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A B S T R A C T

With the remarkable progress in access to remote sensing imagery data, nowadays research very often utilizes
more than one image. We are often able to use multitemporal, hyperspectral, and/or full polarization of mi-
crowave radar images. In addition, it has become the general consensus that texture analysis plays an important
role in remote sensing. It has been found in several publications that texture analysis was applied to each layer
separately; however, this procedure requires a significant amount of computation and produces a massive vo-
lume of data. One alternative, and perhaps a better procedure, is to arrange the images into a multi-layered
structure and perform texture analysis within some sort of three-dimensional domain. This manuscript extends
the concepts of the gray level of co-occurrence matrix (GLCM) texture analysis applied for a single image to a
multi-layered set of images, referred to in this paper as 3DGLCM. We then presented an interpretation of the
3DGLCM within the context of building damage identification. A set of 3DGLCM-based features were computed
and evaluated as well. As a result, it was observed that some texture features have certain similarities with other
methods proposed in previous studies, whereas other features have not been used before. Furthermore, this
paper evaluates the performance of the Support Vector Machine (SVM) classifier in learning and detecting
collapsed buildings using 3DGLCM-based features. Thus, the empirical evaluation focuses on the identification of
collapsed buildings caused by the 2011 Tohoku earthquake and tsunami, where individual polarized TerraSAR-X
intensity images are used to compute the texture features, and the collapsed buildings caused by the 2016
Kumamoto earthquake, where LIDAR-based digital surface models are used to compute the texture features.
Extensive datasets consisting of building damage states that have been visually inspected by local authorities and
research teams are used to set up the training and testing subsets. Furthermore, the proposed texture features are
compared with features commonly used to identify collapsed buildings. The study concludes that an SVM trained
with 3DGLCM-based features identifies collapsed buildings with high accuracy and outperforms an SVM trained
with common features used in previous studies.

1. Introduction

Texture features describe the spatial contextual information of pixel
values within a defined area. This information is widely used in image
analysis because it has been proved that texture information increases
the performance of classification algorithms. The applications of texture
in fields such as medicine, agriculture, disaster assessment and geology
are well reported. Although the first publications on texture data date
several decades ago (Haralick et al., 1973), their applications, mod-
ifications and further improvements prevail (Hall-Beyer, 2017b;
Cavalin and Oliveira, 2017; Antel et al., 2003; Boulkenafet et al., 2016).
There are numerous approaches to retrieving texture information such

as gray-level co-occurrence matrices (GLCM), local binary patterns,
convolutional neural networks, multi-scale patch-based recognition,
wavelets, and pseudo cross variograms.
The use of texture in remotely sensed data has been reported in

previous studies. For example, Soares et al. (1997) studied texture
features to characterize agricultural land use. The spatial distribution of
CO2 emission rates was examined using the texture-based classification
of Landsat-TM images in Soegaard and Møller-Jensen (2003). Brenning
et al. (2012) evaluated the use of texture filters applied to IKONOS
orthoimages in detecting rock glacier flow structures. Culbert et al.
(2012) explored the use of texture measures to estimate the variability
in avian species richness. Zakeri et al. (2017) used texture measures for
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land cover classification using polarimetric synthetic aperture radar
(SAR) images. Hall-Beyer (2017a) presented guidelines to choose GLCM
textures for landscape classification. Sun et al. (2016) evaluated the
application of texture features in the characterization of collapsed
buildings using a post-event SAR image.
Unlike the work of Sun et al. (2016), most studies on the detection

of buildings damaged due to large-scale disaster use two or more
images. It has come to our attention that those studies use spatial in-
formation as well. Although the techniques employed have not been
categorized as texture-based methods, they are based on a similar
fundamental basis: contextual variations in pixel values in time. For
instance, the variations in the averages of pixels among a pair of images
have been demonstrated useful to detect building damage. Another
common features are the correlation coefficient and coherence between
the pixels of two images. These features can be computed using a square
moving window or an object-based approach, that is, predefined re-
gions recognized to be homogeneous. Using a pair of images, recorded
before and after a disaster, such features have been extensively used to
characterize damage to buildings (Chini et al., 2009; Matsuoka and
Nojima, 2010; Liu et al., 2013; Uprety et al., 2013; Gokon et al., 2016;
Nakmuenwai et al., 2016; Miura et al., 2016; Wieland et al., 2016;
Watanabe et al., 2016; Liu and Yamazaki, 2017; Karimzadeh and
Mastuoka, 2017; Moya et al., 2018b,a; Anniballe et al., 2018;
Ferrentino et al., 2018a,b). In general, the characterization of damage
to buildings is often based on changes detected between a pair of
images. Thus, change detection might be interpreted as the use of
spatial variations in pixels within a three-dimensional domain. The
generalization of texture definition to multi-layered images may per-
haps provide new insights or at least offer a different perspective of
features that have been already applied.
The concept of a three-dimensional (3D) texture has been used for

multi-layered and multi-temporal images in previous studies, where the
third dimension represents a spectral coordinate or the dates in which
the same area was recorded. Most 3D-texture approaches resemble an
extension of texture methods applied to a single image, that is, a bi-
dimensional domain. Jin et al. (2012) proposed the application of
pseudo cross variogram (PCV) between images recorded at different
times and applied it to land cover classification. The 3D Fourier
transform is another approach to characterizing 3D textures. Such a
method was proposed to create synthetic images with a desired texture
in Sarkar and Healey (2010). Similarly, Qian et al. (2013) used wavelet
coefficients from a 3D discrete wavelet transform to simultaneously
characterize the spatial and spectral structure of hyperspectral images.
The GLCM method, one of the most popular texture methods, has been
extended to a three-dimensional space as well. Lazaroff and Brennan
(1993) constructed the GLCM from the spatio-temporal co-occurrence
of digital numbers from Landsat TM data and used it to evaluate
changes in forest canopies. Gautama and Heene (1998) used a similar
approach with ERS SAR images and performed land cover classification.
Unfortunately, these remarkable and pioneering applications of GLCM
in a three-dimensional domain, hereafter referred to as 3DGLCM, did
not greatly impact subsequent research on satellite remote sensing data.
Nevertheless, 3DGLCM has been widely used in other fields such as
biomedical imaging (Depeursinge et al., 2014). A recent application of
3DGLCM in hyperspectral data can be found in Tsai et al. (2007) and
Tsai and Lai (2013). Regarding multitemporal remote sensing data,
typically, the application of GLCM is performed separately on each
individual image, and then, the variations in GLCM-based features are
used for classification (Bignami et al., 2011; Anniballe et al., 2018). The
GLCM is used to compute a number of features, and if GLCM is calcu-
lated over each input layer separately, a tremendous volume of data
will be produced; see Fig. 1a for the case of only two images. This
unexpected pitfall makes additional processing, such as principal
component analysis, necessary to reduce the amount of data (Zakeri
et al., 2017; Hall-Beyer, 2017a). In contrast, 3DGLCM can reduce the
number of output layers (Fig. 1b).

In this paper, we explore the potential of 3DGLCM for identifying
collapsed buildings. A comprehensive interpretation of 3DGLCM-based
texture features in the context of building damage detection is pre-
sented. The remainder of this paper is structured as follows. Section 2
introduces the fundamental basis of 3DGLCM. Since the early stages in
this study was influenced only by the idea of extending the standard
GLCM to multi-layered images, we have mainly followed the original
nomenclature introduced in Haralick et al. (1973). Thus, our work
presents some differences with the works of Lazaroff and Brennan
(1993) and Gautama and Heene (1998). In Section 3, the performance
of collapsed building classification using 3DGLCM-based features is
evaluated. Two different disaster events with different remote sensed
data are used as cases studies here. Finally, the conclusions are drawn
in Section 4.

2. Three-dimensional Gray Level Co-occurrence Matrix (3DGLCM)

2.1. Definition

Suppose that a set of Nz images (layers) to be analyzed are rectan-
gular, with Nx pixels in the horizontal direction and Ny pixels in the
vertical direction. In addition, the digital value of each pixel is quan-
tized to Ng gray levels. Let = … = …L N L N{0, 1, , 1}, {0, 1, , 1}x x y y
and = …L N{0, 1, , 1}z z be the X Y, and Z domains. Recall that the Z
domain might represent dates in multi-temporal image analysis, po-
larization for SAR images, or spectral coordinates in multispectral/hy-
perspectral images. Furthermore, let = …G N{0, 1, , 1}g be the set of
Ng gray levels. The set × ×L L Lx y z is the set of pixels of the imagery
ordered by their column-row-layer designations. The imagery I can be
represented as a function that assigns some digital value in G to each
pixel in × × × ×L L L I L L L G; :x y z x y z .
In the original definition of co-occurrences in Haralick et al. (1973),

a pair of pixels were identified by the relative position of one pixel, here
referred as neighbor pixel, with respect to the other, hereafter referred as
reference pixel. The relative distance was defined by a scalar d and an
orientation angle . In Fig. 2, the reference pixels are colored black, and
the neighbor pixels are colored gray. Fig. 2a shows an instance of a pair
of pixels with =d 1 and = 0, and Fig. 2b shows all possible neigh-
boring pixels ( = 0, 45, 90, 135). In this paper, the relative distance is
defined by a vector =d d d d[ , , ]1 2 3 , in which the vector is pointing from
the reference toward the neighbor pixel. Fig. 2c depicts a pair of pixels
separated by =d [0, 0, 1], and Fig. 2d shows all the closest neighbor
pixels for a space consisting of two images. The 3DGLCM is specified by
the matrix of relative frequencies, Pi j, , of pairs of pixels separated by a
vector d that occur in the × ×L L Lx y z domain, in which the digital
value of the reference and neighboring pixels equal i and j, respectively.
The non-normalized matrix of frequencies P is defined by

= × × × × ×

= = =

d

d

P i j a b c d e f L L L L L L d

a e b f c I a b c i I d e f j

( , , ) #{(( , , ), ( , , )) ( ) ( )|[

, , ] , ( , , ) , ( , , ) }
x y z x y z

(1)

where # denotes the number of elements in the set and a b c( , , ) and
d e f( , , ) are coordinates in the three-dimensional space. The definitions
presented above represent the general structure of the framework,
which present some contrast with the original definition in Haralick
et al. (1973). With the introduction of the vector distance d a clear
distinction in the direction is defined, that is, the vector is always
pointing toward the neighbor pixel. That is not the case in the original
definition. The reason behind this decision is clarified in the next sub-
section. The texture features computed from the 3DGLCM are grouped
according to Hall-Beyer (2017b) in the following form. A first group
emphasizes the distance of each element Pi j, from the 3DGLCM diagonal
(i.e., i j| |). Contrast, dissimilarity, and homogeneity belong to this group:

=
=

p i jContrast ( )
i j

N

i j
, 0

1

,
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A second group of features emphasize the orderliness. That is, how
regular an arbitrary pair of neighbor pixels occurs. Among them, the
Angular second moment (ASM), energy and entropy are found:

=
=

pASM
i j

N

i j
, 0

1

,
2

(5)

=Energy ASM (6)

=
=

p pEntropy ( ln )
i j

N

i j i j
, 0

1

, ,
(7)

A third group represents the descriptive statistics of the GLCM and it
includes the mean reference (µi), mean neighbor (µj), standard deviation
reference ( i), standard deviation neighbor ( j) and correlation (r):

=
=

µ i p( )i
i j

N

i j
, 0

1

,
(8)

Fig. 1. Scheme of the texture images computed on each image separately (a) and that computed together within a three-dimensional domain (b).

Fig. 2. Examples of spatial relations between reference (black) and neighboring (gray) pixels; (a) pair of pixels defined by a distance =d 1 and an angle = 0; (b) all
neighboring pixels at a distance =d 1 in a bi-dimensional domain; (c) pair of pixels within a three-dimensional domain defined by the vector distance =d (0, 0, 1);
(d) all neighboring pixels in a three-dimensional domain.
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where pi j, denotes the normalized GLCM, that is P N/i j, , with N denoting
the number of neighboring pixel pairs.

2.2. Technical interpretation

In this subsection, we focus on one of the simplest but still practical
case of Eq. (1), that is, the construction of P from a pair of images using
vector =d [0, 0, 1] (Fig. 2c). It is our intention to make an interpreta-
tion of the 3DGLCM-based textures and evaluate its potential for de-
tecting damage-induced changes in the aftermath of a large-scale dis-
aster. Under this configuration, one image will represent a pre-event
image, and the other will represent a post-event image. We used the
matrices A and B depicted in Fig. 3a to set up two cases. Let us assume
that the matrix A denotes a region with a building at the center. It
might represent a digital surface model in certain units; however, the
interpretation is valid for data recorded from any other type of sensor as
well. In the first case, it is assumed that the building did not experience
any damage during the disaster, and therefore, it should present the
same values in both the pre- and post-event image. This setting is shown
in Fig. 3b. In contrast, in the second case, the matrix B shows a possible
situation of the same region if the building would have collapsed. This
case is shown in Fig. 3c. Notice that when using the vector =d [0, 0, 1],
the reference pixels will be located in the pre-event image, and the
neighboring pixels will be in the post-event image. The pre-event and
post-event images together constitute a three-dimensional domain
whereby

= × × =
= × × =

I
I

a b c L L L c
d e f L L L f

{( , , ) ( )| 0}
{( , , ) ( )| 1}

pre
x y z

post
x y z (13)

The un-normalized 3DGLCMs constructed from these two cases are

=

=

P

P

16 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 9

13 3 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
4 4 0 0 0 1

AA

AB

(14)

where P AA and P AB are the 3DGLCM constructed from the first and
second case, respectively. To clarify the construction process of the
matrix P, Fig. 3b shows all the vectors d that start in a pixel with value
zero in the pre-event image (reference pixel) and point to a pixel with
value zero in the post-event image (neighbor pixel). There are 16 such
vectors in total, which is the value of P AA

0,0 . In the second case study,
shown in Fig. 3c, there are only 13 vectors with this configuration;
therefore, =P 13AB

0,0 . Notice that in both cases, the sum of the elements
in row i P, j i j, , is the number of pixels in the pre-event image whose
digital value is equal to i. Likewise, the sum of elements in column
j P, i i j, , is the number of pixels whose digital value is equal to j in the
post-event image. Another straightforward observation is that if there
are no changes between the pre- and post-event images, as in the first
case, the matrix P will be diagonal. When changes occurs, the amount
that was concentrated in the diagonal will be distributed along the
rows, that is, =P Pi i

AA
j i j

AB
, , .

Notice that although the two cases only use 6 gray levels, the
number of zero elements in both P AA and P AB is quite large. In general,
the matrix P is inherently sparse when it is constructed from images
whose number of gray levels, Ng, is larger than the number of pixels
within the window-size. This issue might represent a problem regarding
unnecessary memory requirements and operations during the im-
plementation of the method. A more efficient representation of the gray
level of co-occurrences is a list in which only significant numbers are
stored. For instance, the list representation for the second case is

Fig. 3. (a) Matrices A and B used to set up two simple cases of three-dimensional domains composed of 2 layers I pre and I post ; (b) Case I: No changes occurred; then,
= =I I Apre post ; (c) Case II: Changes occurred; then, =I Apre and =I Bpost .
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=P

0 0 13
0 1 3
5 0 4
5 1 4
5 5 1

list

(15)

Here, the first column denotes the row index i of P, the second column
denotes the column index j of P, and the third column is Pi j, . Eqs.
(2)–(12) can be redefined using Plist . For example, Eq. (2) is expressed
as

=
=

Contrast p p p( )
k

M

k
list

k
list

k
list

0
,2 ,0 ,1

2

(16)

where M denotes the number of rows in Plist . An additional advantage
of Plist is that the order of the rows is irrelevant; specifically, the rows
can be interchanged without affecting the feature values. This means
that there is no need to sort the pixels according to their digital value.
The features computed from both cases (Fig. 3b and c) using Eqs.

(2)–(12) are shown in Table 1. As mentioned previously, texture fea-
tures can be grouped by their weights or by their degree. Weights refer
to the factors multiplying Pi j, in Eqs. (2)–(12). For the contrast group
(Eqs. (2)–(4)), the weights have a geometrical interpretation. They re-
flect the position of the element Pi j, relative to the element of the di-
agonal: Pi i, . This group has clear interpretation for the case of change
detection. The weights are the changes in intensity between the pre-
and post-event images. Going back to the definition of P in Eq. (1), Eqs.
(2)–(4) can be rearranged and expressed in a more comprehensive
form:

=

=

=

=

=

=
+

Contrast I I

Dissimilarity I I

Homogeneity

( )

| |

N
i j

N

i j
pre

i j
post

N
i j

N

i j
pre

i j
post

N
i j

N

I I

1

, 0
, ,

2

1

, 0
, ,

1

, 0

1
1 ( )i j

pre
i j
post

, ,
2

(17)

Thus, contrast is actually the average of the squared differences
between elements of the pre- and post-event images. Dissimilarity is the
average of the absolute value of the differences between elements of the
pre- and post-event images. Similarly, Homogeneity is the average of
the inverse of the squared differences between elements of the pre- and
post-event images, where a value of 1 is added in the denominator to
avoid division by zero. Observe that contrast and dissimilarity are zero
when there are no changes; otherwise, they are positive values. In ad-
dition, homogeneity is equal to 1 when there are no changes and less
than 1 when changes occur. A rather similar feature extensively used
for damage detection is the difference in the average between the two
images (Wieland et al., 2016; Liu and Yamazaki, 2017; Moya et al.,

2018b; Matsuoka and Yamazaki, 2004), whose computation for the
second case is

= =
=

B A B A¯ ¯ 1
25

( ) 1.32
i j

i j i j
, 0

4

, ,
(18)

The difference in the average has the same exponential degree as the
dissimilarity; however, dissimilarity, computed in the second case, is
greater in magnitude. When the difference in the average is computed,
positive and negative changes can cancel. In contrast, changes are al-
ways accumulating in the computation of the dissimilarity. It seems that
dissimilarity emphasizes changes better than the difference in averages,
and thus, it might perform better in damage characterization.
The second group of texture features, referred as orderliness in Hall-

Beyer (2017b), includes the angular second moment (ASM), energy and
entropy. As mentioned before, if there are no changes, then the matrix
P is diagonal. However, when changes occur, the number in the diag-
onal is distributed horizontally. For example, =P 16AA

0,0 is distributed to
=P 13AB

0,0 and =P 3AB
0,1 . Likewise, =P 9AA

5,5 is distributed to
= =P P4, 4AB AB

5,0 5,1 and =P 1AB
5,5 . It is well known that from a set of po-

sitive numbers x{ }i , the sum of squared elements is less than or equal to
the square of the sum x x( )i i i i

2 2. Therefore, from Eq. (5), the ASM
is expected to be larger when there are no changes than that computed
when changes occur, as confirmed in the results of the first and second
cases. The same trend should be observed for Energy and the opposite
for Entropy. However, in theory, there are certain change patterns that
do not affect the quantities in ASM, energy, and entropy. Consider the
elements in the diagonal of P AA moving horizontally until a certain
column j, that is, =P Pi i

AA
i j
AB

, , . This occurs when all pixels with the same
digital number in the pre-event image increase or decrease the same
amount in the post-event image. Given such changes, the orderliness-
type features will have the same magnitude as in the case in which no
changes occurred. However, in real practice, such uniform changes do
not occur. Changes due to the collapse of buildings have non-uniform
patterns. Therefore, for the case of building damage detection, high
values of ASM and Energy and low values of Entropy are more likely to
be observed for non-damaged buildings.
Regarding to the third group of texture features, descriptive statis-

tics, features from Eqs. (8)–(12) are included. Back once again to the
definitions of 3DGLCM with =d µ[0, 0, 1], i and i represent the
average and standard deviation of the pre-event image. Similarly, µj
and j represent the average and standard deviation of the post-event
image. Furthermore, r is the correlation coefficient between both the
pre- and post-event matrices. Similar to the difference in averages (Eq.
(18)), the correlation coefficient has been extensively used for damage
detection (Moya et al., 2018b,a; Gokon et al., 2016; Liu et al., 2013; Liu
and Yamazaki, 2017; Yamazaki and Matsuoka, 2007; Matsuoka and
Yamazaki, 2004).
Before concluding this section, note that by using a vector d in the

construction of the matrix P, the direction of the vector makes a clear
distinction between a reference and neighboring pixel. If no distinction
between the reference and neighboring pixel is desired, as in the ori-
ginal publication of Haralick et al. (1973), P should have been con-
structed using the vectors d and d. In that case, P will always be
symmetric, and most of the interpretation presented here should be
redefined. However, under this option, the resemblance to previous
studies on building damage detection would be obscure. Eq. (17) would
no longer be correct, and the comparison of 3DGLCM-based features
with features used in previous studies might not be very clear. There-
fore, it was decided to continue using our modification in the following
sections.

3. Empirical evaluation

The identification of collapsed buildings in the aftermath of a large-
scale disaster is important for disaster management. Hence, the

Table 1
Texture features computed from the 3DGLCM constructed from cases I and II
shown in Fig. 3b and c, respectively.

Group Feature Case I No changes Case II Changes

Contrast Contrast 0.00 6.68
Dissimilarity 0.00 1.56
Homogeneity 1.00 0.58

Orderliness ASM 0.54 0.34
Energy 0.74 0.58
Entropy 0.65 1.31

Statistics µi 1.80 1.80
µj 1.80 0.48

i 5.76 5.76
j 5.76 1.05

r 1.00 0.38
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capabilities of 3DGLCM-based features for collapsed building detection
need to be evaluated. Two disaster events were used for this purpose: (i)
the earthquake-tsunami of March 11, 2011 that occurred in Tohoku
Prefecture, Japan captured by TerraSAR-X images and (ii) the earth-
quake event that occurred on April 16, 2016 in the prefecture of
Kumamoto, Japan, for which LIDAR data were recorded.

3.1. The 2011 Tohoku earthquake and tsunami

The 11 March 2011 Tohoku earthquake, with Mw 9.0, is one of the
largest well-recorded earthquakes ever. The maximum record of strong-
motion acceleration was 2.7g, and the coseismic deformation was 5m.
The earthquake triggered a tsunami that caused extensive damage in
the coastal area of Tohoku. The maximum measured tsunami height
was 40m (Mori et al., 2011). The epicenter was 150 km off the coast of
Honshu, the largest island of Japan. The Ministry of Land,
Infrastructure, Transport and Tourism (MLIT) (2011) conducted field
surveys and provided a building damage inventory. Seven levels of
damage, from no-damage to washed away, were defined in the men-
tioned survey. Table 2 shows the number of surveyed buildings sepa-
rated by their damage level. In this study, we focus on the buildings
located within the inundated areas on the coast of Miyagi Prefecture for
which TerraSAR-X images were available.

3.1.1. Data used
Fig. 4a shows the location of the study area, one of the zones most

severely affected by the induced tsunami. The technical specifications
of the satellite images are denoted in Table 3. Fig. 4b and c shows the
TerraSAR-X images recorded on 21 October 2010 and 13 March 2011,
respectively. Both images were acquired in the StripMap mode with HH
polarization on a descending path with 37.3° incident angle. The azi-
muth and ground range resolutions were approximately 3.3 m. The
images were orthorectified, transformed to sigma naught, and speckle
noise reduced. Sigma naught represents the radar reflectivity per unit
area in the ground range. The enhanced Lee filter method (Lopes et al.,

1990) with window size of ×3 3 was employed for the speckle noise
reduction.

3.1.2. Results and discussion
To perform the texture analysis, the images were quantized into 256

levels. Using a moving window, the 3DGLCM was constructed, and the
texture features were subsequently computed and allocated in the pixel
located at the center of the window. Thus, 11 texture images were
constructed. Fig. 5b-l shows the textural images using a moving window
of size ×13 13. The procedure was repeated using window sizes of

× ×5 5, 9 9, and ×17 17 as well. For the accuracy assessment, the
buildings surveyed by the MLIT located within the study area were used
to construct a dataset. The spatial distribution of the surveyed buildings
is shown in Fig. 5a. In order to provide further details, the 3DGLCM and
texture features computed at the center of individual buildings are re-
ported. Four buildings were selected (Fig. 6), two non-damaged
buildings (DS0) and two washed away buildings (DS6). The non-zero
elements of the 3DGLCM is depicted in the right column of Fig. 6 and
the computed texture features is shown in Table 4. From the dataset
constructed from the MLIT’s field survey, each sample represents a
building and is composed of 11 features and a class label. Each feature
is computed as the average of a texture feature located within the
building footprint. The class label is assigned according to the MLIT’s
survey. Fig. 7 shows the boxplot of the samples, according to the class
label, computed from the texture images shown in Fig. 5b-l. Each
boxplot shows five coordinates representing the upper limit of 5%,
25%, 50%, 75%, and 95% of the samples. The contrast and dissimilarity
show an ascending trend according to the damage level, while homo-
geneity shows a descending trend, which confirm the interpretation
presented in the previous section. Regarding the orderliness group
(ASM, energy and entropy), there is no distinction between buildings in
different damage states, including DS6. Recall that ASM would have a
large value if all pixels values remained unchanged or experienced the
same change in magnitude, which is effectively impossible because of
the presence of speckle noise in SAR images. The speckle effect is the
result of the cancellation and amplifications of the electromagnetic
waves reflected from the objects within a pixel. Thus, it seems that,
when SAR images are used to identify collapsed buildings, ASM, energy
and entropy are not suitable features. This issue is clearly observed in
the 3DGLCM computed from the samples shown in Fig. 6. For the case
of non-damaged buildings (Fig. 6a and b), the non-zero elements of the
3DGLCM should be located at the diagonal. However, because of the
speckle noise, several non-zero elements are located off the diagonal.
Nevertheless, they are closer to the diagonal than those computed from
the washed away buildings (Fig. 6c and d). That is, features from the
contrast group performs better to characterize washed away buildings

Table 2
Building damage situation due to the 2011 Tohoku earthquake and tsunami.

Damage state Description Number of buildings

DS0 No damage 219,000
DS1 Minor damage 23,000
DS2 Moderate damage 40,000
DS3 Major damage 36,000
DS4 Complete damage 8,000
DS5 Collapsed 34,000
DS6 Washed away 78,000

Fig. 4. The 2011 Tohoku earthquake and tsu-
nami, area of interest and results. (a) Location of
the study area in northern Japan: the blue rec-
tangle shows the location of the study area, the
red areas were inundated by the tsunami, and the
red star shows the location of the epicenter; (b)
TerraSAR-X image recorded on 21 October 2010;
(c) TerraSAR-X image recorded on 13 March
2011. (For interpretation of the references to
color in this figure legend, the reader is referred
to the web version of this article.)
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Table 3
Specifications of the satellite images used in the first case study, the 2011 Tohoku earthquake and tsunami.

Sensor Acquisition Incidence angle Pixel resolution Path Polarization Band

TerraSAR-X 20/09/010 37.3 1.25 Descending HH X
TerraSAR-X 12/03/2011 37.3 1.25 Descending HH X

Fig. 5. (a) Buildings surveyed by the MLIT. (b)-(l) 3DGLCM-based texture images obtained using the pair of TerraSAR-X datasets showed in Fig. 4.
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Fig. 6. Illustrations of the construction of the 3DGLCM using a window size of 13×13 at the location of individual buildings. (a) and (b) are non-damaged buildings.
(c) and (d) are washed away buildings. Images of the pre-event (left) and post-event (middle) are shown in grey levels. The constructed 3DGLCM (right) is shown as
an image. The red dashed polygon superimposed in the satellite images represents the building footprint and the blue dash-dotted polygon denotes a window of size
13×13 from which the 3DGLCM was constructed (right). Note that for the sake of better visualization, only the region with non-zero elements of the 3DGLCM is
shown; furthermore, the size of pixels with non-zero values were increased five times. The texture features computed from the 3DGLCM is reported in Table 4. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 4
Texture features computed from the 3DGLCMs depicted in Figs. 6 and 10.

Feature Samples from Fig. 6 Samples from Fig. 10

(a) (b) (c) (d) (a) (b) (c) (d)

Contrast 163.30 422.99 2339.85 2314.00 0.27 0.00 31.15 79.64
Dissimilarity 9.11 16.89 39.70 33.91 0.25 0.00 5.08 8.76
Homogeneity 0.13 0.05 0.02 0.05 0.88 1.00 0.11 0.02
ASM 0.01 0.01 0.01 0.01 0.13 1.00 0.04 0.03
Energy 0.08 0.08 0.08 0.08 0.37 1.00 0.20 0.17
Entropy 5.07 5.11 5.11 5.11 2.32 0.00 3.53 3.75
µi 153.46 143.98 130.47 151.16 65.18 79.00 57.76 74.38
µj 156.46 147.57 150.80 120.67 65.12 79.00 53.28 65.62

i 23.13 35.35 29.97 43.05 1.59 0.00 3.73 3.79
j 26.44 26.48 30.30 18.98 1.55 0.00 1.87 3.43

r 0.88 0.82 −0.06 0.51 0.95 – 0.46 0.89
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(see Table 4). With respect to the descriptive statistics group, µi and i
denotes respectively the average and the standard deviation of the pre-
event SAR image; and thus, they cannot record any damage pattern. On
the other hand, µj and j represent the average and standard deviation
of the post-event SAR image, which do contain information of collapsed
buildings. Furthermore, buildings with low damage states show higher
correlation coefficient than those with large damage states (Fig. 7k and
Table 4).
A significant overlapping between buildings with damage states of

less than or equal to DS5 is observed. This issue has been discussed
before in Wieland et al. (2016). One of the main reasons concerns the
resolution of the TerraSAR-X images. The damage classification per-
formed by MLIT is according to the damage in the structural system. A
structural damage is assumed when, for instance, a lateral story drift
greater than about 2–3% is observed (Moehle, 2015; FEMA 356, 2000).
That is, a drift of 12–18 cm for a two-story building. Cracks of width
greater than 1mm in structural elements are indicators of damage as
well (IAEA, 2002). As can be noted, the pixel resolution (1.25m) is
much larger than these damage indicators. Hence, it is very unlikely
that SAR images can detect damage levels lower than collapse.
Fig. 7 provides useful information about the potential of the features

for classification purposes. However, it is not conclusive because it does
not show the distribution of the samples in the hyper-spatial domain.
The boxplots should be interpreted as information of the samples pro-
jected onto a single axis. It is, therefore, of interest to investigate
whether 3DGLCM-based features can be used for the classification of
collapsed buildings. For this purpose, the support vector machine

(SVM) method is selected to classify the feature space. The SVM clas-
sifies data by constructing a hyperplane to separate them into two
classes with a possible maximal margin. The margin defines the dis-
tance between the hyperplane and the closest training sample. Further
details on the basis of SVM theory can be found elsewhere (Vapnik,
1999). As a baseline reference, the results reported in Wieland et al.
(2016) are used for comparison to our results. Among several experi-
ments, Wieland et al. (2016) assessed the trained SVM using the same
SAR images as in this case study but with a different feature space. The
aforementioned study use three change indexes, the averaged differ-
ence, the correlation coefficient and a combination of both features.
Additional statistical features, such as the mean, mode, standard de-
viation, minimum and maximum of the backscatter coefficient, were
included as well. Every feature were computed per building footprint.
The accuracy assessment procedure is performed as follows: First,
buildings with damage states DS0-DS4 were merged and labeled as non-
changed samples; similarly, buildings with damage states DS5 and DS6
were merged and labeled as changed samples. From the updated dataset
with the binary class label, 3000 samples, 1500 from non-changed and
1500 from changed buildings, were extracted randomly. Then, a 10-
fold cross-validation (10-FCV) was used to test the classification per-
formance. In a 10-FCV, the dataset is divided into 10 subsets. For the
evaluation, 9 subsets were used to train an SVM and then tested on the
remained subset. This procedure is repeated 10 times, in which a dif-
ferent subset is used to test the SVM classifier. Three standard accuracy
measures, F1, recall and precision, are reported as the average over the
10 evaluations.

Fig. 7. Box plot of 3D-texture features of buildings damaged due to the 2011 Tohoku earthquake and tsunami. The 3D-GLCM was calculated using the vector
=d [0, 0, 1] and a window size of ×13 13.
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where Positive denotes the number of samples of the class under eva-
luation, which in this study equals 1500 for both changed and non-
changed samples, TP denotes true positive and indicates the number of
samples correctly classified as the class under evaluation. FP denotes
false positive and indicates the number of samples incorrectly classified
as the class under evaluation (Fawcett, 2006). The parameters express
high (low) accuracy when its values are close to one (zero). The accu-
racy results are highlighted in Table 5. It is observed that the classifi-
cation using 3DGLCM-based features outperforms the classification
using basic statistics of the backscatter coefficient. Furthermore, it is
observed that the accuracy improves when the window size increases,
which indicates that spatial contextual information is very effective in
SAR images.
Recall that the class labels were assigned according to the MLIT

survey, where the damage levels were categorized considering the
condition of the main structural system. In MLIT, the damage state DS5
is classified as collapsed, with the description “Main structure is da-
maged. It is difficult to reuse it as originally intended”. Thus, it is very likely
that a building classified as DS5 was standing right after the tsunami
arrived and by the time the post-event SAR image was recorded.
Accordingly, the category DS5 contains buildings that collapsed and did
not collapse by the time of the disaster. Under these uncertainties, two
additional experiments were performed. In the second experiment,
samples with DS5 were labeled as non-changed samples. Table 6
summaries the accuracy results, in which an improvement in the scores
is observed. In the third experiment, shown in Table 7, samples labeled
as DS5 were neglected in the 10-FCV of the SVM. There, an even better
performance is observed.

Table 5
Accuracy assessment of the first experiment. SVM-classification of collapsed
buildings based on 3DGLCM-based features and that reported in Wieland et al.
(2016) (Baseline). Samples with damage levels from DS1 to DS4 were labeled as
non-changed, while samples with damage levels DS5 and DS6 were labeled as
changed. The 3DGLCM were computed with window sizes of × ×5, 9 9, 13 13
and ×17 17. NC: non-changed samples, C: changed samples, Av: average.

Window size F1 Recall Precision

NC C Av. NC C Av. NC C Av

Baseline 0.75 0.76 0.76 0.74 0.77 0.76 0.76 0.75 0.76
×5 5 0.80 0.79 0.80 0.83 0.76 0.79 0.77 0.82 0.80
×9 9 0.81 0.79 0.80 0.86 0.74 0.80 0.77 0.84 0.81
×13 13 0.83 0.81 0.82 0.87 0.77 0.82 0.79 0.86 0.83
×17 17 0.84 0.83 0.84 0.87 0.80 0.84 0.81 0.86 0.84

Table 6
Accuracy assessment of the second experiment. SVM-classification of collapsed
buildings using 3DGLCM computed with different window sizes. Samples with
damage levels from DS1 to DS5 were labeled as non-collapsed, while samples
with damage level DS6 were labeled as collapsed. NC: non-collapsed building,
C: collapsed building, Av: average.

Window size F1 Recall Precision

NC C Av. NC C Av. NC C Av

×5 5 0.85 0.85 0.85 0.84 0.87 0.86 0.86 0.84 0.85
×9 9 0.87 0.87 0.87 0.86 0.87 0.87 0.87 0.87 0.87
×13 13 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88
×17 17 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89

Table 7
Accuracy assessment of the third experiment. SVM-classification of collapsed
buildings using 3DGLCM computed with different window sizes. Samples with
damage levels from DS1 to DS4 were labeled as non-collapsed, while samples
with damage level DS6 were labeled as collapsed. Samples with damage level
DS5 were not included. NC: non-collapsed building, C: collapsed building, Av:
average.

Window size F1 Recall Precision

NC C Av. NC C Av. NC C Av

5×5 0.87 0.87 0.87 0.86 0.87 0.87 0.87 0.86 0.87
9× 9 0.89 0.89 0.89 0.90 0.88 0.89 0.89 0.89 0.89
13×13 0.90 0.90 0.90 0.91 0.89 0.90 0.90 0.91 0.91
17×17 0.91 0.90 0.91 0.92 0.89 0.91 0.90 0.91 0.91

Fig. 8. The 2016 Kumamoto earthquake, area of interest and results. (a) Location of the study area, Mashiki town, on Kyushu island, Japan: The blue rectangle shows
the location of the study area, and the red stars show the location of the epicenter of the foreshock (bottom) and mainshock (top). (b) Digital surface model (DSM)
recorded on 15 April 2016. (c) DSM recorded on 23 April 2016. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Table 8
Technical specifications of the remote sensing data used for the second case
study, the 2016 Kumamoto earthquake.

Sensor Instrument Acquisition Point density (points
m2)

DSM resolution
(m)

LiDAR Leica ALS50II 15/04/2016 1.5–2 0.5
LiDAR Leica ALS50II 23/04/2016 3–4 0.5
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3.2. The 2016 Kumamoto earthquake

On 14 April 2016, an Mw 6.2 earthquake struck Kumamoto
Prefecture, Japan. Then, approximately 28 h later, another earthquake
with Mw 7.0 occurred. The first event was designated as the foreshock,
and the second was the mainshock. In both events, the largest recorded
shaking intensity was 7, the highest score in the Japanese
Meteorological Agency (JMA) intensity rating system. Both events oc-
curred in the town of Mashiki, with a population of approximately
33,000. Substantial damage to buildings, lifeline systems, and trans-
portation infrastructure was reported. Over 8000 residential buildings
were severely damaged or collapsed. The causes of the extended da-
mage were attributed to the fault surface rupture, subsurface soil am-
plification, and the seismic performance of the buildings (Yamada et al.,
2017a).

3.2.1. Data used
Fig. 8a shows the location of the study area on Kyushu Island, the

third largest island of Japan located to the southwest. In this case study,
digital surface models (DSMs) constructed from LIDAR data are

employed. Their technical specifications are shown in Table 8. The first
DSM data were recorded on April 15, after the foreshock and before the
mainshock, and the second DSM was recorded on April 23, after the
mainshock. Both LIDAR datasets were recorded by the Asia Survey
(2016). The point density of the first LIDAR dataset was 1.5–2 points
per square meter, and that of the second LIDAR dataset was 3–4 points
per square meter. The resolution of both DSMs was 50 cm. As pre-
processing, a digital elevation model (DEM) provided by the Geospatial
Information Authority of Japan (GSI) was used to remove the ground
surface elevation from the DSMs. The DSMs, after removing the ground
elevation, corresponding to the study area are depicted in Fig. 8b and c.
A joint team from Kyoto University, NEWJEC Inc., and the Building

Research Institute conducted a field survey and prepared a building
damage inventory (Yamada et al., 2017a,b), as shown in Fig. 9a. In the
referred inventory, damaged buildings were classified into four damage
states (DS): no damage (DS0), partially collapsed (DS1), totally col-
lapsed (DS2), and story failure (DS3). Again, the concept of collapsed
here refers to the state of the structural system. Yamada et al. (2017a)
describes DS2 as buildings with serious damage to structural elements
such as the structure tilting.

Fig. 9. (a) Building damage inventory performed by Yamada et al. (2017a). DS0: no damage, DS1: partially collapsed, DS2: totally collapsed, DS3: story collapsed.
(b)-(l) 3DGLCM-based texture images obtained using the DSMs.
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3.2.2. Results and discussion
Following the same procedure as in Section 3.1, the DSMs were

quantized into 256 levels. Using a moving window, the 3DGLCM was
computed, and using Eqs. (2)–(12), texture features were subsequently
calculated. The procedure was repeated for the following window sizes:

× × ×5 5, 9 9, 13 13 and ×17 17. Fig. 9b-l shows the texture images
computed using a window size of ×13 13. For the accuracy assessment,
the field survey performed by Yamada et al. (2017a) was employed.
Again, each sample in the dataset represents a building and is composed
of 11 features and a category label. Each feature is computed as the
average value of the pixel value of the texture images located within the
building footprint. The category is assigned according the building
damage level. Fig. 10 shows four individual buildings, from which the
3DGLCM computed. The texture features were then computed and re-
ported in Table 4. Fig. 11 shows the percentile box for each feature
computed using a window size of ×13 13. As observed previously,
features of the contrast-group that belongs to collapsed buildings are
distributed in a wider range than those belonging to non-collapsed

buildings. On the other hand, unlike the results from the SAR images,
features of the orderliness-group provide different patterns between
buildings with low and high damage levels. Here, the non-zero elements
of the 3DGLCM constructed from non-collapsed buildings (Fig. 10a and
b) are mainly located in the diagonal; and in consequence high value of
ASM and energy is produced, whereas low value of entropy is produced.
Note the effect of the roof type on the 3DGLCM, a gable roof (Fig. 10a)
produces many non-zero terms; whereas a flat roof (Fig. 10b) produces
only one non-zero element. Regarding the collapsed buildings (Fig. 10c
and d), the non-zero elements from the 3DGLCM are mostly off the
diagonal. Samples of DS0 and DS1 show that their orderliness-like
features are distributed in a wider range than those from samples of the
DS2 and DS3 classes. Regarding the group of statistics, µ µi j and

i j for samples with DS0, DS1 and DS2, while µ µi j and i j
for samples in DS3. Furthermore, r from DS3 samples seems to be lower
than the other samples.
Because we decided to perform the same accuracy assessment as

shown in the case of the 2011 Tohoku earthquake, the feature-space

Fig. 10. Illustrations of the construction of the 3DGLCM using a window size of 13× 13 at the location of individual buildings. (a) and (b) non-collapsed buildings.
(c) and (d) collapsed buildings. DSMs of the pre-event (left) and post-event (middle) are shown in grey levels. The constructed 3DGLCM is shown as an image (right).
The red dashed polygon superimposed in the DSMs represents the building footprint and the blue dash-dotted polygon denotes the window size from which the
3DGLCM was constructed (right). For the sake of visualization, only the region with non-zero elements of the 3DGLCM is shown. The texture features computed from
the 3DGLCMs are reported in Table 4. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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constructed in Moya et al. (2018b) was used as baseline rather than the
reported accuracy results. The feature space used in Moya et al. (2018b)
was constructed as follows: First, the pixels located within the building
footprint and whose distance to the building’s boundary is greater than
1m were used to compute three parameters: the averaged differences
between both DSMs, the standard deviation of the differences, and the
correlation coefficient between both DSMs. In the initial accuracy as-
sessment, samples classified as DS0, DS1, and DS2 were merged and
labeled as non-changed samples, while samples classified as DS4 were
labeled as changed. Then, the 10-fold cross-validation procedure was
performed. As in the first case study, the SVM method was used for the
classification. Table 9 shows the F1, recall and precision computed from
the baseline dataset and from the 3DGLCM-based features. It is

Fig. 11. Box plot of 3D-texture features of buildings damaged due to the 2016 Kumamoto earthquake. The 3D-GLCM was calculated using vector =d [0, 0, 1] and a
window size of ×13 13.

Table 9
Accuracy assessment of SVM trained with 3DGLCM-based features using dif-
ferent window sizes. The accuracy assessment from an SVM trained with the
dataset provided in Moya et al. (2018b) is reported as a baseline as well.
NC=Non-collapsed; I= inclined; C= collapsed; Av= average.

Window size F1 Recall Precision

NC C Av NC C Av NC C Av

Baseline 0.88 0.86 0.87 0.95 0.80 0.88 0.83 0.94 0.89
×5 5 0.94 0.94 0.94 0.96 0.92 0.94 0.93 0.96 0.95
×9 9 0.91 0.91 0.91 0.91 0.90 0.90 0.91 0.91 0.91
×13 13 0.91 0.91 0.91 0.93 0.89 0.91 0.90 0.93 0.92
×17 17 0.93 0.93 0.93 0.95 0.92 0.94 0.92 0.94 0.93

Table 10
Accuracy assessment of SVM trained with 3DGLCM-based features using different window sizes. The accuracy assessment from an SVM trained with the dataset
provided in Moya et al. (2018b) is reported as a baseline as well. NC=Non-collapsed; I= inclined; C= collapsed; Av= average.

Window size F1 Recall Precision

NC I C Av NC I C Av NC I C Av

Baseline 0.62 0.16 0.79 0.52 0.86 0.12 0.76 0.58 0.49 0.41 0.84 0.58
×5 5 0.67 0.55 0.83 0.68 0.69 0.55 0.82 0.69 0.65 0.56 0.86 0.69
×9 9 0.70 0.51 0.80 0.67 0.77 0.48 0.78 0.68 0.65 0.55 0.84 0.68
×13 13 0.60 0.52 0.76 0.63 0.64 0.55 0.74 0.64 0.59 0.54 0.81 0.65
×17 17 0.65 0.51 0.85 0.67 0.70 0.50 0.83 0.68 0.64 0.55 0.88 0.69
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observed that classification using 3D-texture outperforms that obtained
using the features proposed in Moya et al. (2018b). From Fig. 11, the
contrast group features of samples DS2 seem similar to those from
samples DS0 and DS1; on the other hand, the orderliness group features
of sample DS2 are similar to those from the DS3 sample. Therefore, an
additional experiment with three classes was performed. Here, DS0 and
DS1 were merged and labeled as non-collapsed samples, DS2 samples
were labeled as inclined, and DS3 samples were labeled as collapsed.
Table 10 shows the accuracy measures, where a fairly low accuracy of
approximately 0.50 is observed for the samples labeled as inclined.
However, it shows a significant improvement compared with the results
from the baseline.
Another peculiar observation in Table 9 is that the accuracy de-

creases when the window size increases from ×5 5 to ×13 13 but then
increases again when the window size is ×17 17. It is our belief that the
reason for this effect is the same reason pixels close to the building
boundary were neglected in Moya et al. (2018b) when the feature space
was constructed. As stated previously, the pre-event and post-event
DSM were constructed from LIDAR data with different density points.
Thus, the elevations constructed every 50 cm are not exactly equal in
both DSMs. In particular, this effect produces large errors at the
building boundaries, where a certain pixel denotes the roof elevation in
one DSM but gives the elevation of the ground surface in the other DSM.
To understand the effect of such errors in the 3DGLCM, Fig. 12 illus-
trates a small area of the grid used to construct the DSMs. Specifically,
each square denotes a pixel and contains an averaged elevation. Let us
assume that the black rectangle represents the boundary of a building
and that the pixels in gray are those that might contain significant er-
rors. The red squares denote the different window sizes used to con-
struct the 3DGLCM, from which the texture features were computed
and stored in the same location as the red pixel shown in Fig. 12. Recall
that the features for each sample are the average of the texture pixels
located within the building footprint. Thus, when a small window is
used, such as ×5 5, only a few pixels within the building footprint are
strongly affected and will not compromise the average. On the other
hand, the average value will be affected when the window size in-
creases. However, when the window size is sufficiently large, the ratio
of affected pixels within the window size is very small, and thus, the
3DGLCM is not strongly affected. We believe that is why the accuracy
increases when a window size of ×17 17 is used.

4. Conclusion

In this study, the Gray Level of the Co-Occurrence Matrix, known as
GLCM, is constructed using images arranged in a three-dimensional
domain in a method referred to as 3DGLCM. Because building damage
detection is the major interest of the authors, a comprehensive inter-
pretation of the 3DGLCM applied to non-collapsed and collapsed
buildings is performed. Furthermore, the common features computed
from GLCM were computed from the 3DGLCM as well. It was found that
the group of features referred to as contrast group features outperform
the average of the differences between a pair of images, a feature ex-
tensively used for building damage detection. Moreover, the orderliness
group features have not been used before in the way used in this paper
and it was found they may provide additional information to identify
damaged buildings. Empirical evaluations of the capabilities of these
new sets of features in identifying collapsed buildings were performed
as well. Two cases were studied: the 2011 earthquake and tsunami that
occurred in the Tohoku Prefecture, Japan and the 2016 earthquake that
occurred in the Kumamoto prefecture, Japan. In the first case, synthetic
aperture radar images were used to construct the 3DGLCM, and in the
second case, LIDAR-based DSMs were used. Support Vector Machines
(SVMs) were trained using the 3DGLCM-based features and compared
with results reported elsewhere. The accuracy observed from our results
were superior to those reported in previous studies.
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