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A B S T R A C T   

Optical and radar satellite time series are synergetic: optical images contain rich spectral information, while C- 
band radar captures useful geometrical information and is immune to cloud cover. Motivated by the recent 
success of temporal attention-based methods across multiple crop mapping tasks, we propose to investigate how 
these models can be adapted to operate on several modalities. We implement and evaluate multiple fusion 
schemes, including a novel approach and simple adjustments to the training procedure, significantly improving 
performance and efficiency with little added complexity. We show that most fusion schemes have advantages 
and drawbacks, making them relevant for specific settings. We then evaluate the benefit of multimodality across 
several tasks: parcel classification, pixel-based segmentation, and panoptic parcel segmentation. We show that by 
leveraging both optical and radar time series, multimodal temporal attention-based models can outmatch single- 
modality models in terms of performance and resilience to cloud cover. To conduct these experiments, we 
augment the PASTIS dataset (Garnot and Landrieu, 2021a) with spatially aligned radar image time series. The 
resulting dataset, PASTIS-R, constitutes the first large-scale, multimodal, and open-access satellite time series 
dataset with semantic and instance annotations. (Dataset available at: https://zenodo.org/record/5735646)   

1. Introduction 

The multiplication of Earth Observation satellites with various sen
sors represents an opportunity to improve the performance of automated 
analysis of remote sensing data for tasks such as crop mapping. Indeed, 
different modalities capture information of different natures and distinct 
spatial and temporal resolutions and have varying resilience to atmo
spheric conditions. Machine learning models can leverage these com
plementary characteristics to learn richer and more robust 
representations. In particular, C-band radar and optical images possess 
well-known synergies for automated crop mapping (Van Tricht et al., 
2018; Steinhausen et al., 2018; Campos-Taberner et al., 2019), the 
driving application of this paper. More specifically, multispectral time 
series contain highly relevant information for monitoring the evolution 
of plant phenology (Vrieling et al., 2018; Segarra et al., 2020). For 
example, the study of red and infrared reflectances helps monitoring 
photosynthetic activity (Tucker, 1979). However, passive optical sen
sors are highly susceptible to cloud cover and atmospheric distortion 
(Sudmanns et al., 2020). Conversely, due to the influence of extrinsic 
factors such as humidity and terrain, it is harder to extract 

discriminative information from radar images for crop mapping. On the 
other hand, the high revisit frequency and imperviousness to cloud 
cover make them uniquely well-suited for monitoring the rapid- 
changing biological processes of agricultural parcels (McNairn et al., 
2014). 

Automated crop mapping is necessary for various applications car
rying crucial economic and ecological stakes, such as environmental 
monitoring, subsidy allocation, and food price prediction. For example, 
the Common Agricultural Policy is responsible for the allocation of over 
57 billion euros each year of agricultural subsidies in the European 
Union (E. Commission, 2016). This application is at the center of an 
effort towards algorithmic solutions for machine learning-based crop 
monitoring (Koetz et al., 2019). This endeavor is aided by the accessi
bility of high-quality satellite data worldwide (Drusch et al., 2021) and 
individual parcel annotations for some European countries such as 
France (EtaLab, 2017), which is particularly conducive to training large- 
scale deep networks. 

In the context of crop type mapping, the fusion of optical and radar 
time series has been extensively explored with traditional machine 
learning methods (Van Tricht et al., 2018; Steinhausen et al., 2018; He 
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and Yokoya, 2018; Campos-Taberner et al., 2019; Orynbaikyzy et al., 
2020; Giordano et al., 2020), and more recently recurrent neural net
works (Ienco et al., 2019). However, despite the significant performance 
gain offered by methods based on temporal attention (Rußwurm and 
Körner, 2020; Garnot et al., 2020; Kondmann et al., 2021; Garnot and 
Landrieu, 2020), these approaches are mostly restricted to the analysis 
of optical Satellite Image Time Series (SITS). Recently, Ofori-Ampofo 
et al. (2021) proposed a first exploration of the benefit of fusion stra
tegies for parcel-based crop type classification from Sentinel-1 and 
Sentinel-2 time series with attention-based methods. The present paper 
extends their analysis to a broader set of crop mapping tasks, including 
semantic and panoptic segmentation(Kirillov et al., 2019; Garnot and 
Landrieu, 2021c) of agricultural parcels, as summarised on Fig. 1. We 
also study the performance benefit of standard enhancements such as 
auxiliary supervision and temporal dropout. 

To train and evaluate our models, we augment the open-access 
PASTIS optical time series dataset (Garnot and Landrieu, 2021a) with 
corresponding Sentinel-1 radar acquisitions for each 2433 time series for 
a total of 339,174 radar images. We demonstrate that the right choice of 
fusion scheme can lead to improvement across the board for all tasks and 
increased robustness to varying cloud cover. The main contributions of 
this paper are as follows:  

• We present a complete reformulation of fusion strategies in the 
context of temporal attention-based SITS encoders, as well as stan
dard model enhancements.  

• We present PASTIS-R, the first large-scale, multimodal, open-access 
SITS dataset with panoptic annotations (https://zenodo.org/recor 
d/5735646). 

• We evaluate our fusion schemes and enhancements on parcel clas
sification, semantic and panoptic segmentation, defining a new state- 
of-the-art for all tasks.  

• We show that combining optical and radar imagery grants significant 
improvement in terms of robustness to varying cloud cover. 

2. Related work 

In the following paragraphs, we review the recent literature on 
fusion approaches for the multi-temporal fusion of SITS. In particular, 
we detail commonly implemented fusion strategies. 

Traditional Approaches for Multimodal SITS. Multiple traditional 
machine learning approaches such as random forest or support vector 
machines have been adapted to handle information from optical and 
radar images. As highlighted by the review of Joshi et al. (2016), the 
joint processing of both modalities can mitigate the sensitivity of optical 
images to cloud cover. Most methods use an early fusion scheme in 
which the radar and optical features are stacked before being processed 
by the model (Van Tricht et al., 2018; Mercier et al., 2019). This 

approach can be further improved by selecting the most relevant ac
quisitions (Steinhausen et al., 2018) or features (Campos-Taberner et al., 
2019; Giordano et al., 2020). Orynbaikyzy et al. (2020) compare this 
feature concatenation approach with a decision fusion approach in 
which two separate random forest classifiers predict posterior proba
bilities over classes, and the most confident prediction is retained as the 
final classification. Their results show that decision fusion performs 
slightly worse than early feature concatenation. 

Deep learning for MultiModal SITS. The first multimodal deep 
learning models advocated for an early fusion scheme: the channels of all 
acquisitions from optical and radar time series are concatenated to form 
a single image with both multimodal and multitemporal pixel features. 
The resulting images are then processed pixelwise (Tarpanelli et al., 
2018) or with convolutional networks (Kussul et al., 2017). In contrast, 
Ienco et al. (2019) propose to encode each radar and an optical time 
series separately using a combination of dedicated convolutional and 
recurrent-convolutional networks. In a late-fusion fashion, all resulting 
embeddings are concatenated channelwise and classified pixelwise by a 
Multi-Layer Perceptron (MLP). They observe that, as long as each branch 
is also supervised separately with auxiliary loss terms, this fusion 
scheme outperforms early fusion. More recently, Ofori-Ampofo et al. 
(2021) studied four fusion strategies for parcel-based classification with 
a PSE-TAE architecture (Garnot et al., 2020). Early fusion yields the best 
improvement on their dataset of Sentinel-2 time series and Sentinel-1 
observations in descending orbit. We extend their analysis by evalu
ating the impact of multimodality for different tasks, evaluate the effects 
of typical enhancements such as auxiliary classifiers, and use both 
Sentinel-1 orbits in our analysis. 

Other Fusion settings. In a different setting, Benedetti et al. (2018) 
use a late fusion approach to combine mono-temporal high spatial res
olution images with low spatial resolution time series, and Tom et al. 
(2021) exploit three different mono-temporal modalities for lake ice 
monitoring by training three encoders to map the different acquisitions 
to a common feature space. Liu et al. (2016) explore multimodal change 
detection on mono-temporal pairs. They propose to train two encoders 
in an unsupervised fashion to map simultaneously-acquired images of 
different modalities to a common feature space. Lastly, Zhou et al. 
(2019) propose to combine high resolution mono-temporal optical im
ages and SAR time series for crop classification. They first recover the 
parcel boundaries from high resolution optical images, then classify 
their content based on the SAR time series. We propose to investigate the 
panoptic setting in which both border retrieval and classification is done 
simultaneously. More broadly, the synergy between radar and optical 
SITS has motivated other exciting applications such as the regression of 
optical signals from radar images (Garioud et al., 2020; Meraner et al., 
2020; He and Yokoya, 2018). 

Radar processing. Data analysis from Synthetic-Aperture Radar 
(SAR) relies on either extracting backscattering coefficients, 

Fig. 1. We introduce the PASTIS-R dataset containing 2433 multimodal image time series of Sentinel-2 and Sentinel-1 data. On PASTIS-R, we evaluate different 
fusion strategies and enhancements on parcel-based classification, semantic segmentation, and panoptic segmentation. 
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interferometric, or polarimetric features from a measured radar signal 
(Richards et al., 2009). Backscattering coefficients are most commonly 
used for crop type mapping applications (Orynbaikyzy et al., 2019). 
These approaches derive information on the observed surface’s geo
metric properties and dielectric constant from the amplitude of the 
complex SAR signal, and discard the phase information. In contrast, 
interferometric SAR measure phase shift to detect potentially small de
formations between two acquisitions. Interferometric features are 
traditionally used in geodesy (Simons and Rosen, 2007) and surface 
(Monserrat et al., 2014; Tarchi et al., 2003) or structural (Tomás et al., 
2012; Tarchi et al., 1997; Tison et al., 2007) monitoring, but also proved 
discriminative for crop type mapping. Indeed, coeherence estimation in 
interferometry can help detecting mowing, harvesting, and seeding 
events (Tamm et al., 2016; Mestre-Quereda et al., 2020; Shang et al., 
2020), as well as providing information on crop height and density 
(Srivastava et al., 2006). Lastly, polarimetric SAR data analysis relies on 
target decomposition of polarimetric information (Cloude and Pottier, 
1996; Yamaguchi et al., 2005) to provide additional terrain information, 
and can be used for canopy structure estimation (Srikanth et al., 2016), 
topography (Schuler et al., 1996), or land cover estimation (Tupin et al., 
1998; Kourgli et al., 2010). However, such approaches require full 
polaristion radar images, i.e., acquired with a sensor emitting radar 
waves along both polarisation directions. In this paper, we focus on crop 
type mapping from data of the open acces Sentinel-1 sensor which does 
not allow such full polarimetric analyses. Furthermore, to limit the 
complexity of our experiments and avoid downloading very large Single 
Look Complex datasets, we focus on SAR backscattering coefficients and 
leave the extension to interferometric features to further work. 

3. Methods 

We consider a set of M image time series {Xm}
M
m=1 corresponding to M 

distinct modalities for a single geo-referenced patch containing one or 
several agricultural parcels. We assume that all modalities are resampled 
to the same resolution for simplicity’s sake. Each time sequence Xm can 
be expressed as a tensor of size Tm × Cm × H × W with Tm the number of 
available temporal acquisitions for modality m,Cm the feature size for 
each pixel for the modality m, and H × W the spatial extent of the patch. 

3.1. Fusion strategies 

The methods reviewed previously can be categorised into three main 
strategies: early, late, and decision fusion, all represented in Fig. 2. We 
also present mid-fusion, a novel fusion scheme specifically adapted for 
multimodal time sequences. Certain terms—such as “features”—have 
seen their accepted meaning evolve with the gradual adoption of the 
deep learning paradigm, leading to ambiguity in terms such as “early” or 
“late” feature fusion. We propose redefining the terminology of fusion 
schemes unambiguously for analyzing temporal sequences of images in 
the following. 

Early Fusion. This approach combines the different modalities at the 
raw feature level. In our context, this amounts to concatenating the 
modalities channel-wise at each observation date. If the different acqui
sitions are simultaneous, and since the resolutions are identical, this is a 
straightforward step. However, when the modalities are captured at 
different times, a preprocessing step is required to interpolate all mo
dalities to a standard temporal sampling. We denote by T† the number of 
time steps in the chosen temporal sampling and by X† the resulting 
aggregated tensor of size T† × C† × H × W with C† =

∑
mCm as defined 

in Eq. (1). 
This interpolation step can be costly in terms of computation and 

memory. Furthermore, the relevance of temporal interpolation for fast- 
changing processes such as plant growth and harvesting is questionable, 
and this is only made worse by clouds obstructing the optical modalities. 
However, an advantage of this approach is the simplicity of encoding X†: 
a single spatio-temporal encoder ℰspatio− temporal can be used to learn a truly 
cross-modal representation, and a unique decoder 𝒟 produces the final 
prediction: 

X† = merge(C){interpolate(Xm) to T†}
M
m=1 (1)  

yearly = 𝒟 ∘ℰspatio− temporal(X†). (2) 

Late Feature Fusion. This fusion scheme starts by encoding each 
modality m separately with dedicated spatio-temporal encoders 
ℰm

spatio− temporal into embeddings of size Fm. These vectors are then concat
enated for all modalities along the channel dimension into a vector of 
size 

∑
mFm, which is ultimately mapped to a prediction ylate by a unique 

decoder 𝒟: 

Fig. 2. Fusion Schemes. We represent the three fusion strategies commonly found in the recent literature. (a) the raw features are interpolated and concatenated 
into a single sequence. (b) the learned spatio-temporal features of each modality are concatenated prior to classification. (c) each modality is processed independently 
and the resulting decision averaged. 
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ylate = 𝒟 ∘merge(C)
({

ℰm
spatio− temporal(X

m)
}M

m=1

)

, (3)  

with merge(C) the channelwise concatenation operator. While each latent 
features are derived from a single modality, this method allows the 
decoder to make decisions taking all modalities into account simulta
neously. 

Decision Fusion. This approach ignores the interplay between mo
dalities and makes a prediction for each modality independently. A set of 
M spatio-temporal encoder ℰm

spatio− temporal maps each sequence of size 
Tm × Cm × H × W to a latent space of size Fm. Then, a set of M decoders 
𝒟m maps each spatio-temporal feature into a prediction. Finally, an 
aggregation rule is applied to combine all M predictions into a final 
prediction ydecision. Typically, predictions are averaged across all avail
able modalities: 

ydecision =
1
M

∑M

m=1
𝒟m ∘ℰm

spatio− temporal(X
m). (4) 

Mid-Fusion. Specific network architectures used to process temporal 
sequences such as SITS can be broken down into a spatial and a temporal 
encoder. In such cases, the spatial features can be interwoven, i.e. 
temporally stacked, into a single multimodal sequence, see Fig. 3. This 
approach can be seen as a compromise between early and late fusion and 
combines three of their advantages: (i) the temporal encoder can 
leverage all modalities simultaneously, (ii) only one temporal encoder is 
needed, (iii) no heavy preprocessing is necessary to merge the feature 
sequences as they are stacked. 

Each modality m has a dedicated spatial encoder ℰm
spatial mapping 

images to a feature vector of size Fm. These vectors are then concate
nated chronologically along the temporal dimension into a unique 
sequence of length 

∑
mTm. A unique temporal encoder ℰtemporal maps this 

sequence of features into a unique vector, which is in turn classified by a 
unique decoder 𝒟: 

ymid = 𝒟 ∘ℰtemporal ∘merge(T)
({

ℰm
spatial(X

m)
}M

m=0

)

, (5)  

with merge(T) the operator concatenating a set of tensors along the 
temporal dimension. 

3.2. Auxiliary supervision 

We denote by criterion(⋅, ⋅) the function used to compare the pre
diction y with the target signal ŷ. This is typically the cross-entropy for 

parcel or pixel classification and can be more complex for panoptic or 
instance segmentation (Garnot and Landrieu, 2021). The resulting 
function ℒobj is called the objective loss and supervizes the prediction y 
of thenetwork to realize the sought task: 

ℒobj = criterion(y, ŷ) (6) 

A common problem in deep feature fusion is encountered when most 
(but not all) discriminative information is concentrated among a 
reduced number of modalities. In this case, the other modalities yield 
predictions and less relevant features for the considered task. Conse
quently, the final decision taken by the multimodal network focuses on 
the better modalities, and the parts of the network operating on the lesser 
modalities receive a weaker supervisory signal. This results in a network 
that may not fully leverage the inter-modal patterns that would other
wise allow the multimodal prediction to outperform the best modality. 
This is typically the case for Sentinel SITS, as multispectral optical ac
quisitions are often more conductive to capture phenological patterns 
than SAR information. Sentinel-1 signal is indeed affected by local 
terrain angle (Kaplan et al., 2021), humidity (Garkusha et al., 2017), and 
is subject to speckle (Abramov et al., 2017). 

To mitigate this issue, we can add auxiliary losses to supervise each 
modality independently on top of the objective loss ℒobj. Ienco et al. 
(2019) has shown this strategy to help to combine optical and radar 
imagery. To this end, we associate a prediction ym to each modality, 
which is supervised by the auxiliary loss L aux: 

L aux =
∑M

m=1
λm criterion(ym, ŷ), (7)  

with λm the strength associated with each modality. Note that, 
depending on the chosen fusion scheme, computing the single-modality 
prediction ym may imply adding new modules to the backbone network. 
This requires M decoders 𝒟m, in the case of late fusion. For mid-fusion, 
we must add M temporal encoders ℰm

temporal as well. No additional mod
ules are necessary for decision fusion as single-modality predictions ym 

are already necessary to produce the final prediction y. In contrast, 
auxiliary supervision in the case of early fusion would amount to 
duplicating the entire network, making it both fruitless and costly. 

Since the added modules do not participate in the multimodal de
cision, only the gradients they propagate are beneficial to the training 
and not their predictions. Hence, auxiliary supervision only benefits the 
modules that receive gradients from both the main and auxiliary losses. 
Consequently, auxiliary loss with early supervision would not affect the 
performance. By the same reasoning, we can expect auxiliary supervi
sion to be beneficial for late and decision fusion than mid-fusion for 
which only the spatial decoders are affected by the auxiliary losses. 

3.3. Temporal dropout 

We propose a simple data augmentation strategy called temporal 
dropout to promote a multimodal model that leverages all available 
modalities. Inspired by the classic dropout strategy (Srivastava et al., 
2014), we randomly drop observations from the input sequences. The 
idea is to prevent the network from over-relying on a single modality 
since its presence is never assured. Formally, we associate a dropout 
probability pm ∈ [0, 1] for each modality m ∈ [1, M]. During training, 
each observation of the sequence is dropped with probability pm. At 
inference time, the network can use all available observations. Note that 
this technique can also be used on models operating on a single modality 
by randomly dropping some acquisitions. 

3.4. Implementation 

As we set out to evaluate the benefit of multimodality for several 
tasks, we detail how our fusion schemes can be integrated into temporal 
attention-based, state-of-the-art networks. 

Fig. 3. Mid-Fusion. A dedicated spatial encoder processes each modality, and 
the resulting features are stacked into a single sequence of features. 
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Parcel-based classification. We first implement the different fusion 
strategies for parcel-based crop type classification. In this setting, the 
contour of parcels is known, and the task is to classify the cultivated crop 
from a corresponding yearly SITS. The spatial and temporal encoding 
modules we selected are the Pixel-Set Encoder (PSE) and Lightweight 
Temporal Attention Encoder (L-TAE), whose accuracy and computa
tional efficiency have been solidified in recent studies (Schneider and 
Körner, 2020; Kondmann et al., 2021; Garnot and Landrieu, 2020; 
Garnot et al., 2020), and whose implementations are available. 1 All 
spatio-temporal encoders ℰspatio− temporal are a combination of a PSE 
encoding all images of the time series simultaneously and an L-TAE 
processing the resulting sequence of embeddings, in the manner of 
Garnot et al. (2020). All decoders 𝒟 are simple Multi-Layer Perceptrons 
(MLP). All models are trained with the cross-entropy loss. Since we are 
using these networks in a straightforward manner and without param
eter alteration, we refer the reader to the (Garnot et al. (2020, Sec. 3)) 
for more details on their configuration. As explained in Section 3.2, 
auxiliary supervision does not affect the early supervision beyond an 
increased memory load, and we do not evaluate it. 

Semantic segmentation. In this setting, the contours of the parcels 
are unknown, and the model predicts a crop type for each pixel of a 
given patch from the corresponding yearly SITS. For this task, we use the 
state-of-the-art U-TAE architecture (Garnot and Landrieu, 2021) as 
spatio-temporal encoder 2. The fact that this network’s spatial and 
temporal encoders are intertwined prevents us from applying the mid- 
fusion scheme. We use a 2-layer convolutional neural net as decoder 
𝒟. The models are trained with cross-entropy loss. 

Panoptic segmentation. Panoptic segmentation amounts to 
retrieving both the boundary and crop type of each agricultural parcel. 
In practice, we predict a set of non-overlapping instance masks and their 
semantic labels (Kirillov et al., 2019). In our setting, pixels that do not 
belong to a predicted parcel are classified as background. For this task, 
we also use U-TAE for spatio-temporal encoding, combined with the 
instance segmentation module Parcel-as-Points (PaPs) and its associated 
loss function for supervision (Garnot and Landrieu, 2021).2 Averaging 
instance masks predicted by different modality-specific modules is not 
straightforward and costly in terms of memory, hence we do not eval
uate the decision-fusion scheme for this task. 

4. Experiments 

We present in this section our numerical experiments to assess the 
benefit of multimodality for crop mapping with temporal attention- 
based networks. We evaluate several modality-fusion schemes and 
several mapping tasks. We also introduce a new large-scale open-access 
and multimodal dataset with annotations fit for all tasks. 

4.1. Pastis-R 

To evaluate the benefit of multimodality, we extend the open-access 
PASTIS dataset (Garnot and Landrieu, 2021a) with corresponding 
Sentinel-1 observations. PASTIS is composed of 2433 time series of 
multi-spectral patches sampled in four different regions of France. Each 
patch has a spatial extent of 1.28 km × 1.28 km and contains all 
available Sentinel-2 observations for the 2019 season. Depending on the 
location, the optical time series are composed of between 38 and 61 
acquisitions, for a total of 115k images in the dataset. Note that PASTIS 
does not filter out observations with high cloud cover, hence, certain 
patches can be partially or entirely obstructed by clouds. We estimate 
that 28% of the 115k images are at least partially covered by clouds. 

We use Sentinel-1 in Ground Range Detected format processed into 
σ0 backscatter coefficient in decibels, orthorectified at a 10 m spatial 

resolution with Orfeo Toolbox (Christophe et al., 2008). We do not apply 
any spatial or temporal speckle filtering, nor radiometric terrain 
correction: following the deep learning paradigm, we limit data pre
processing to the minimum. We assemble each Sentinel-1 observation 
into a 3-channel image: vertical polarization (VV), horizontal polar
isation (VH), and the ratio of vertical over horizontal polarization (VV/ 
VH). We separate observations made in ascending and descending orbit 
into two distinct time series. Indeed, the incidence angle of space-borne 
radar can significantly influence the return signal (Singhroy and Saint- 
Jean, 1999). As represented in Fig. 4, each time series comprises 
around 70 radar acquisitions for each of the 2433 patches. This amounts 
to a total of 339k added radar images. We use the annotations of PASTIS: 
semantic class and instance identifier for each pixel, allowing us to 
evaluate models for parcel-based classification, semantic segmentation, 
and panoptic segmentation. We make the PASTIS-R dataset (Garnot and 
Landrieu, 2021b) publicly available at: github.com/VSainteuf/pastis- 
benchmark. 

4.2. Implementation details 

As detailed in Section 3.4, we use the official PyTorch implementa
tions of PSE + LTAE and U-TAE with default hyperparameters. We use 
the official 5 cross-validation folds of PASTIS (Garnot and Landrieu, 
2021c) to evaluate the performance of the different models. We train our 
models using the Adam optimizer (Kingma and Ba, 2015) with default 
parameters lr = 0.001, β = (0.9,0.999) unless specified otherwise, and 
train all networks on a single TESLA V100 GPU with 32 Gb of VRAM. 

Multimodality Configuration. We consider the two orbits of 
Sentinel-1 as separate modalities to account for their difference in 
incident angle, which corresponds to M = 3. When using auxiliary loss 
terms, we set λm = 0.5 for all modalities. When using temporal dropout, 
we set p0 = 0.4 for the optical modality and p1 = p2 = 0.2 for the radar 
time series. For early fusion, we interpolate the Sentinel-1 observations 
to the dates of the Sentinel-2 time series. Indeed, the opposite interpo
lation strategy would imply tripling the temporal length of the Sentinel- 
2 time series, which would significantly increase memory usage. Inter
polation is computed on the fly when loading dataset samples. 

Parcel Classification. For this problem, we train the models for 100 
epochs in batches of 128 parcels. We select the model which performs 
best on the validation set. In this sense, the training automatically adapt 
to the complexity of the models: smaller models may stop improving 
after 50 epochs, and other after 75. We made sure to select a number of 
epochs (100) which allows all models to converge. 

Semantic Segmentation. We train the semantic segmentation 
models for 100 epochs in batches of 4 multi-temporal patches. In this 
setting, the models also predict background pixels, resulting in a K = 19 
class nomenclature. We report the mIoU of the pixel-level predictions: 

mIoU =
1
K

∑K

k=1

TPk

TPk + FPk + FNk
, (8)  

with TPk, FPk, and FNk the count of true positives, false positives, and 
false negatives for the binary class predictions defined by a class k. 

Panoptic Segmentation. We follow the training procedure recom
mended by Garnot and Landrieu (2021c) to train the PaPs network: the 
learning rate starts at 0.01 for the first 50 epochs, and decreases to 0.001 
for the last 50 epochs. We report the class-averaged panoptic metrics 
introduced in Kirillov et al. (2019): Segmentation Quality (SQ), Recog
nition Quality (RQ), and Panoptic Quality (PQ). The RQ corresponds to 
the F1 score for the problem of combined detection and classification: to 
be counted as a true positive, a parcel must be both detected (the 
intersect over union of the predicted and true instance masks is above 
0.5) and have its crop type correctly classified. The SQ corresponds to 
the intersect over union between the true and predicted masks for 
correctly detected and classified parcels. Finally, the PQ is the product of 
both values, thus simultaneously combining information on the quality 

1 VSainteuf/lightweight-temporal-attention-pytorch  
2 github.com/VSainteuf/utae-paps 
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of detection, classification, and delineation. We report the unweighted 
classwise average of the three quality measurements. We refer the 
reader to Kirillov et al. (2019) for more details on these metrics. 

4.3. Parcel classification experiment 

We first implement and evaluate the different fusion schemes and 
their training enhancements for parcel classification. In this setting, the 
contour of parcels is known in advance, and the model predicts the type 
of crop cultivated during the period covered by the SITS. 

Analysis. In Table 1, we report the performance of all fusion 
schemes with and without enhancements. We first observe that the 
optical satellite S2 significantly outperforms the two radar time series by 
a margin of almost 10 points of mIoU, confirming the relevance of 
Sentinel-2 for crop type mapping. We remark that, without enhance
ment (first column), multimodal models trained with early or mid-fusion 
schemes improve the performance compared to single optical modality 
networks, while decision and late fusion perform slightly worse 
consistently with the results of Ofori-Ampofo et al. (2021). This high
lights the benefit of learning to mix modality features early on. In 
contrast, auxiliary supervision and temporal dropout improve the later 
models. This shows that these enhancements can encourage attention- 

based models to combine features and decisions efficiently from 
different modalities, as observed in Ienco et al. (2019) for recurrent 
networks. All things considered, late fusion with both enhancements 
performs best with +3.3 mIoU compared to a network operating purely 
on the optical modality, see Fig. 5 for a classwise comparison. Mid- 
fusion without enhancement provides good performances with a lower 
parameter count and none of the preprocessing necessary for early 
fusion. In practice, the mid-fusion scheme is 20% faster at inference time 
than late fusion, making it a valid choice when operating with limited 
computational resources. 

Auxiliary Supervision and Gradient Flow. Motivated by the 
impact of auxiliary supervision on the performance of the late fusion 
approach, we propose to study its effect on the learning process further. 
Specifically, we wish to evaluate the different spatio-temporal encoders’ 
contribution to the reduction of the objective loss ℒobj, with and without 
auxiliary supervision, and for the parcel classification task. Note that, as 
auxiliary decisions are not computed at inference time, we only consider 
the decrease of ℒobj: a decrease in the auxiliary losses does not directly 
affect the model’s performance. 

Following the insights of Wang et al. (2020), we consider the 
following first-order approximation of the decrease of ℒobj incurred by 
taking a gradient step: 

Δℒobj = η〈∇ℒ,∇ℒobj〉, (9)  

with η the current learning rate.The term ∇ℒ of the scalar product in (9) 
corresponds to the step size in the gradient descent and the term ∇ℒobj to 
the slope of the objective loss. Their scalar product approximates the 

Fig. 4. Pastis-R. We extend the PASTIS dataset with radar time series corresponding to ascending and descending orbits of Sentinel-1. For each square patch of 1.28 
km × 1.28 km, PASTIS-R thus provides the image time series of 3 different modalities, along with semantic and instance annotation for each pixel. 

Table 1 
Parcel Classification. We evaluate the performance of models operating on a 
single modality (top) and for different fusion strategies for parcel-based classi
fication (bottom). We evaluate each model’s baseline performance and the 
impact of the temporal dropout and auxiliary classifiers enhancements, when 
applicable. We report the 5-fold cross-validated classification scores in terms of 
mean classwise Intersect over Union, the base model’s parameter count, and, 
when relevant, of the model with auxiliary classifiers.   

Base Temp. 
dropout 

Auxiliary 
supervision 

Auxiliary 
& Temp. 
dropout 

Parameter 
Count  

OA mIoU mIoU  

S2 91.7 73.9 74.5 – – 114k 
S1D 87.0 64.5 64.7 – – 114k 
S1A 86.4 63.3 62.9 – – 114k        

Early 
Fusion 

91.8 74.9 76.5 – – 117k 

Mid 
Fusion 

92.0 75.1 75.9 75.0 76.5 152k/ 
185k 

Late 
Fusion 

91.1 73.0 73.6 76.1 77.2 254k/ 
287k 

Decision 
Fusion 

91.0 72.5 72.8 75.2 75.8 259k  

Fig. 5. Classwise Performance for Parcel Classification. We report the IoU 
of the late fusion model with auxiliary supervision and temporal dropout and of 
the model trained purely on the optical modality. Multimodality brings a 
consistent benefit across all classes, which is more notable for some of the most 
challenging classes such as Potatoes, or Winter triticale. 
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decrease in objective loss when taking a single gradient step. Note that 
this approximation, called gradient flow, is only valid when using sto
chastic gradient descent (SGD) and does not hold for momentum or 
adaptive optimization schemes such as ADAM (Kingma and Ba, 2015). 
We thus retrain the late fusion model with SGD for parcel classification. 
By considering each term in the scalar product in Eq. (9), we can esti
mate the contribution of each parameter of the network to the decrease 
of the objective loss ℒobj. 

In Fig. 6, we represent the evolution of the gradient flow for different 
modules of our architecture by summing the contribution of their cor
responding parameters. We observe that, as expected, the gradient flow 
is concentrated in the modules dedicated to the optical modality. 
Interestingly, the spatial encoders contribute as much or even more than 
the temporal encoders despite having four times fewer parameters. 

We remark that auxiliary losses lead the model to a different training 
regime. While auxiliary supervision results in an increase of the pro
portion of gradient flow in some radar modules such as PSE-S1A, the 
flow also increases in proportion in some optical modules as well. We 
conclude that auxiliary supervision affects all modalities, not only the 
weaker modalities. 

4.4. Semantic segmentation 

In this section, we evaluate the performance of the late fusion scheme 
compared to single modality baselines for semantic segmentation. While 
the mid-fusion scheme yields promising results on parcel-based experi
ments, its implementation into a semantic segmentation architecture is 
not trivial. Indeed, the state-of-the-art network for this task (Garnot and 
Landrieu, 2021c) relies on a U-Net architecture with temporal encoding. 
In this architecture, spatial and temporal encoding are performed 
conjointly. After several unsuccessful attempts, we limit our study to the 
other fusion schemes for this task. 

Analysis. We report the performance of the different models in 
Table 2. In our experimental setup, the late fusion model with over ∼
200 total multimodal observations did not fit in the 32 Gb of memory of 
our GPU with a batch size of 4 image time series. By reducing the size of 
the input sequences, temporal dropout allowed us to train this memory- 
intensive model. The late fusion model improves the performance of the 
unimodal models by 2.7 mIoU points. The performance is further 
improved by another 0.5 point with the addition of auxiliary supervi
sion. The early fusion model performs slightly below late fusion, even 
with temporal dropout. As represented in Fig. 8, the radar modality 
allows for prediction with crisper contours, in particular between 
adjacent or nearly adjacent parcels. This suggests that the image 

rugosity of the radar acquisitions is can be valuable to detect inter-parcel 
zones. These areas, often of sub-pixel extent, may display optical re
flectances similar to their neighboring parcels but often present surfaces 
such as fences or groves with a volumetric scatter and thus a distinct 
radar response. 

Note that the performance of our models on semantic segmentation 
is around 10 pts below that for parcel classification. This result was 
expected as the semantic segmentation task prevents us from exploiting 
knowledge about the contour of parcels and has the supplementary class 
background, corresponding to non-agricultural land. 

Varying Cloud Cover Experiment. One of the motivations for using 
both optical and radar images in the context of crop type mapping is to 
exploit the imperviousness of radar signals to cloud cover. This poten
tially allows our model to rely on the radar signal when optical obser
vations are obstructed by clouds, which is particularly crucial in 
countries with pervasive cloud cover, such as subtropical regions 
(Orynbaikyzy et al., 2020). The parcel-based and semantic experiments 
allow for a first exploration of this capacity, but remain bound to the 
specific cloud conditions of the French metropolitan territory and the 
year of acquisition (2019). We propose to further investigate this benefit 
of multimodality by artificially simulating increased cloud obstruction 
on the test set. To do so, we evaluate the performance of models when 
removing random optical acquisitions while leaving the radar time se
ries unchanged. We report the performance of the models in Fig. 7, for 
different ratios of remaining optical observations, corresponding to 
different levels of cloud obstruction. 

As expected, the performance of the S2-only model drops drastically 
as the number of available optical observations decreases for both parcel 
classification and semantic segmentation, performing worse than 
unimodal radar models for a ratio of 70% of artificial occlusion. Multi
modal fusion models can maintain an almost constant level of perfor
mance for up to 50% missing optical acquisitions. For more extreme 
ratios, the performances of the multimodal models eventually drop. The 
magnitude of the drop seems to be related to the amount of interplay 
between modalities in the network. Early fusion proves the least robust 
to missing optical observations. Mid-fusion, and to a lesser extent, the 
late fusion are also affected by obstruction. These models rely on 
multimodal encoders and decoders, which are likely to be affected by a 
severe decrease in the quality of the optical sequence. In contrast, the 
decision fusion scheme comprises independent classifiers and proves to 
be the most resilient: even with 90% of optical images removed, it still 
outperforms the radar modality by several mIoU points. We conclude 
that such models should be favored in regions with pervasive or 
inconsistent cloud cover. 

We also observe that auxiliary supervision and temporal dropout 
make both unimodal and multimodal models more resilient to missing 
optical acquisitions for semantic segmentation. The same phenomenon 
can be observed for parcel classification but was not represented for 
clarity. 

Fig. 6. Gradient Flow. Evolution of the gradient flow for different modules of 
the late fusion model. The contribution of each modality is plotted as a fraction 
of the total flow, without auxiliary loss terms (top) and with the additional ℒaux 

term (bottom). We report the flow for the spatial encoders (PSE), temporal 
encoders (LTAE), and the MLP-based decoders. 

Table 2 
Semantic Segmentation Experiment. We evaluate the semantic segmentation 
performance of models operating on a single modality and multimodal models 
trained with early, late, and decision fusion strategies. We evaluate each model’s 
baseline performance and the impact of temporal dropout and auxiliary classi
fiers, when applicable. We report the 5-fold cross-validated classification scores 
in mean classwise Intersect over Union (- not applicable). Note that temporal 
dropout is necessary for the late and decision fusion models to fit in memory.   

Base Temp. dropout Aux. & Temp. dropout Parameters 

S2 63.1 63.6 – 1087k 
S1D 54.9 54.7 – 1083k 
S1A 53.8 53.3 – 1083k      

Early 64.9 65.8 – 1602k 
Late – 65.8 66.3 1709k 
Decision - 64.7 64.3 1742k  
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4.5. Panoptic segmentation experiment 

In this section, we evaluate the performance of the early and late 
fusion schemes compared to single modality baselines for panoptic 
segmentation. We do not assess auxiliary losses on the late fusion model 
as the use of auxiliary decoders in this setting comes at a prohibitive 
computational cost. Indeed, the auxiliary decoders would be PaPs 
instance segmentation modules which already significantly impact 
training times on single modality architectures. Decision fusion is not 
evaluated here for the same reason. Like in the semantic segmentation 

experiment, temporal dropout proved necessary to train the late fusion 
model. 

Analysis. We report the results of this experiment on Table 3. 
Overall, the early and late fusion schemes increase the panoptic quality 
by 1.6pt and 1.2pt, respectively, compared to the optical baseline. This 
improvement is mostly driven by an increase in recognition quality, 
while the segmentation quality remains almost unchanged. This sug
gests that the radar modality helps correctly detect additional agricul
tural parcels rather than refining the delineation of their boundaries. 
Although modest, this improvement is valuable for this notoriously 

Fig. 7. Varying Cloud Cover Experiment. We evaluate the different models with varying ratios optical observations remaining. In both parcel-based classification 
(a) and semantic segmentation (b), the fusion models prove more robust to a reduced number of optical observations. 

Fig. 8. Qualitative Results for Semantic Segmentation. We show one observation from the optical time series in (a) and one from the radar time series in (b). The 
prediction for the unimodal optical model is represented in (c), aour late fusion multimodal model in (d), and finally the ground truth in (e). We observe that the 
multimodal model produces results with clearer and more distinct borders between close parcels (cyan circle ). The multimodal model also displays fewer errors for 
hard and ambiguous parcels, showing the benefit of learning intermodal features (magenta circle ). Crop types are represented according to the color code above 
(W. stands for Winter). The same legend is used in all subsequent figures representing crop labels. 
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complex task. 
We show on Fig. 9 the qualitative evaluation of the panoptic fusion 

model compared to the optical baseline. In practice, the fusion model 
seems to retrieve more agricultural parcels successfully and manages to 
retrieve small parcels missed by the optical model. We also display the 
predictions made by the unimodal models and the predictions of the 
fusion model in Fig. 11. These qualitative results show how the radar 
modality helps detect more parcels than the optical baseline or improve 
the fusion model’s semantic predictions. Additionally, given the relative 
noisiness of radar observations, the radar-only models retrieve surpris
ingly well the parcel boundaries. As mentioned previously, this could be 
attributed to the distinct volumetric radar response on parcel bound
aries. We report the per-class performances on Fig. 10. 

Regarding robustness to clouds, when performing inference on only 
30% of the optical observations, the S2 baseline model drops to 33.0 PQ. 
In contrast, our late fusion model maintains a score of 37.6 PQ. 
Consistently with the previous experiments, the addition of the radar 
modality helps improve the panoptic predictions with reduced avail
ability of optical observations. 

5. Discussion 

In this section, we discuss the relevance of the different modality 
fusion strategies, with a focus on Sentinel-1 & 2 data for crop mapping. 
Our experiments showed that combining optical and radar imagery 
allowed for an increase in performance for all tasks considered 
(Tables 1–3) as well as robustness to cloud cover (Fig. 7). 

5.1. Recommendations 

Our experiments showed that each fusion scheme has advantages 
and limitations influencing when its use is most relevant: 

Table 3 
Panoptic Segmentation Experiment. We evaluate the panoptic segmentation 
performance of models operating on a single modality and multimodal models 
trained with the early and late fusion strategy with temporal dropout.   

SQ RQ PQ Parameters 

S2 81.3 49.2 40.4 1318k 
S1D 77.0 39.3 30.9 1318k 
S1A 77.4 38.8 30.6 1318k      

Early + Temp. dropout 82.2 50.6 42.0 1791k 
Late + Temp. dropout 81.6 50.5 41.6 2390k  

Fig. 9. Qualitative Results for Panoptic Segmentation. We show one observation from the optical time series in (a) and one from the radar time series in (b). The 
prediction for the unimodal optical model is represented in (c) and the multimodal model in (d), and finally the ground truth in (e), with the same colormap as in 
Fig. 8. The fusion model retrieves more parcels (cyan circle ), and even small parcels that were missed by the purely optical model (magenta circle ). We also note 
that the fusion model seems to handle parcels with internal subdivisions (green circle ) better than the optical model. 

Fig. 10. Classwise Performance for Panoptic Segmentation. We report the 
Panoptic Quality of the late fusion model with temporal dropout and the model 
trained purely on the optical modality. The classes are ordered as in Fig. 5. In 
the panoptic setting, the radar modality is also specifically beneficial for hard 
classes such as Winter triticale. 

V. Sainte Fare Garnot et al.                                                                                                                                                                                                                  



ISPRS Journal of Photogrammetry and Remote Sensing 187 (2022) 294–305

303

• Early Fusion. It is the most compact of the fusion models and shows 
competitive performance on all three tasks. The main drawback of 
this approach is the necessity of an expensive interpolation. As re
ported in Table 4, this preprocessing makes the early fusion scheme 
slower than late fusion despite relying on a smaller network for 
parcel classification and semantic segmentation. Early fusion is the 
least robust fusion scheme to cloud cover.  

• Mid Fusion. Of all methods without preprocessing, this strategy 
leads to the fastest run time and the lowest memory requirement. It 
yields the second-best performance for parcel-based classification 
but suffers more than late and decision fusion when the cloud cover 
is extensive. Its dependence on separate spatial and temporal en
coders prevents its straightforward adaptation to pixel-based tasks. 
We recommend using this scheme for parcel classification in areas 
without extensive cloud cover and when inference speed is critical.  

• Late Fusion. This fusion method, when combined with enhancement 
schemes, leads to the best performance and the highest adaptability, 
as well as excellent resilience to even extreme cloud cover. This 
method is our default recommendation when using temporal atten
tion methods with multimodal time series.  

• Decision Fusion. Despite having the highest parameter count, this 
method lags in terms of performance and is prohibitively costly for 
panoptic segmentation. However, it is the most resilient to cloud 
cover. We recommend using decision fusion when it is expected that 
only a few optical observations may be available for inference. 

We also have evaluated the influence of two enhancement schemes:  

• Auxiliary Supervision. This method consists in adding alongside 
the main prediction auxiliary predictions based on one modality 
alone. The rationale is to help each specialized module to learn 
meaningful features regardless of the interplay with other modal
ities. We observe a strong effect in precision for late and decision 
fusion, which have dedicated encoding modules for each modality.  

• Temporal Dropout. This simple method consists in randomly 
dropping acquisitions of the time series considered. Its effect was 
beneficial to all fusion schemes and the optical baseline across our 
experiments. Another benefit of this scheme is that it reduces the 
memory footprint of networks during training. 

5.2. Limitations 

Our study hinged on the PASTIS dataset, which contains annotated 
agricultural parcels from four different regions of the French metro
politan territory. In this regard, our results are most relevant for crop 
mapping applications with the same meteorological context, terrain 
conditions, and crop types as this region. Certain crop types not 
observed in PASTIS could benefit even more from the radar modality 
than our results show. For instance, rice fields are often filled with water 
and thus have a distinctive SAR response but are not represented in 
PASTIS. 

Fig. 11. Qualitative Results for Panoptic Segmentation. We compare the predictions made by unimodal models operating on S1A (a), S1D (b), S2 (c), and the 
predictions made by the late fusion model (d). We also show the ground truth annotations (e). We observe cases where the optical model does not detect parcels but 
successfully predicted by the radar-only models and by the fusion model as well (green circle ). We also note that the optical model detects some parcels, but the 
crop type is corrected by the addition of the radar modality (red circle ). Conversely, some parcels are detected by the radar-only model with an incorrect crop type 
and not detected by the optical model. Combining both modalities in the fusion model leads to a correct prediction. (cyan circle ). 

Table 4 
Inference times. We report the inference times in seconds of Early and Late 
fusion for one fold of PASTIS (500 patches, 820 km2). We measure the combined 
data loading and prediction time to account for the interpolation step in early 
fusion.   

Parcel classification Semantic segmentation Panoptic segmentation 

Early 192 280 414 
Late 149* 259* 819  

* With auxiliary loss. 
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Furthermore, our evaluation of cloud robustness focused on assess
ing the effect of a reduced number of optical observations at inference 
time. This corresponds to artificially increasing the cloud cover in the 
test set without affecting crop growth. A more rigorous approach would 
constitute a dataset comprising truly observed cloud coverage by vary
ing the regions and years of acquisition. This is complicated by the lack 
of harmonization between LPIS across different countries in nomencla
ture and open-access policy. Lastly, we only used backscattering co
efficients from the SAR data in our experiments, as is commonly done in 
the crop type mapping literature (Orynbaikyzy et al., 2019). Mestre- 
Quereda et al. (2020) found that the addition of interferometric radar 
features is beneficial to crop classification when using only radar inputs. 
Further work is needed to assess the benefit of interferometric radar 
features in a fusion setting with optical imagery. Moreover, we chose to 
prepare the SAR inputs with limited preprocessing. We do not apply 
speckle filtering or radiometric terrain correction to compensate for the 
effect of the local incident angle. Interestingly, our experiments showed 
that this does not prevent the radar modality from benefiting crop 
mapping models. However, further studies could evaluate the benefit of 
adding speckle filtering, elevation information, or meteorological 
context to networks using radar images for crop mapping. 

6. Conclusion 

This article formulated and explored different schemes to design 
fusion architectures using temporal attention for predicting agricultural 
crop type maps from radar and optical satellite time series. 

Across the three tasks of parcel-based classification, semantic seg
mentation, and panoptic segmentation, we experimentally confirmed 
that the multispectral information of Sentinel-2 proves more discrimi
native than the SAR signal of Sentinel-1. Yet, for all three tasks, 
leveraging both modalities led to improvements in the overall perfor
mance and the robustness to cloud obstruction. The late fusion scheme, 
where the learned representations of each modality are concatenated 
before decoding, outperformed the other approaches on parcel-based 
classification. Our subsequent exploration of this approach on seman
tic and panoptic segmentation confirmed its validity to leverage optical 
and radar time series for crop type mapping. Our experiments also 
showed that models with less interplay in the encoding of the modalities 
are most robust to changes in cloud obstruction. In this regard, decision 
fusion may be favored in contexts with highly unpredictable cloud 
conditions. Yet, both late and decision fusion approaches proved 
computationally costly as they incur distinct spatio-temporal encoders 
for each modality. We introduced a mid-fusion scheme that circumvents 
this problem by using separate spatial encoders and a shared temporal 
encoder. This approach performed marginally worse than late fusion on 
parcel-based classification while having close to half the trainable pa
rameters. Mid-fusion can thus be a valid choice for applications with 
limited computational resources. Furthermore, the extension of this 
approach to semantic and panoptic segmentation should be explored in 
future works. We release PASTIS-R, the augmented version of PASTIS 
with radar time series, to encourage further endeavors in multi-temporal 
fusion for Earth Observation. 
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