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Detection of Linear Features in SAR Images:
Application to Road Network Extraction

Florence Tupin, Henri Migre, Jean-Fracnis Mangin, Jean-Marie Nicolas, and Eung Pechersky

Abstract—We propose a two-step algorithm for almost unsu-  Py(@mi, c12, c13) Detection probability with threshold
pervised detection of linear structures, in particular, main axes Zmin and contrastg;» andc;s.

in road networks, as seen in synthetic aperture radar (SAR) Py(Zmin, ) False-alarm probability with threshold

images. The first step is Ioca_ll and is _used to extract linear Zmin and edge contrast

features from the speckle radar image, which are treated as road- man -

segment candidates. We present two local line detectors as well oz, y) Associative symmetrical sum of and

as a method for fusing information from these detectors. In the Y.

second global step, we identify the real roads among the segment .Sy Set of detected segments.

candidates by defining a Markov random field (MRF) on a set &’ Set of possible connections.

of segments, which introduces contextual knowledge about the ¢ _ SqU S, Set of segments.

shape of ro_ad pbjects_. The influence of the parameters on the Graph of segments

road detection is studied and results are presented for various y

real radar images. i Length of a segment

_ _ Rij Angle mod# between segmentsand
Ind_ex Terms—M_ar_kov random fields (MRF'’s), road detection, j.
SAR images, statistical properties. ceC Clique ¢ in the set of clique<.
p(X =) Probability distribution of the random
NOMENCLATURE variable X
p(X =z|Y =y)  Conditional probability distribution of

L Number of looks of the radar image. X givenY =y.

A Amplitude of pixels. L Label field.

g Number of pixels in region. D Observation field.

Ibi Empirical mean of region.

i Empirical variation coefficient of
region. |. INTRODUCTION

(L;) Exact mean-reflected intensity of HE RECENT launch of numerous radar sensors (ERS-
regioni. 1 and -2, JERS-1, and RADARSAT) as well as their

Cijr Cij Exact and empirical contrasts betweenwidespread coverage increases the need for automatic or
regionsi and . semiautomatic interpretation tools for radar images. In par-

Tij Ratio edge detector response betweenticular, line detection can be used for several applications,
regions: and j. such as registration with other sensor images, cartographic

T Ratio line detector (D1) response. applications, and geomorphologic studies. In this paper, we

Pij Cross-correlation edge detector are interested in the detection of the road network on satellite
response between regionand;. radar images, but the proposed method could be adapted to

P Cross-correlation line detector (D2)  gther images and purposes. In addition, we propose an almost
response. _ fully automatic method with no need for preselected points

Tmin Decision threshold for variable. (although some parameters have to be set).

fe(tlpy, -+, pr)  Probability-density function (pdf) of @ gjnce synthetic aperture radar (SAR) images result from
random variabler for valuet and the backscattering of a coherent electromagnetic wave, they
parameter va_Iuepl, o P present a noisy appearance caused by the speckle phenomenon

O (tlpy, -+, pr)  Cumulative distribution function of a [1], [2]. Although most of the main axes in the road network
random variablex for valuet and may be detected by a skilled human observer looking for
parameter valuesy, -+, pi. dark or bright linear structures, automatic detection remains
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cost functions, as in the original algorithm of Fishler [10]
{ Original radar image } and its improvements [4]. It has also been applied on SAR
images in [7] and [15]. Hough-transform-based approaches

have also been tested for the detection of parametric curves,
such as straight lines or circles [15]-[17]. Tracking methods
are another possibility. They find the minimum cost path in
a graph by using some heuristics, for instance, an entropy
criterion [5]. Energy minimizing curves, such as snakes, have
also been applied [18]. The Bayesian framework, which is well
adapted for taking some contextual knowledge into account,
has been widely used. Regazzoni defines a cooperative process
between three levels of a Bayesian network, allowing the
introduction of local contextual knowledge as well as more
global information concerning straight lines [19]. Hellwich [8]
usesa priori information concerning line continuity expressed
as neighborhood relations between pixels.

The approach proposed in this paper falls within the scope
of the Bayesian framework, but a new formulation using

Section.3 Linear structure detection

‘] segment-sites is developed. Since our aim is to detect the
L Set of detected segments major roads present in an image, contextual knowledge on
J the scale of pixels (as in [7] and [8]) is insufficient and results
Section 4 Segment connection scheme in numerous, small, disconnected. road segmer?ts. However,
""""""""""""""""""""" ! on the scale of segments a few pixels loagpriori knowl-
@ edge allow for the detection of the main axes in the road
network. Thus, we proceed in two steps. In the first step,

road-segment candidates are detected. In the second step, a
graph of segments is built and a novel Markov random field
(MRF) is defined to perform road detection, thus providing a
new approach. In the following section, we outline the overall
method and the organization of the paper (see also the diagram
of Fig. 1).

A priori knowledge
- length

= curyature

- Cross-roads

A posteriori probability
=lraining

Il. OVERVIEW OF THE METHOD

The first part of the algorithm performs a local detection
of linear structures. It is based on the fusion of the results

: from two line detectors D1 and D2, both taking the statistical
________________________________ 4 properties of speckle into account. Both detectors have a
constant false-alarm rate (that is, the rate of false alarms

Section 5 { Detected roads is independent of the average radiometry of the considered

region, as defined in [12]). Line detector D1 is based on the
Fig. 1. Diagram showing the different steps and corresponding sections/8ti0 €dge detector [12], widely used in coherent imagery, as
the proposed method. stated before. This is not a new detector [20], but an in-depth
statistical study of its behavior is given. Detector D2, which
Concerning the local criteria, most of the techniques uséds emerged from our work, uses the normalized centered
for road detection in visible range images are based eith@rrelation between two populations of pixels. Both responses
on conventional edge or line detectors [9]-{11]. They faitom D1 and D2 are merged to obtain a unigue response as
in processing SAR images because they often rely on thell as an associated direction in each pixel. The detection
assumption that the noise is white additive and Gaussian; thésults are postprocessed to provide candidate segments. This
is never verified in radar imagery, in which the noise is multfirst step is described in Section IIl.
plicative. These methods, therefore, roughly speaking, evaluatén the second step, our aim is to connect road segments that
differences of averages, implying noisy results and variabderrespond to true roads. It includes global criteria to cope with
false-alarm rates [12], [13]. In the case of radar imagery, loctle relatively poor detection results from the first step (few
edge or line detectors are often based on statistical propergsegments with large gaps on the real structures and many false
[14] or on the intensity ratio of neighboring regions [12], [13]detections). Our method relies on a new MRF-based model
In addition, local criteria are in many cases insufficierfor roads; this MRF is defined on a set of segmeAtgriori
for edge or line detection (this is certainly true for radaknowledge about the shape of a road is introduced by asso-
images), and global constraints must be introduced. For iiating certain potentials to subsets of segments. A simulated
stance, dynamic programming is used to minimize some glotzainealing algorithm is used to perform the minimization of the
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Fig. 2. \Vertical edge (on the left) and line (on the right) models used by the detegioisthe empirical mean of regioncomputed omn:; pixels.

MRF associated energy. Some postprocessing is eventugigometric shape of the filter (Fig. 2) is adequate, but many
applied to improve detection precision. This second step diections have to be tested. Besides, the width of a road

described in Section IV. not being precisely defined, several widths for region 1 are

In Section V, we analyze the influence of parameter settifiged (width from 1 to 3 pixels, corresponding to 12.5-40-m

and, lastly, we provide results on real radar images. ground widths for ERS-1 PRI images). Thus, considerig
directionsdy, k € {1, ---, Ny} for the line detector3A/,
lll. LINE DETECTION responses are computed (in practidg = 8).

In this section, we discuss detectors D1 and D2 as well as-€t fz(t|py, - -+, px) be the parametric probability-density
the fusion of their results. Since under certain assumptiofgnction (pdf) of a random variable for valuet and param-
the speckle may be statistically well modeled [21], [22], the§ter valuesp,, -- -, p,.. We denote its cumulative distribution
are studied through detection and false-alarm probabilities tnction by ..(¢|p, -- -, px).
using either analytical expressions or simulations. Under the hypothesis of the fully developed speckle and

with I" as the Gamma function [25], we obtain an amplitude
A. Ratio Line Detector D1 pdf f.4 for a region of mean-reflected intensit}) and.L-looks

Letting a exp(id)) be _the cpmplex ineld received L'_Jy the LA = 2 <£)Lt2L—1e—(”2/<I>) )

sensor, we define the intensify = |«|” and the amplitude I'(L) \(I)

A = +/I. This amplitude may have been averaged previoushy described in [1] and [26].
(L-looks images) by dividing the available bandwidth of the consideringr;; and » to be random variables and with
SAR system inL parts or by spatially averaging pixels [23]. .. a5 the exact radiometric contrast between regioasd

The .a.mplitude of pixek is. notedA§, s‘o tha.t the ra(jiome.tric j (ci; = VIV/T;)), the pdf of the ratio line detectof, is
empirical meany,; of a given region: having n; pixels is given by (see Appendix I)

mi = (1/n:) 3 e As-
The ratio edge detector was introduced in [24] and statis-  f,(t|cya, c13) = A[(n + 7o) LIC[(n1 + n3) L]

tically studied in [12]. Our line detector D1 is derived from L(n L)L (ng L) (n3 L)
the coupling of two such edge detectors on both sides of a x p2mlpnelynsl
region. Let index 1 denote the central region and index 2 and 1
3 both lateral regions (Fig. 2). We then define the response of x {g(tlcm) / g(zlers) dx
the edge detector between regianand j asr;; .
o +altlen) [ atele)ds] @
rij =1 — min <&, &> ¢
By where
il n (1 — )bt
and the response to D1 &s= min(r;2, 713), the minimum glz|ey) = Li - T _
response of a ratio edge detector on both sides of the linear [(1 = 2)?ny + ngcf ] Hmtne)
structure. 1\ ™k N
With detector D1, a pixel is considered as belonging to a <¥> (1 —a)™
line when its responseis large enough, i.e., higher than some + : Linitn) 3)
a priori chosen threshold,,;,,. {(1 —z)2n; + ”_21}
To study the behavior of this detector, its false-alarm and €1

detection probabilities are estimated under the assumption of Or given contrasts;, andci3 between the central region
fully developed speckle, which supposes a rough surface on &l adjacent regions, the detector has a constant false-alarm
wavelength scale [1]. Linear structures and border areas wite, independent of the gray levels. We call this a constant
be considered as rough in a first approximation and a detectfatse-alarm detector. Examples of such functigiig|ci2, c13)
occurs when the line detector response is large enough. Hre presented in Fig. 3.
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Fig. 3. Density functionf,-(¢) for the line detector D1 and for different
contrasts, withny = 33, no = ng = 22. C1: ¢12 = 2, ¢13 = 1.5; Cs: (a)
ci12 = c13 = 2; andC3: ¢12 = 2, c13 = 4.

false alarm probability P(r min)

r min

o

(b)

Fig. 4. Probability of detection versus the contrasts and c13 with the  Fig. 5. False-alarm probabilitieB,, (7 min, ¢) VErsusrm:, and analysis of
decision threshold i, = 0.3 andny = 33, no = ng = 22 for the line  the influence of different parameters for the line detector D1. (a) Pixel number
detector D1. influence on a homogeneous ar&#j: ny = 11, no = n3 = 33; Ca:
n1 = ng = 22, n3 = 33; andCs: ny = 33, ny = n3 = 22. (b) Edge
contrastc influence;Ci: ¢ = 1; C2: ¢ = 2; andC3: ¢ = 4.
The detection probability’?;, corresponding to a decision

thresholdrwin and the contrasts;, andeys, is (Fig. 4) Thus, the decision threshotd,;, can be deduced from the

1 statistical behavior of the detector. As usual, the detection
Py(rmin, c12, ¢13) = fr(t|c12, c13) dt. probability increases with a decreasing decision threshold,
Tmin but at the same time, the false-alarm rate increases [Fig. 5(a)

For a given direction, false detections occur in two cases:
homogeneous windows;t = ¢;3 = 1) and on edges:(> = 1
or ¢;3 = 1). In both cases and for a given decision thresho
Tmin, the false-alarm probability’, is given by

End (b)]. Thereforer,,;n may be deduced as a compromise
etween a chosen false-alarm rate and a minimum detectable
fgpntrast.

To test the correspondence between theoretical and practical
results, a homogeneous area has been selected in an ERS-1

Py(rmin: €) = Pa(rmims 1, ¢) = Pa(rimin, ¢ 1) image. It corresponds to a region with fully developed speckle,
1 whose measured pdf is close to that given in (1) [Fig. 6(a) and
= fr(t|1, ¢) dt. (4) (b)]. LetH, denote the hypothesis that the sample follows the

Pmin theoretical distribution (1); let{; denote the hypothesis that
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Fig. 6. Statistical study of the homogeneous test area. (a) Histogram of the amplitudes measured on the homogeneous test area. (b) Theoretical
probability-density function corresponding to (1). (c) Probabilyx) for the amplitude to be less than the valuethe theoretical probability with an
unbroken line, and the measured one on the test area indicated by a series of points. Their difference is used to obtain the Kolmogorov—Smpwmsetest res

TABLE | hand, the direction number must be small enough to limit
NUMBER OF PIXELS FOR CENTRAL AND ADJACENT REGIONS, computation time.
FOR DIFFERENT WIDTHS OF THE CENTRAL REGION . . . .
When line detection using only D1 is performed, after
Width of the | Number of pixels | Number of pixels | Number of pixels ha\/ing measured the response of the f||ter/\,{'m directions,
central line of region 1 of region 2 of region 3 we keep the best response. This multidirection detector has a

1 11 33 33

3 o 22 33 different false-alarm rate than the one given by (2). Bef..
3 33 2 22 denote the false-alarm probability fdr,; directions. Touziet
al. [12] have suggested the following empirical expression for
the edge detector:
it does not; and letx denote the probability of choosirk; Py =1- (1= Py)*

whenH, is true (first-kind risk). A Kolmogorov—Smirnov test

applied withe = 0.01 is positive, meaning that the behavioWith @ = 3, when Ay = 4. For the line detector, we found

of the sample corresponds to the theoretical prediction wittf¥Perimentally that a similar expression is adequate, with

first-kind risk of 1% [27] [Fig. 6(c)]. On this test area, whicht = 5 in the case ofA; = 8 [Fig. 7(b)]. The decision

does not contain any road (as it was selected from a sea argg)e:sholds used in practice can be deduced from these results.

the false-alarm rates that are a function of the threshgid

are measured and compared to theoretical false-alarm rafesCross-Correlation Line Detector D2

To take into account the correlation between pixels (interpixel In this section, we present a second detector for lines called

spacing of 12.5-25-m resolution cell), an equivalent numbBR, based on a new edge detector that we present first.

of looks is used for each,; value. Fig. 7(a) shows a good Our approach is inspired from the work of Hueckel [28].

agreement between theoretical and practical results in the c@ike ideal step-edge best approximating the amplitude in a

of a sea ERS-1 area, confirming our hypotheses. given windowV,,, around a pixek, and for a given direction
The size of the detection mask is chosen to contain enoug(k € {0, ---, NVy}) is computed by using the mean square

pixels in each region and to respect the shape of the ro&tror minimum criterion. This edge is, in this case, composed

Indeed, the more pixels we use to compute the empirigal two regions: and j with constant valueg; and ;. Once

means, the less number of false alarms [Fig. 5(a)]. We uséhis ideal edge is defined, the validity of the hypothesieefe

length of 11 pixels and a total width of 7 pixels (makkx 7 is an edge inzo with the directiond,,” is tested by using the

pixels). The number of pixels for central and adjacent regiori@ormalized-centered cross-correlation between pixel$/,gf

for different widths of the central region are given in Table &nd the ideal edge. The cross-correlation coefficigntcan
Besides, as already mentioned, the line detector responB@sshown to be (see Appendix II)

have to be computed in many directions. Because of the ) 1
chosen length of the mask, at least eight directions have to Pij = nv2eZ. +ny?
be used to guarantee that any road, whatever its direction, 1+ (i +ny) ——2 23

A7 — 1)2
has the same detection probability. Therefore, at each pixel, ning(@ij = 1)

24 different measures are obtained. Mask sizes are chosenvhere n; is the pixel number in region, ¢;; = pi/p; is
a compromise. On the one hand, the neighborhood mustthe empirical contrast between regiohand j, and~; is the
as large as possible to reduce false-alarm rates; on the otheaiation coefficient (ratio of standard deviation and mean) that
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false alarm probability P(r min) density function f(t)
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o. 0.4 0.6 0.8 1.0 Fig. 8. Density functiory,(t) for the line detector D2 and different contrasts
(a) with ny = 33,ny = ng = 22: C’li c12 = 2,c13 = 1.5 C’g: c1o = c13 = 2;

andCs: ¢10 = 2, c13 = 4.

regioni, an explicit expression is difficult to derive. To study
the behavior of the detector, simulations are used.

For each region of given mean intensitl), »n; amplitude
values are selected by using the pdf described by (1) and
random realizations are computed. This process is iterated
(100000 times) and the occurrencespadire used to approx-
imate its pdf (Fig. 8).

As for the ratio line detector D1, responses are computed in
eight directions on a % 11-pixel mask, and for three different
widths of the central line (widths ranging from 1 to 3 pixel
are tested).

In the case of homogeneous regions, the results of both
line detectors are very similar, as can be seen by comparing
Figs. 4 and 9 as well as Figs. 5 and 10. We also find a good
agreement between theoretical and practical results by using

o \ t min the same homogeneous test area, in the case of one and eight
c I 1 directions.
0.0 o.2 0.4 o.8 0.8 1.0
() C. Fusing Responses from D1 and D2

Fig. 7. Comparison of the theoretical (in full line) false-alarm probability . . . .
Py(rmin, 1) versusr,,i, and the frequencies obtained on an ERS-1 homo- In practice, the ratio line detector D1 is less accurate

geneous test area for the line detector D1 in dotted line. (a) In the case of (naultiple responses to a structure), but also less sensitive to the
response in one direction. (b) In the case of the response in eight direc“?ﬂ?potheses taking into account only the contrast between the
(the best response is kept). . o .
regions (Fig. 11). Therefore, we decided not to choose one of
them, but to merge information from both D1 and D2 in each

adequately measures homogeneity in radar imagery scergl;erﬁcuon by using an associative symmetrical ssife, y), as

This expression depends on the contrast between refjamd ned in [29]
J, but also takes into account the homogeneity of each region,o(z, y) = Y ;
thus being more coherent than the ratio detector (which may be l—z—y+2zy
influenced by isolated values). In the case of a homogeneduss fusion operator has been chosen because of its indulgent
window, ; = 145, pi; equals zero, as expected. disjunctive behavior for high values (> 0.5, ¥ > 0.5), its

As in the previous section, the line detector D2 is definesbvere conjunctive behavior for small valuas <€ 0.5, y <
by the minimum response of the filter on both sides of 0.5), and its adaptative behavior, dependingmoandy values
the structurep = min(p;2, p23). A line is detected when the in the other cases.
response is higher than the decision threshglg,. For the Since the behavior of this operator depends on the position
statistical study, the pdf gf must be estimated. Because of thef the responses compared to the value 0.5, we first centered
dependency between the mean and the standard deviatiomath D1 and D2 responses before applying the fusion, so that

with z, y € [0, 1].  (5)
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Fig. 9. Detection probability versus the contrasts andc; 3 with the deci-
sion threshold,,;, = 0.6 and the pixel numbergs; = 33, no = n3 = 22
for the line detector D2.

the decision thresholds correspond to 0.5. In order to do so and
constraining bothr andp to lie in the interval [0, 1], we replace
them bymax[0, min(1, £4+0.5—zmin )], Wherez equals- and
p, respectively. As a result, the decision threshold applied on
a(r, p) is automatically the central value 0.5 of interval [0, 1].
Once again, for the statistical study, simulations have been
used since no analytical expression of the pdf &gr, p)
is available (random variables and p are of course not
independent). For the response after fusion, the false-alarm
rate is a function ofr;, and pi,; an example is shown
in the case of a homogeneous area [Fig. 12(a)]. Fig. 12(b)
shows the detection probability using,;,, and p.,;,, which
guarantees a false-alarm rate less than 1%. Using the same
test area as before, a good agreement between practical and
theoretical results has been found, as was also the case for D1
and D2, separately.
Eventually, in order to obtain a unique response in each
pixel, the best response in any of thé-tested directions is
kept along with the associated directidp, k € {0, ---, Ny}.

Fig. 10.
of the influence of different parameters for the line detector D2. (a) Pixel
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false alarm probability P(Pmin)
=]

-

P min

-5

false alarm probability P(Pmin)
)

[e]

(b)

False-alarm probabilitieB; (pmin, ¢) Versuspmin and analysis

The response image is thresholded with a threshold of Odomber influence on a homogeneous a€a; n1 = 11, ny = n3 = 33;

resulting in a binary image and an image of the directions, C2: n1 = n2 = 22, n3 = 33; andCs: ny = 33, ny = ns = 22. (b) Edge
contrastc influence;C1: ¢ = 1; C: ¢ = 2; andCs: ¢ = 4.

D. From Pixels to Segments

Starting from the response of the line detector at each pixel,
we now generate segment primitives for further processing by
the following procedures, whose aim is to suppress local false
alarms and obtain a “cleaner” binary result by using simple
heuristic rules.

< Since isolated pixels have little chance of belonging to a «
road, a pixel suppression step is first performed. For each
pixel kept with directiondy., k& € {0, ---, Ny}, we look
for other selected pixels with a direction closedo(i.e.,
dj.+1, dy,, Ordi,_1) in an angular beam around it. If none
is found, the pixel is suppressed.

In order to suppress other dubious responses due to small
local structures, the best line in a given neighborhood

L]

is detected. To do so, a local Hough transform [30] is
applied on a 20x 20-pixel tiling of the image with

a half-window overlap. Each pixel is attributed a vote
for its associated direction. The straight line having the
highest count is selected. Only the pixels with votes for
the accepted line are kept, the others are suppressed.
The next step aims to fill small gaps between selected
pixels. Pixels are linked in the directiaf, of any pixel,
the pixels belonging to an angular beam arodpdwith

a direction close tad; and at a distance less than four
pixels are linked to it.

Segments are finally obtained by thinning the binary
image [31], and a polygonal approximation step gives
a vectorial representation of the segments.
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Fig. 12. Behavior of the fusiow(r, p) of both D1 and D2 recentered
responses and p. (a) False-alarm probability versus,i, and pin on

an homogeneous area. (b) Detection probability versus the contijastnd
c13. Both thresholds i, and pnin are chosen to insure false-alarm rates

less than 1%r(h1in = 0.25 and Pmin = 043)

IV. NETWORK GLOBAL INTERPRETATION BASED ON A
MARKOVIAN FIELD DEFINED ON A SET OF SEGMENTS

A. Introduction

As already mentioned in the Introduction, a necessary step
© for all edge detection methods using local detectors is the
closing stage; starting from local information (for instance,

Fig. 11. Comparison of the detector responses on an ERS-1 SAR image. .
9 P P Qradient map), a more global one must be deduced (the

Both thresholds are chosen to insure false-alarm rates less than 1%. DetéeCt -
D1 gives less-accurate responses than D2, but is less sensitive to éxdracted edges) by a grouping process. An abundance of

hypothesis of homogeneous areas, as seen in the right part of the impgerature covers this subject, reporting on many different
where specular bright points are along the road. (a) Part of an ERS-1 image .
Q?gproaches [32]-[35]. But most of these works deal with

of The Netherlands. (b) Thresholded responses of the line detector D2. {¢ s -
Thresholded responses of the line detector D1. high-quality images and perform segment linking at the scene-
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analysis level. Unfortunately, SAR images do not allow foand L; = 0 if not.2 With IV as the cardinal of5, the label
such methods because of the poor performance of the low-lexahdom fieldL = (L;, Lo, ---, L) takes its values in2,
detection stage. the set of all possible configurations with cardinatty. In
In the following, we introduce the Markovian frameworkall of the following,p denotes a probability distribution, which
as a tool for grouping in the case of poor local detectiomight depend on graph attributes.
since contextuah priori knowledge is generally sufficient to The result of the road detection is defined as the most proba-
identify roads. A graph is built from the detected segments abté configuration forl. given the observation procegsfor the
the road identification process is modeled as the extractionsgfgments of, with a MAP criterion. It means that the solution
the best graph labeling. corresponds to the maximum of the conditional probability
An indexation of the random process by segment is a natudistribution of L given the observatio®: p(L|D) (also called
choice for road detection purposes. A similar approach hpssterior probability distribution). Using Bayes rule
been proposed by Marroquin [36], who defined a MRF of
piecewise straight lines associated with pixel sites. It is not p(L|D) = p(DIL)p(L) (6)
the case here, as our primitives are the vectors detected in the p(D)
previous stage, as in [37]. This choice results in a nonuniforamd instead of the posterior probability distributigii/) and
topology of the graph. p(D|L) have to be estimated. The conditional probability dis-
tribution of the observation field(D|L) stems from a super-
B. Graph Definition vised learning step on known areas, anddlpgiori probability

Let us denote by, the set of detected segments at the encH'stributionp(L) relies on a Markovian model of usual roads.

of the previous stage (Section IlI-D). Among these segments, N _ ) N o
some belong to the real roads, others are false detectidhs.Conditional, Prior, and Posterior Probability Distributions
Many parts of the roads also remain undetected. We makeThe procesd. conditionally to D (noted L|D) is modeled
the assumption that the true road network may be obtaineddy a Markovian field by using the equivalence between MRF
connecting these detected segments in an appropriate way and Gibbs fields.

by rejecting the false detections. Thus, we add theS§eof 1) Conditional Distribution of the Observation Field
all possible connections t6;. A connection is possible if it D. p(D|L): Let us first define the observation process

verifies the following three conditions: D = (D1, Dy, ---, Dy) deduced from the line detector
« it links two endpoints of two different segments; of the first step. The two detector responses are first computed

» endpoints are close enough (i.e., the distance betwdeneach pixel belonging to a segmerf S; the three regions
them is less than a fixed threshdl?),,,.); of the mask being defined along the segment for the central
« alignment of the two segments is acceptable. region and on both sides of the segment for the adjacent

Let the segment belong toS,, and letAZ* with k € {1,2} regions. The two responses are then merged by using (5),
denotei endpoints { = M}M?2). Denoting the “possible- and the mean, computed on all the pixels belonging to the

connection” relationship between two segmensdj of 5, Segment, gives the observatidp associated te.
by iAj, we define Under the assumption of independence betweerlthand

)= {Mi’“MJI», i € Sy j € S andiAj). supposing thatD, conditional probability distribution only

depends orlL;, we may write
Hence, we built a new sét of segments as the union 8f and

N N
Sh S =83uU8). S is endowed with a graph structure, each p(D|L) = H p(D;|L) = Hp(Di|Li)
segment (real or possible) being a node, and two noflaad i1 i1

7 being linked by an arc if they share a common endpoint. In N
order to define a MRF on this graph denotedd@ywe define X exXp [— Z V(di|li)]
the neighborhoo®; of node: as the set of nodes adjacent to it i=1
V= {j e 8/3k, p)e i1, 2)2, Mjk =MP, j #i. whereV(d;|l;) denotes the potential of segmeniThe condi-

The cli ¢ th G I subsets of ttional probability distributiongy(D;|L;) are learned from an
€ cliques of the grapis are all SUbsels ‘ol segmen Sexperiment after a manual segmentation of roads by a human
sharing an extremity, including singletons and cycles of thr

ts. Attribut ttached 1o th d d th Bbserver. They are presented in Fig. 13. Using these results,
segments. Attributes are attached 10 the nodes and e sy, q 5, potentials shown in Fig. 14 have been chosen, which
of GG to construct an attributed relational gragh,, taking -

) . ; ) eri
into account geometric properties. To each graph nads, y

associated the segment length dividedy,.* and denoted V(Di = di|Li = 0) =0, if d; <ty

by £; (therefore£; € [0, 1]), and to each arc between nodes V(Ds = di|L; = 0) = 0 di —t1 if 1 < d; <t

¢ andj, the angleR;; mod = between the two segments. to—t1’ !
Road detection consists in identifying nodes belonging to  V(D; = d;|L; = 0) =1, if d; >t

a road, i.e., in labeling the graph. A binary variahle is V(D; = d;|L; = 1) =0, Vd;.

therefore associated with nodel; = 1 if ¢ belongs to a road

1 Dmax will serve in the following as a scale factor that may be adjusted 2In the following, all random fields will be denoted by capital letters and
independently on every scene. their realizations in small ones.
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Since a road segment may have almost any observation frequency
valued;, all segments are penalized in the same way for label
1. The potential value has been chosen zero, which fulfills the
normalization constraint

1
/ p(D;i = t|L; = 1) dt
0

=}

.08

1
= / exp[—V(Di = t|LZ = 1)] dt = 1.
0

-08

o

In the same way, potentials for label 0, although corresponding
to the previous observations (Fig. 14), are not normalized. To
obtain a correspondence between potentials and probability
distributions, potentials of the foriv (D; = d;|L; = 0) +

log Z are used;Z being the normalization constant, which
implies Z = ¢ + (1 — ¢2)(1/e) — (t2 — t1)(1/e — 1) with

e = exp(1). SinceZ < 1, we havelog Z < 0.

2) Prior Distribution of the Label FieldL. p(L): If we
assume that the detection of a road can be deduced from local measure
contextual knowledge/. can be expressed as a MRF, and
using the MRF-Gibbs field equivalence (Hammersley—Clifford 0.0 oo 0.4 0.8 o.8 Lo
theorem [38]) @

04

o.

0.0=2
I

[e10)

PL=1) = exp[-U() ey

=]

where Z’' is a normalizing constant’ denotes the clique ;
set, andU(l) = > ... Ve(I). Clique potentials are chosen

to express the following priori knowledge about roads: o

1) roads are long (they should almost never stop); °

2) roads have a low curvature;

3) intersections are rare (i.e., a segment is more often
connected to a unique other segment in one of its
extremities than to many segments, at least in nonurban
areas).

As a consequence, a road is modeled as an infinite succession 3 _|
of segments with low curvature. The third condition does not  °
forbid crossroads, but gives them a lower probability than the
connection between only two segments. The flexibility of the
Gibbs-field framework allows us to construct simple potentials ¢
endowing the random field with a probability distribution

stemming from thesea priori knowledge. /\_\/\/\\

0.08
I

.02

measure

o]
All clique potentialsV.(I) are null except for the cliques Z I ] ]MM ]
of highest order corresponding to the sets of segments sharing  o.o 0.2 0.4 0.6 0.8 1.0
the same common extremity for all segments, which turns out (b)

to be sufficient for modeling all the interactions between roagly. 13. conditional frequencies of the observations on a part of an image

segments defined above. For a cliquef this sort, we define of The Netherlands. Under stationarity and ergodicity hypotheses, posterior
probability potentials are derived from them. (a) Measure frequencies on

Vieel;=0=V.(1)=0 nonroad segments. Almost all of them have a measure lower than 0.2, making

) easy discrimination possible. (b) Measure frequencies on structures (roads)
Mec/l,=1=2V.()=K. - K:L; manually detected. The density function is almost uniform, and all measures

T are possible along the road. Indeed, road-local visibility may change drastically

.(L, J) cc / i =t =1, Ky > 5 = c( ) depending on the surrounding objects: dark fields, relief, and partial covering

by human or natural structures lead to low measures.

= —Kﬁ([,i + [,j) + K, sin Rij

in all other cased/.(I) = K; Z l;.
i/i€c

(extremity penalization and length rewardy. > 0 penalizes
road configurations with high curvatures fulfilling condition
i), whereasK; > 0 puts crossroads at a disadvantage, which

All parameters are connected in a simple way with the threerresponds to condition iii). Without the observation field, a
previously expressed road characteristics. Chooging> 0 unique very long road connecting all segments and showing
and K, > 0 fulfills condition i) and favors long roads low curvature is obtained.
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V(dI0) vdin)

0 t1 0

Fig. 14. Non-normalized linear potenti®l(D; = d|L;, = 0) and V(D; = d|L; = 1) versus the observatiod of ¢ deduced from the observation
conditional frequencies.

3) Posterior Distribution.p(L|D): Since p(D|L) and eight possible configurations of labeling. The Gibbs Sampler is
p(L) correspond to Gibbs distributions defined on thapplied on the eight corresponding energy states. This method
same graph, so does the global-field probability distributiohelps the process to leave local minima by comparing very
Therefore,L|D is a MRF defined onf2, with global energy different configurations like the three segments labeled as one

with all three labeled as zero. When only one segment is

al considered sequentially instead of three connected segments,
udlld) = Z VI(dilli) + Z Ve(l)- a very high initial temperature has to be set to provide a stable
=t e result. Sets of four or more segments can be considered, but

Potentials are those previously defined éd;|l;) in the Sets of three segments provide satisfying results.

conditional distribution and,(l) in the prior distribution. The ~ USing deterministic algorithms, like iterated conditional
first represent the attachment to the data and the second dgRdes (ICM), with a good initialization (for instance, labeling

textual information. In practice, weighted first-order potentiaS on€ all the segments detected by the first step and as
are used, taking into account the length of the segment 2 all the others) always provide local minima—the same

[£:V (d;|l;) instead of¥’(d;|1;)]. In that way, more importance exploration topoly with sets of three segments is used. Results

is given to observations along long segments. For the sakeB6f Close to the global minimum result, but they are not
simplicity, we do note take into account this change in iriable, and a slightly different realization is obtained for each

normalizing constant for posterior potentials. minimization.

D. Dedicated Simulated Annealing E. Postprocessing
Sincep(D|L) = [exp —U(d|)]/Znorm, the MAP configu- Since roads are obtained as segment chains, they are not

ration corresponds to the energy minimum. Since the ener%gzcisely located. For road visualization, a simplified snake-
function is nonconvex, a stochastic minimization algorithrhaseOI method has been used [32]. The external forces are

has been chosen. But because practical implementations of3A&9Y functionals attracting snakes to specified image fea-

simulated annealing scheme only approximate the theoretif4ieS: Here, these features are dark (or bright) areas in the

framework, Geman’s fundamental result of convergence [S@Page corresponding to the roads. Thus, the radiometric image
is not valid in practice. In spite of a rapid decrease i(Pr its inverse) is used as external energy. The internal forces

temperature and a finite number of iterations, results af8espond to a regularization term imposing some smoothness

generally satisfying and globally stable. Nevertheless, in tRg the curves. I_n_thls S|mpI|f|e_d version, return_ Spring fqr_ces

case of some particular energy landscapes, unwanted beha@f@r“sed’ penalizing large deviations from the initial position.

is observed and problem-dedicated minimization algorithms

are used [40]. This is our case, due to the presence of V. PARAMETER SETTING AND VALIDATION

s e it onrons e ot s, BE0 presentng some experimenta esus n radar i

empirical solution has been used, giving good results Insteg%ﬁes’ we f|.rsfc discuss the par_ameters that are needed and
N . ' : ' alyze their influence on the final results.

of considering sequentially each node and its label change, sets

of adjacent nodes are considered. Hence, the Gibbs Sampler ) .

algorithm is applied on sets of sites. A theoretical study shoufti Parameters of the Line Detection Step

be made to validate this method, which consists of adaptingTwo parameters must be set in this step: the decision

the exploration topology of annealing to the specific enerdiiresholds ,;;, and p..;n (the decision threshold on the fusion

landscape, but experimentally it has been shown that tmeasure is fixed to 0.5). Although the theoretical study does

approach is well adapted to our problem. In this case, waly provide the thresholds in a theoretical case for three

have considered sets of three adjacent segments, which proyidefectly homogeneous regions for the road and the adjacent
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Nl

M/
s2
a) Connection cost b) Road cost

Fig. 15. Analysis of some particular configurations to limit parameter intervals. Energy comparison between an unconnected and a connectéahconfigura
(a) and comparison between a road configuration (b) and the configuration with all segments set to label 0.

regions, it gives us a basis for performing an empirical studpenoting the total length by,, the following constraint is
Besides, both thresholds have shown to be quite robust fodeduced:
specific sensor, and the same values have been used on all 2K
-1 i L e ]
ERS-1 images we tested. t > 2K, + 1110z Z

B. Parameters of the Global Connection Step The higher this ratio, the longer (or with higher measures) the
detected roads.

The other parameter®,. and K; have been chosen empir-

ally. The higherkK. is, the straighter are the detected roads.

A usual difficulty with MRF's is the choice of the distribu-
tion parameters, which balance different kinds of interactionlg

Here_, th(_ese constanti_(g, Ke, Ki.’ and_Kc) are chosen by K, has been chosen to be of the same order as the other
considering some particular configurations. parameters

Let us first define the “null configuration” as the configura® Based on these remarks, some realizations are shown in

tion where all segments have label zero. F|[§S 16 and 17 to illustrate the parameter influence on the
t

First, because two s.egme.nt.s should not be systematlcao ained roads. The chosen test area is a part of the Aix-en-
connected, the energetic variatiddtU between the ConneCtedProvence located in the South of France, image, where road
and unconnected configurations should be positive in an ucpe'tection,is particularly difficult ’ '

favorable case [Fig. 15(a)].

AU ==-2K L3+ Kc(sin Rz +sin Ras) C. Results on SAR Satellite Images

— 2K + L3[V(da]1) — V(ds[0)]- We illustrate the proposed method on real radar images

ﬁpowing the potential of the method and the difficulties re-
poor observation:V(ds|0) = log Z and £3; = 1) and maining to solve. All the parameters are fixed once and for all

perfectly aligned segments, the following condition is deduce{?.r a smg!e sensor since water channels appear with the same
K. + K; < (=log Z)/2 (with log Z < 0). This choice is characteristics as the roads they are also detécted.

necessary to limit the connecting power of th@riori model fThe f'r?It |tma%e [F'?' 18@] 'II'Sha Klar:h()f ;';m ERIS'ﬁhPRl 'ma%ﬁ
in poor observation areas. of a very flat and rural area in The Netherlands. In this case, the

Secondly, comparing the energy of the “null ConfiguratiOnl,ine—detection step performs quite well [Fig. 18(b)], detecting

. h : . . .most of the linear structures in the image. The connection ste
with & road configuration energy [Fig. 15(b)l, a relatlOnSh@IIows the recovery of the main road aies in the network andp
between the total length of the road afd&’;, K.) may y

be deduced. Indeed the energetic variation between bgfﬁ channels [as can be seen comparing Fig. 1.8(C) and (d)].
configurations is On this sort of landscape, where roads are easily seen, most

of the network can be detected.

In the case of a long and posterior “nonroad” segment (wi

n n—1 The second ERS-1 image [Fig. 19(a)] is centered on the
AU =2K, - 2K, Z L;+ K, Z sin Rj(j+1) town Aix-en-Provence. In fact, most of the roads are hardly
=0 =0 visible or not visible in this radar image, although an important
n road network covers this region [Fig. 19(d)]. Besides, difficul-
+ Z L;[V(d;]1) — V(d,;]|0)]. ties occur in relief areas [right part of the image, Fig. 19(c)].
§=0 In this case, the line-detection step is clearly insufficient to

) o ~give information on the linear structures [Fig. 19(b)]. The
Choosing a road favorable situation (good observationseyiously defined MRF is shown to be a powerful connection
Vi V(di|0) =1+ log Z and aligned segments), the energy ghethod, which is able to fill large gaps between the detected
the corresponding configuration must be lower than the "nuegments providing a map of the major roads, while suppress-
configuration” energy, implying the following condition:  ing most of the false-alarm detections [Fig. 19(c)]. In fact, the
results are close to those which could be obtained by a human

n n
2K. — 2K, Z 'Cj - (1 +log Z) Z 'Cj <0. 30ther hydrological structures can be detected using more adajpedri
Jj=0 Jj=0 knowledge (especially on the curvature).
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Fig. 16. Data used by the connection phase: original data, first step results, and the segment graph built. (a) Original ERS-1 image centerétt@veAteen-

© ESA. Because the region is hilly, road detection is particularly difficult. (b) Segments obtained by the first local step of the method. Resultsrangypoor

false detections and few segments on the real roads. (c) Graph segments: 839 segments have been detected after the first step, and with afl the “possible
(with distance and angular constraints) connections, the graph contains 8891 segments.

observer without a map, and most of the main axes in theain axes, but results are noisy with many false alarms.

network are detected. Once again, the connection step is able to recover the main
The third image is a SIR-C/X-SAR image of a regiorfeatures (particularly a highway, a major road, and a channel).

close from Strasbourg, France (Fig. 20). Since the numbEmne last image is a RADARSAT image of Amsterdam, The

of looks is one, the parameter set for the line-detection stBletherlands (Fig. 21). The parameter set for the line-detection

is more severe, whereas the same parameter set fwiori and connection steps is the same as the one used for ERS-1

potentials has been kept. The line-detection step detects ithages. The same remarks as before can be made. Results are
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N
B AN
NN

Fig. 17. Results of the Markovian connection scheme for different parameter setsd¢» are the thresholds defining the first-order potentials, .,
K;, and K. are the parameters modeling an ideal ro&d. increasing andy decreasing lead to a decrease of the detected road number fort fixed
to [comparing (a) and (b)}t2 decreasing leads to more detected roads, as seen comparing (b) and#c)=(8)2, t>- = 0.3, log Z = —0.65, K. = 0.1,
K =02, K.=0.3, K; =0.2,andU = 0.53. (b) t; = 0.2,t2 = 0.3,log Z = —0.65, K. =0.17, Ky = 0.13, K. = 0.3, K; = 0.2, andU = 1.24.
(€)t1 = 0.2,t2 = 0.25,log Z = —0.67, K. = 0.17, K, = 0.13, K. = 0.3, K; = 0.2, andU = 2.06.

satisfying since the main axes are detected, but the detectiate, whatever the radiometry. Because they take into account
is influenced by bright-point high density in the town, whictboth sides of the road, parts of the roads along dark fields
increases false-alarm rates. or in dark areas, are not detected. Therefore, the quality of
The whole method is rather demanding in computing timéhe detection, although higher than with concurrent methods,
for a 1024x 1024 image on a SPARC 10 processor, the limemains low, and a grouping step is necessary.
detection stage is about 10 min and the connection stage abown original connection method has been developed, which
30 min for 20 000 segments (an ICM giving a local minimunis based on a MRF defined on a set of segments and takes
takes 2 min). into account the essential properties of a road network. This
method has proven to be a powerful tool for connecting poor
detection results, dealing with large gaps between segments
VI. CONCLUSION and many false detections. The results obtained, although still
In this paper, an almost unsupervised method has bedesufficient in hilly areas, are good in flat areas.
proposed for detecting the main axes in road networks, adn fact, the graph structure proposed is very general and
seen in satellite radar images. Our method includes both higlould be adapted to other cases (hydrological or other linear
and low-level treatments. structure detection).
The local line detectors deal with speckle images consider-Although the method is not entirely unsupervised, due to the
ing their statistical properties and having a constant false-alasetting of six parameters (two for the local line detectors and
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() (d)

Fig. 18. Road detection process on a flat land. (a) Original ERS-1 image, part of an image of The Netk@rl&$#s The resolution is 25 m and the
pixel spacing is 12.5 m with three looks. This is a flat and agricultural region with very well-defined fields. (b) Intermediate result: segmerdsaftetaine
the first local step. On this flat land, enough segments are detected and the false detections are limited. (c) Final result of the road deteqimseduperim
the ERS-1 image. Almost all linear features (roads or channels) are detected. (d) Map corresponding to the image of Nort®Hdltzralin.
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(© (d)

Fig. 19. Road detection process on a more hilly land (Aix-en-Provence, South of France). (a) Original ERS-Eire&fe This is a hilly region that is

hard to interpret. Only the main axes of the road network are seen, although there are many roads on the scene. (b) Intermediate result: segohents obtain
after the first local step. On this hilly region, poor results are obtained: many “nonroad” segments are detected and few segments belongingoadthe true

(c) Final result of road detection superimposed on the ERS-1 image. Difficulties occur in relief areas (particularly the right part of the imaiie) n@riy

axes of the road network are detected. (d) Map corresponding to the image of Aix-en-Pr@ektiehelin.

four for the connection method), we proposed for both stepaiae of multitemporal filtered images and relief-effect-corrected
theoretical analysis to choose the parameters or to reduceithages.
interval of choice.
One of the most important limitations of our method is the APPENDIX |
assumption that all roads may be found by connecting an initiall_et the amplitude empirical mean of regiancomputed

detection with segments. Improvement could be obtained BX n; pixels denoteu; = (1/n;) Z A and let the mean-
looking for the best path between the extremities of the ‘ ‘ ”

s€1
segments we try to connect. Further work includes also theflected intensity denotél;). The n; pdf corresponding to
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Let us noter* = /s andri, = min(py /p2, po/p). The
r* pdf is [27]

S (L), (I2)) = /OOO Sua @[{11)) fo (2[(12)) - d - (8)

and using (7)

L L
4 7’LlL ™ 7’LQL e

-(tl(1), (12)) =T LT (nal) \ I) (I2)
LT (1), (1))

where

h(t|<Il>, <IQ>) = p2L(nitne)—1
0

nilL  noL
-exp | —a2 222 22 g

()~ (L2)

Using a variable change,.(t|(I1), (I2)) is deduced

2F(711L+7’LQL) ny mL No nzL

thIL—l
' 2 n n2 L tnz)” (9)
BEIARRIS

With the contrast between the radiometric meanscas
(I1)/{I), we have

_ 2F(n1L + HQL) nnannZL
D(niL)I(noL) "t 77
t2n1L—l

2no L
' (t2n1 +71262)L("1+"2) e (10)

fr(tle)

Since for the random variabl@in(z, y) the pdf is:

fr+, is eventually obtained as

- (tle) = ——————< 11" n
(b) f" 12( | ) F(TLlL)F(TLQL) 1 2
Fig. 20. Road detection process on a SIR-C/X-SAR image. (a) Original niL
SIR-C/X-SAR image®© DLR/DFD. The resolution is 10 m and the pixel i $2n2L—1
spacing is 6 m with one look. This is a flat land with some major roads c2nelyZnil—1 2
and a channel (in the bottom of the image). (b) Result of road detection : 5 NL(nitn )—i- o .
superimposed on the SIR-C/X-SAR image. The main axes of the road network (t2n1+noc?)Llntne (t2712+ _2>L("1 +n2)
and the channel are detected. c
(11)
niL equivalent looks is And definingriz = 1 — 7y, fr,(tle) = fre (1 - tle), and
- By, (te) = 1= @, (o).
T 2 -L—l) S . : . . 1 h L — .
(NI = —2 +(2n; incer = min(ri2, r13), With ¢1; = /{I1)/{L;)
sz( |< Z>) F(TLZL) <Iz> ? v v
2
cexp [~ LY 7) fr(tlerz, e1s) = fro (Hler2) Bry, (tlers)
<IZ> + f7’13 (t|cl3)(1)7‘12 (t|612)'
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(b)

Fig. 21. Road detection process on a RADARSAT image. (a) Original RADARSAT i@ deanadian Space Agency (available on the CD-ROM Radarsat
International). The pixel spacing is 12.5 m with three looks. This is an image of the Amsterdam city (The Netherlands) with many roads and channels.
(b) Result of road detection superimposed on the RADARSAT image. The main axes of the road network and hydrological linear structures are detected.
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APPENDIX Il [11]

Let us consider a fixed directiaf), dividing the windowV’,,,
centered inzq into two regions indexed byand ;. Noting A,
the amplitude random variable, add, the random variable
corresponding to the deduced edge populatjoR, 1.x, .4,
andox, the empirical first-order statistics, mean and standard
deviation computed on pixels, A, and X,, the realizations
of A, and X in pixel s, thenp;; is defined by

[12]

(23]

[15]
1

OA0X

[16]

Pij = (12)

1

- Z ASXS — HAHX
s€illy

. L : [17]

The following expression is deduced by usiAgvalues (X,

value is eithery; for a pixel belonging to region or p; for

a pixel belonging to region, y; and u; being the empirical
means of regions andj computed om; andn, pixels, with

n = n; +n;)

(18]

[29]

2 20
, 0% [20]
Pij =5

T4

[21]
and:
ok =5 (i = 1)? [22]
1
oh = g [y (s = 1)+ n(nio? +njo7)). [23]

Let us remark that if we had chosen the unnormalized

cross-correlation, the response would have been a generali?élbl

gradient not adapted to SAR images.
[25]
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