / 46



Autoencoder
Variational Inference

Variational Autoencoders

VQ-VAE [Razavi2019]

Gianni FRANCHI Variational AutoEncoders (VAE) 39 / 46



Autoencoder
Variational Inference

Variational Autoencoders

VQ-VAE [Razavi2019]

Gianni FRANCHI Variational AutoEncoders (VAE) 40 / 46



Autoencoder
Variational Inference

Variational Autoencoders

deep hierarchical VAEs [Vahdat2020]

The latent variables are partitioned into disjoint groups
z = {z1, . . . , zl}.
The prior is represented by p(z) =

∏
l p(zl |z<l) the approximate

posterior is given by q(z |z<l , x) =
∏

l p(zl |z<l) The ELBO is equal
to :

LVAE = Eq(z|z<l ,x)[log p(x | z)]−KL(q(z1|x) || p(z1))

−
∑
l

Eq(z<l |x)[KL(q(zl |z<l , x)) || p(zl |z<l))]

Gianni FRANCHI Variational AutoEncoders (VAE) 41 / 46



Autoencoder
Variational Inference

Variational Autoencoders

VQ-VAE [Vahdat2020]

Figure: The neural networks implementing an encoder q(z|x) and
generative model p(x, z) for a 3-group hierarchical VAE. r denotes
residual neural networks, + denotes feature combination, and h a
trainable parameter.

Gianni FRANCHI Variational AutoEncoders (VAE) 42 / 46



Autoencoder
Variational Inference

Variational Autoencoders

Bibliography

[Blei2017] Blei, David M., Alp Kucukelbir, and Jon D. McAuliffe.
"Variational inference: A review for statisticians." Journal of the
American statistical Association 112.518 (2017): 859-877.

[Kingma2019] Kingma, Diederik P., and Max Welling. "An
introduction to variational autoencoders." arXiv preprint
arXiv:1906.02691 (2019).

[Kingma2014] Kingma, Diederik P., and Max Welling.
"Auto-encoding variational bayes." arXiv preprint arXiv:1312.6114
(2013).

[Roccatoward] Joseph Rocca.
"https://towardsdatascience.com/
understanding-variational-autoencoders-vaes-f70510919f73"

Gianni FRANCHI Variational AutoEncoders (VAE) 43 / 46

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73


Autoencoder
Variational Inference

Variational Autoencoders

Bibliography

[Higgins2016] Higgins, I., Matthey, L., Pal, A., Burgess, C.,
Glorot, X., Botvinick, M., ... & Lerchner, A. (2016). beta-vae:
Learning basic visual concepts with a constrained variational
framework.

[Oord2017] Oord, Aaron van den, Oriol Vinyals, and Koray
Kavukcuoglu. "Neural discrete representation learning." arXiv
preprint arXiv:1711.00937 (2017).

[Razavi2019] Razavi, Ali, Aaron van den Oord, and Oriol Vinyals.
"Generating diverse high-fidelity images with vq-vae-2." arXiv
preprint arXiv:1906.00446 (2019).

Gianni FRANCHI Variational AutoEncoders (VAE) 44 / 46



Autoencoder
Variational Inference

Variational Autoencoders

Bibliography

[Yifan2020] Xue, Yifan, Michael Q. Ding, and Xinghua Lu.
"Learning to encode cellular responses to systematic perturbations
with deep generative models." NPJ systems biology and
applications 6.1 (2020): 1-11.

[He2016] He, Kaiming, et al. "Deep residual learning for image
recognition." Proceedings of the IEEE conference on computer
vision and pattern recognition. 2016.

[Simonyan2014] Simonyan, Karen, and Andrew Zisserman. "Very
deep convolutional networks for large-scale image recognition."
arXiv preprint arXiv:1409.1556 (2014).

[Szegedy2016] Szegedy, Christian, et al. "Rethinking the inception
architecture for computer vision." Proceedings of the IEEE
conference on computer vision and pattern recognition. 2016.

Gianni FRANCHI Variational AutoEncoders (VAE) 45 / 46



Autoencoder
Variational Inference

Variational Autoencoders

Bibliography

[Goodfellow2014] Goodfellow, Ian J., et al. "Generative
adversarial networks." arXiv preprint arXiv:1406.2661 (2014).

[Rezende2015] Rezende, Danilo, and Shakir Mohamed.
"Variational inference with normalizing flows." International
Conference on Machine Learning. PMLR, 2015.

[web1] https://shashank7-iitd.medium.com/understanding-vector-
quantized-variational-autoencoders-vq-vae-323d710a888a

[Vahdat2020] Vahdat, Arash, and Jan Kautz. "NVAE: A deep
hierarchical variational autoencoder." Advances in neural
information processing systems 33 (2020): 19667-19679.

Gianni FRANCHI Variational AutoEncoders (VAE) 46 / 46



Diffusion models

Gianni FRANCHI
ENSTA-Paris

Gianni FRANCHI Diffusion models 1 / 20



Diffusion Model [CVPR TUTO]

Gianni FRANCHI Diffusion models 2 / 20



Diffusion Model [CVPR TUTO]

Gianni FRANCHI Diffusion models 3 / 20



Diffusion Model [CVPR TUTO]

Gianni FRANCHI Diffusion models 4 / 20



Diffusion Model [CVPR TUTO]

Gianni FRANCHI Diffusion models 5 / 20



Diffusion Model [CVPR TUTO]

Gianni FRANCHI Diffusion models 6 / 20



Diffusion Model [CVPR TUTO]

Gianni FRANCHI Diffusion models 7 / 20



Diffusion Model [CVPR TUTO]

Gianni FRANCHI Diffusion models 8 / 20



Diffusion Model [CVPR TUTO]

Gianni FRANCHI Diffusion models 9 / 20



Diffusion Model [CVPR TUTO]

Gianni FRANCHI Diffusion models 10 / 20



Diffusion Model [CVPR TUTO]

Gianni FRANCHI Diffusion models 11 / 20



Diffusion Model [CVPR TUTO]

Gianni FRANCHI Diffusion models 12 / 20



Diffusion Model [CVPR TUTO]

Gianni FRANCHI Diffusion models 13 / 20



Diffusion Model [CVPR TUTO]

Gianni FRANCHI Diffusion models 14 / 20



Diffusion Model [CVPR TUTO]

Gianni FRANCHI Diffusion models 15 / 20



Diffusion Model [CVPR TUTO]

Gianni FRANCHI Diffusion models 16 / 20



Diffusion Model [CVPR TUTO]

Gianni FRANCHI Diffusion models 17 / 20



Stable Diffusion [Rombach2022]

Gianni FRANCHI Diffusion models 18 / 20



Stable Diffusion [Rombach2022]

Approach: The key idea is to perform diffusion steps in the
latent space of an autoencoder instead of in the pixel space of
images. This reduces the dimensionality of input tensors to the
U-Net compared to the original images.
Benefits:

Accelerates training/finetuning of the U-Net, reducing GPU
RAM requirements during training. Shortens sampling time
independently of the scheduler, as each pass through the
U-Net becomes faster.
Additional Enhancement: A new multimodal conditioning
mechanism through cross-attention, providing an improved
Stable Diffusion model.

Gianni FRANCHI Diffusion models 19 / 20



Bibliography

[CVPR TUTO] Karsten Kreis, Ruiqi Gao, and Arash Vahdat
Denoising Diffusion-based Generative Modeling: Foundations and
Applications, CVPR Tutorial

[Rombach2022] Rombach, R., Blattmann, A., Lorenz, D., Esser,
P., & Ommer, B. (2022). High-resolution image synthesis with
latent diffusion models. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition (pp. 10684-10695).

Gianni FRANCHI Diffusion models 20 / 20


	Autoencoder
	Variational Inference
	Variational Autoencoders

	pbs@ARFix@1: 
	pbs@ARFix@2: 
	pbs@ARFix@3: 
	pbs@ARFix@4: 
	pbs@ARFix@5: 
	pbs@ARFix@6: 
	pbs@ARFix@7: 
	pbs@ARFix@8: 
	pbs@ARFix@9: 
	pbs@ARFix@10: 
	pbs@ARFix@11: 
	pbs@ARFix@12: 
	pbs@ARFix@13: 
	pbs@ARFix@14: 
	pbs@ARFix@15: 
	pbs@ARFix@16: 
	pbs@ARFix@17: 
	pbs@ARFix@18: 
	pbs@ARFix@19: 
	pbs@ARFix@20: 
	pbs@ARFix@21: 
	pbs@ARFix@22: 
	pbs@ARFix@23: 
	pbs@ARFix@24: 
	pbs@ARFix@25: 
	pbs@ARFix@26: 
	pbs@ARFix@27: 
	pbs@ARFix@28: 
	pbs@ARFix@29: 
	pbs@ARFix@30: 
	pbs@ARFix@31: 
	pbs@ARFix@32: 
	pbs@ARFix@33: 
	pbs@ARFix@34: 
	pbs@ARFix@35: 
	pbs@ARFix@36: 
	pbs@ARFix@37: 
	pbs@ARFix@38: 
	pbs@ARFix@39: 
	pbs@ARFix@40: 
	pbs@ARFix@41: 
	pbs@ARFix@42: 
	pbs@ARFix@43: 
	pbs@ARFix@44: 
	pbs@ARFix@45: 
	pbs@ARFix@46: 
	pbs@ARFix@47: 
	pbs@ARFix@48: 
	pbs@ARFix@49: 
	pbs@ARFix@50: 
	pbs@ARFix@51: 
	pbs@ARFix@52: 
	pbs@ARFix@53: 
	pbs@ARFix@54: 
	pbs@ARFix@55: 
	pbs@ARFix@56: 
	pbs@ARFix@57: 
	pbs@ARFix@58: 
	pbs@ARFix@59: 
	pbs@ARFix@60: 
	pbs@ARFix@61: 
	pbs@ARFix@62: 
	pbs@ARFix@63: 
	pbs@ARFix@64: 
	pbs@ARFix@65: 
	pbs@ARFix@66: 
	pbs@ARFix@67: 
	pbs@ARFix@68: 
	pbs@ARFix@69: 
	pbs@ARFix@70: 


