
Deep learning introduction

Deep learning introduction
Master 2 Image Mining Course

Gianni Franchi

29/09/2021

1 / 141

Deep learning introduction

Plan
1 Linear Regression
2 Typical recognition Algorithm
3 Neural Network

Perceptron
Multilayer Perceptron (MLP)

4 Convolutional Neural Network
1D convolution
2D convolution
Different layers of convolutional neural network

5 Transformer architecture
Attention in NLP + the bases
Attention in Computer Vision (VIT)

6 Training a neural network
Gradient descent
Stochastic gradient descent
Initialization

7 Regularization
8 Examples of applications of classical CNN

2 / 141

Deep learning introduction
Introduction

1 Linear Regression

2 Typical recognition Algorithm

3 Neural Network

4 Convolutional Neural Network

5 Transformer architecture

6 Training a neural network

7 Regularization

8 Examples of applications of classical CNN

3 / 141

Deep learning introduction
Introduction

Some references

(a) (b) (c)

(a) :Christopher M. Bishop " Pattern Recognition and Machine Learning
" Springer Verlag, 2006
(b) : Kevin P. Murphy, " Machine Learning " MIT Press, 2013
(c) : Ian Goodfellow , Yoshua Bengio, and Aaron Courville. " Deep
Learning (Adaptive Computation and Machine Learning series) ", The
MIT Press (November 18, 2016)

4 / 141

Deep learning introduction
Introduction

Example of applications

classify data (images, music,...)
denoise images
find and localize objects in images
segment objects in images
translate text
synthesize new images
play video games

5 / 141

Deep learning introduction
Linear Regression

1 Linear Regression

2 Typical recognition Algorithm

3 Neural Network

4 Convolutional Neural Network

5 Transformer architecture

6 Training a neural network

7 Regularization

8 Examples of applications of classical CNN

6 / 141

Deep learning introduction
Linear Regression

Notations and problem

First let us consider two kinds of data: the observation denoted x ∈ R
and the prediction denoted t ∈ R.
We want to be able to predict t given the observation x . Example: we
want to predict the salary given the age.
We consider that we have a set called the training set where we have N1
examples of pairs (xi , ti) with i ∈ N1 and we have a second set called the
testing set composed just of the observations (xi , ..) i ∈ N2.

7 / 141

Deep learning introduction
Linear Regression

The linear regression

Let us consider that the observations belong to RD .
So for all i ∈ N1 and i ∈ N2 we have xi ∈ RD

So for simplicity and i ∈ N1 we have xi ∈ RD

A simple model often used in regression is to consider that the prediction
function is given by:

f (ω, xi) = ω0 + ω1xi,1 + . . .+ ωDxi,D = ω0 +
D∑
j=1

ωjxi,j . (1)

Our goal is to learn the parameters ω = {ω0, . . . , ωD} thanks to the
training set. This model is called linear regression, and may have
some limitations.
Let us consider that the target data is given by the previous deterministic
function, corrupted by Gaussian noise ε of zero mean Gaussian and
inverse variance β, such that:

ti = f (ω, xi) + ε,

with ε ∼ N (0, 1/β).
8 / 141

Deep learning introduction
Linear Regression

The linear regression

Hence, we call τi the random variable associated to the target value ti ,
such that we have τ ∼ N (f (ω, xi), β

−1), which depends on two
parameters, ω and β and the observation xi .
We remind that X ∼ N (µ, σ2) then P(X = x) = 1√

2σ2π
e−

1
2σ2 (x−µ)

2

Let us consider that the training set is drawn independently from the
previous law. Then we can write the likelihood function of the
parameters ω and β:

L(t1, . . . , tN1/ω, β) =
N1∏
i=1

N (f (ω, xi), β
−1).

L(t1, . . . , tN1/ω, β) =
N1∏
i=1

√
β√
2π

exp

(
−β(ti − f (ω, xi))

2

2

)
.

Taking the logarithm of the likelihood function, we have:

logL (t1, . . . , tn/ω, β) =
n∑

i=1

(
1/2. log β − 1/2 log 2π − β/2(ti − f (ω, xi))

2) .
9 / 141

Deep learning introduction
Linear Regression

The linear regression

If we want to find the set of parameters that maximize the likelihood, we
have first to derive it according to each of the parameters of the
log-likelihood, and set it to zero. On the previous expression the term
that depends just on ω is:

Ed(ω) =
β

2

N1∑
i=1

(ti − f (ω, xi))
2.

10 / 141

Deep learning introduction
Linear Regression

The linear regression

We can rewrite it in a matrix form. First let us define the following
matrices: t ∈ MN1,1(R) is defined by:

t =

 t1
...

tN1


x ∈ MN1,D+1(R) is defined by:

x =

 1, x1,1 . . . x1,D
...

. . .
...

1, xN1,1 . . . xN1,D


ω ∈ MD+1,1(R) is defined by:

ω =

ω0
...
ωD


11 / 141

Deep learning introduction
Linear Regression

The linear regression

We can rewrite ED in a matrix form

Ed(ω) =
β

2
(t − xω)t(t − xω).

Ed(ω) =
β

2
(tt .t + ωtx txω − tt .xω − ωtx t .t).

However we know that ∂ωtx txω
∂ω = 2 ∗ (x tx)ω and

∂tt .xω
∂ω = ∂ωtx t .t

∂ω = 2 ∗ x t .t

∂

∂ω
Ed(ω) = β((x tx)ω − x t .t).

We can set it to zero, to finally obtain that:

ωML = (x t x)−1 x t t, (2)

12 / 141

Deep learning introduction
Linear Regression

The linear regression

It is also possible to estimate βML as:

βML =
1
N1

N1∑
i=1

(
ti − ωt

MLxi
)2
, (3)

such that βML provides us information on the precision of the regression.

13 / 141

Deep learning introduction
Linear Regression

The linear regression

Instead of solving :

Ed(ω) =
β

2

N1∑
i=1

(ti − f (ω, xi))
2.

In order to control over-fitting, the total error function to be minimized
takes the form:

Ed(ω) =
β

2

N1∑
i=1

(ti − f (ω, xi))
2 +

λ

2
ωtω.

By following the same calculus as previously the solution is:

ωML = (λID+1 + x t x)−1 x t t, (4)

14 / 141

Deep learning introduction
Linear Regression

The linear regression

We are now able to learn a simple function f linking the target t and the
observation x .
if t is continuous it is a regression
if t is discrete it is a classification

15 / 141

Deep learning introduction
Typical recognition Algorithm

Typical recognition Algorithm

Standard procedure
Feature transform: problem-dependent, hand-crafted, transforms
image into a form useful for classification
Classification: generic, trained, takes feature vector and produces
decision

16 / 141

Deep learning introduction
Neural Network

1 Linear Regression

2 Typical recognition Algorithm

3 Neural Network

4 Convolutional Neural Network

5 Transformer architecture

6 Training a neural network

7 Regularization

8 Examples of applications of classical CNN

17 / 141

Deep learning introduction
Neural Network
Perceptron

History of Deep learning

Deep Learning is a long story. It all started with the Perceptron:

18 / 141

Deep learning introduction
Neural Network
Perceptron

Perceptron algorithm

Deep Learning is a long story. It all started with perceptron:

19 / 141

Deep learning introduction
Neural Network
Perceptron

Perceptron algorithm

The issue is the XOR. How to solve it?

20 / 141

Deep learning introduction
Neural Network
Multilayer Perceptron (MLP)

neural network

(Artificial) neural networks are approaches which attempt to find a
mathematical representation of how our biological system processes
information.
Let us start with the following simple neural network:

21 / 141

Deep learning introduction
Neural Network
Multilayer Perceptron (MLP)

The Neural Network

In regression, the optimization problem was modeled by:

f (ω, xi) = ω0 +
D∑
j=1

ωjxi,j . (5)

Here we will build a first neuron denoted ck with k ∈ [1,K1] (in this
example K1 = 4 and D = 3) :

ck = ω
(1)
0,k +

D∑
j=1

ω
(1)
j,k vi,j . (6)

each ck is a neuron of the first layer. The superscript (1) indicates that
these parameters are the parameters of the first hidden layer. Then, a
nonlinear activation function a is applied on these quantities ck :

zk = a(1)(ck). (7)

with k ∈ [1,K1].
22 / 141

Deep learning introduction
Neural Network
Multilayer Perceptron (MLP)

The Neural Network

We can choose different kinds of activation functions, typically:
A sigmoid function a(x) = 1

1+e−x ;
a(x) = tanh(x);

Rectified Linear Unit (ReLU): a(x) =
{

0 if x < 0
x if x ≥ 0 .

We have now the K1 first neurons c1, c2, . . . , cK1 (according to the
exampleK1 = 4).
Thanks to activation functions the neural network acts like human
neurons. Moreover, the activation functions allow the neural network to
approximate any functions.

23 / 141

Deep learning introduction
Neural Network
Multilayer Perceptron (MLP)

The Neural Network

On the output of the first layer, a second linear combination is applied:

dk = ω
(2)
0,k +

K1∑
k1=1

ω
(2)
k1,k

zk1 . (8)

with k ∈ [1,K2] (on this example K2 = 2).
In this example, d1 and d2 are the outputs of the CNN.
To summarize, the output is equal to :

dk = ω
(2)
0,k +

K1∑
k1=1

ω
(2)
k1,k

a(1)(ω
(1)
0,k1 +

D∑
j=1

ω
(1)
j,k1

vi,j). (9)

In addition we can add multiple layers. So the function represented by
the neural network can be really complicated.

24 / 141

Deep learning introduction
Neural Network
Multilayer Perceptron (MLP)

Neural network deeper

25 / 141

Deep learning introduction
Neural Network
Multilayer Perceptron (MLP)

Story of Neural network

26 / 141

Deep learning introduction
Convolutional Neural Network

1 Linear Regression

2 Typical recognition Algorithm

3 Neural Network

4 Convolutional Neural Network

5 Transformer architecture

6 Training a neural network

7 Regularization

8 Examples of applications of classical CNN

27 / 141

Deep learning introduction
Convolutional Neural Network
1D convolution

1D convolution

For real functions f , g defined on the set Z of integers, the discrete
convolution of f and g is given by:

(f ∗ g)[n] =
∞∑

m=−∞
f [m]g [n −m] (10)

or equivalently (see commutativity) by:

(f ∗ g)[n] =
∞∑

m=−∞
f [n −m]g [m]. (11)

when g and f have finite supports; g in the set
{−M,−M + 1, . . . ,M − 1,M} and f in {0, 1, . . . ,N − 1,N} a finite
summation is used:

(f ∗ g)[n] =
M∑

m=−M

f [n −m]g [m] ∀n ∈ [M,N −M] (12)

with M ≤ N
28 / 141

Deep learning introduction
Convolutional Neural Network
1D convolution

Example 1D convolution for deep learning1

Be careful, this is the cross-correlation.

1Credits: Francois Fleuret
29 / 141

Deep learning introduction
Convolutional Neural Network
1D convolution

Example 1D convolution for deep learning2

2Credits: Francois Fleuret
30 / 141

Deep learning introduction
Convolutional Neural Network
1D convolution

Example 1D convolution for deep learning3

3Credits: Francois Fleuret
31 / 141

Deep learning introduction
Convolutional Neural Network
1D convolution

Example 1D convolution for deep learning4

4Credits: Francois Fleuret
32 / 141

Deep learning introduction
Convolutional Neural Network
1D convolution

Example 1D convolution for deep learning5

5Credits: Francois Fleuret
33 / 141

Deep learning introduction
Convolutional Neural Network
1D convolution

Example 1D convolution for deep learning6

6Credits: Francois Fleuret
34 / 141

Deep learning introduction
Convolutional Neural Network
1D convolution

Example 1D convolution for deep learning7

7Credits: Francois Fleuret
35 / 141

Deep learning introduction
Convolutional Neural Network
1D convolution

Example 1D convolution for deep learning8

8Credits: Francois Fleuret
36 / 141

Deep learning introduction
Convolutional Neural Network
2D convolution

2D convolution

Similarly to the 1D case, let us define two functions f , g . g is a function
of two variables defined in the set {−M,−M + 1, . . . ,M − 1,M}2 and f
in {0, 1, . . . ,N − 1,N}2 We can define the 2D convolution for all
(n1, n2) ∈ [M,N −M]2

(f ∗ g)[n1, n2] =
M∑

m1=−M

M∑
m2=−M

f [n1 −m1, n2 −m2]g [m1,m2] (13)

However, color images are discrete functions of two variables with values
in R3.

(f ∗ g)[n1, n2] =
3∑

k=0

M∑
m1=−M

M∑
m2=−M

f [n1 −m1, n2 −m2, k]g [m1,m2, k] (14)

37 / 141

Deep learning introduction
Convolutional Neural Network
2D convolution

2D convolution

We note that in deep learning, we do not use the convolution but the
cross-correlation, and we call it the convolution.
Here is the definition of the convolution used in most of the deep learning
libraries:

(f ∗ g)[n1, n2] =
3∑

k=0

M∑
m1=−M

M∑
m2=−M

f [n1 +m1, n2 +m2, k]g [m1,m2, k]. (15)

38 / 141

Deep learning introduction
Convolutional Neural Network
2D convolution

Example 2D convolution9

9Credits: Francois Fleuret 39 / 141

Deep learning introduction
Convolutional Neural Network
2D convolution

Example 2D convolution10

10Credits: Francois Fleuret 40 / 141

Deep learning introduction
Convolutional Neural Network
2D convolution

Example 2D convolution11

11Credits: Francois Fleuret 41 / 141

Deep learning introduction
Convolutional Neural Network
2D convolution

Example 2D convolution12

12Credits: Francois Fleuret 42 / 141

Deep learning introduction
Convolutional Neural Network
2D convolution

Example 2D convolution13

13Credits: Francois Fleuret 43 / 141

Deep learning introduction
Convolutional Neural Network
2D convolution

Example 2D convolution14

14Credits: Francois Fleuret 44 / 141

Deep learning introduction
Convolutional Neural Network
2D convolution

Example 2D convolution15

15Credits: Francois Fleuret 45 / 141

Deep learning introduction
Convolutional Neural Network
2D convolution

2D convolution

Let f ∈ RCin×H×W be an image. it is a 3D tensor called the input
feature map.

Let u ∈ RCout×Cin×h×w be a kernel across the input feature map,
along its height and width. The size h × w is the size of the
receptive field.
The final output o is a 3D tensor of size Cout × (Hout)× (Wout)
called the output feature map

o[Cout,j] = bias[Cout,j] +

Cin∑
k=0

h−1∑
n=0

w−1∑
m=0

f[k, n + j ,m + i]u[Cout,j , k, n,m] (16)

Cout × (H − h + 1)× (W − w + 1)

46 / 141

Deep learning introduction
Convolutional Neural Network
2D convolution

2D convolution

The output feature map size Cout × (Hout)× (Wout) depends on :
The padding which specifies number of zeros concatenated at the
beginning and at the end of an axis
The stride which specifies a step size when moving the kernel across
the signal.
The dilation which modulates the expansion of the filter without
adding weights.

Hout =

⌊
Hin + 2× padding[0]− dilation[0]× (h − 1)− 1

stride[0]
+ 1
⌋

Wout =

⌊
Win + 2× padding[1]− dilation[1]× (w − 1)− 1

stride[1]
+ 1
⌋

47 / 141

Deep learning introduction
Convolutional Neural Network
2D convolution

2D convolution16

Padding is useful to control the spatial dimension of the feature map, for
example to keep it constant across layers.

16Credits: https://arxiv.org/pdf/1603.07285.pdf
48 / 141

Deep learning introduction
Convolutional Neural Network
2D convolution

2D convolution17

Stride is useful to reduce the spatial dimension of the feature map by a
constant factor.

17Credits: https://arxiv.org/pdf/1603.07285.pdf
49 / 141

Deep learning introduction
Convolutional Neural Network
2D convolution

2D convolution18

The dilation modulates the expansion of the kernel. Having a dilation
coefficient greater than one increases the units receptive field size
without increasing the number of parameters.

18Credits: https://arxiv.org/pdf/1603.07285.pdf
50 / 141

Deep learning introduction
Convolutional Neural Network
2D convolution

Convolutions as matrix multiplications

As a guiding example, let us consider the convolution of single-channel
tensors x ∈ R4×4 and u ∈ R3×3:

x~ u =


4 5 8 7
1 8 8 8
3 6 6 4
6 5 7 8

~

1 4 1
1 4 3
3 3 1

 =

(
122 148
126 134

)

51 / 141

Deep learning introduction
Convolutional Neural Network
2D convolution

Convolutions as matrix multiplications

The convolution operation can be equivalently re-expressed as a single
matrix multiplication:
the convolutional kernel u is rearranged as a sparse Toeplitz circulant
matrix, called the convolution matrix:

U =


1 4 1 0 1 4 3 0 3 3 1 0 0 0 0 0
0 1 4 1 0 1 4 3 0 3 3 1 0 0 0 0
0 0 0 0 1 4 1 0 1 4 3 0 3 3 1 0
0 0 0 0 0 1 4 1 0 1 4 3 0 3 3 1


the input x is flattened row by row, from top to bottom:
x =

(
4 5 8 7 1 8 8 8 3 6 6 4 6 5 7 8

)T
Then, v(x) =

(
122 148 126 134

)T which we can reshape to a 2× 2
matrix to obtain x~ u.

52 / 141

Deep learning introduction
Convolutional Neural Network
2D convolution

Transposed convolution 19

The need for transposed convolutions generally arises from the desire
to use atransformation going in the opposite direction of a normal
convolution, This operationis known as deconvolution.

19Credits: https://arxiv.org/pdf/1603.07285.pdf
53 / 141

Deep learning introduction
Convolutional Neural Network
2D convolution

Transposed convolution 20

20Credits: http://d2l.ai/ and https://distill.pub/2016/deconv-checkerboard/
54 / 141

Deep learning introduction
Convolutional Neural Network
Different layers of convolutional neural network

initialization of the 2D convolution

A convolutional neural network (CNN) uses different types of layers:
Convolution layer
Activation layer
Pooling layer
Fully connected layer

We already saw the Convolution and Fully connected layers.

55 / 141

Deep learning introduction
Convolutional Neural Network
Different layers of convolutional neural network

Activation function layer

Every activation function (or non-linearity) takes a single number and
performs a certain fixed mathematical operation on it. There are several
activation functions you may encounter. In practice, the most used is the
RELU.

f (x) = max(0, x) (17)

56 / 141

Deep learning introduction
Convolutional Neural Network
Different layers of convolutional neural network

Pooling layer

Consider a pooling area of size h × w and a 3D input tensor
x ∈ RC×(rh)×(sw).
Max-pooling produces a tensor o ∈ RC×r×s such that

oc,j,i = max
n<h,m<w

x[c , j + n, i +m]

Average pooling produces a tensor o ∈ RC×r×ssuch that

oc,j,i =
1
hw

h−1∑
n=0

w−1∑
m=0

x[c , j + n, i +m]

Pooling is very similar in its formulation to convolution.

57 / 141

Deep learning introduction
Convolutional Neural Network
Different layers of convolutional neural network

Pooling layer

A common pooling layer : the max pooling (or the average pooling).
Max pooling is a discretization process. The goal of the pooling is to
concentrate the information in a down-sampled input representation.

58 / 141

Deep learning introduction
Convolutional Neural Network
Different layers of convolutional neural network

Example 2D pooling21

21Credits: Francois Fleuret 59 / 141

Deep learning introduction
Convolutional Neural Network
Different layers of convolutional neural network

Example 2D pooling22

22Credits: Francois Fleuret
60 / 141

Deep learning introduction
Convolutional Neural Network
Different layers of convolutional neural network

Example 2D pooling23

23Credits: Francois Fleuret 61 / 141

Deep learning introduction
Convolutional Neural Network
Different layers of convolutional neural network

Example 2D pooling24

24Credits: Francois Fleuret 62 / 141

Deep learning introduction
Convolutional Neural Network
Different layers of convolutional neural network

Example 2D pooling25

25Credits: Francois Fleuret 63 / 141

Deep learning introduction
Convolutional Neural Network
Different layers of convolutional neural network

Example 2D pooling26

26Credits: Francois Fleuret 64 / 141

Deep learning introduction
Convolutional Neural Network
Different layers of convolutional neural network

Example 2D pooling27

27Credits: Francois Fleuret
65 / 141

Deep learning introduction
Convolutional Neural Network
Different layers of convolutional neural network

CNN : architecture

66 / 141

Deep learning introduction
Convolutional Neural Network
Different layers of convolutional neural network

Example of CNN : AlexNet

67 / 141

Deep learning introduction
Convolutional Neural Network
Different layers of convolutional neural network

Example of CNN : VGG

68 / 141

Deep learning introduction
Convolutional Neural Network
Different layers of convolutional neural network

Example of CNN : GoogLeNet 28

Each inception block is itself defined as a convolutional network with 4
parallel paths.

28Credits: Dive Into Deep Learning, 2020.
69 / 141

Deep learning introduction
Convolutional Neural Network
Different layers of convolutional neural network

Example of CNN : GoogLeNet 29

29Credits: Dive Into Deep Learning, 2020.
70 / 141

Deep learning introduction
Convolutional Neural Network
Different layers of convolutional neural network

Example of CNN : resnet 34

71 / 141

Deep learning introduction
Convolutional Neural Network
Different layers of convolutional neural network

Example of CNN : resnet 30

Training networks of this depth is made possible because of the skip
connections in the residual blocks. They allow the gradients to shortcut
the layers and pass through without vanishing.

30Credits: Dive Into Deep Learning, 2020.
72 / 141

Deep learning introduction
Convolutional Neural Network
Different layers of convolutional neural network

Example of CNN : resnet 31

31Credits: Dive Into Deep Learning, 2020.
73 / 141

Deep learning introduction
Convolutional Neural Network
Different layers of convolutional neural network

CNN

Some observations:
The first layers appear to encode direction and color.
The direction and color filters get combined into grid and spot
textures.
These textures gradually get combined into increasingly complex
patterns.

74 / 141

Deep learning introduction
Convolutional Neural Network
Different layers of convolutional neural network

Evolution of CNN 32

32Credits: Gilles Louppe
75 / 141

Deep learning introduction
Convolutional Neural Network
Different layers of convolutional neural network

Inside a CNN 33

AlexNet’s first convolutional layer, first 20 filters.

33Credits: Gilles Louppe
76 / 141

Deep learning introduction
Convolutional Neural Network
Different layers of convolutional neural network

Inside a CNN 34

VGG-16, convolutional layer 1-1, a few of the 64 filters

34Credits: Gilles Louppe
77 / 141

Deep learning introduction
Convolutional Neural Network
Different layers of convolutional neural network

Inside a CNN 35

VGG-16, convolutional layer 2-1, a few of the 128 filters

35Credits: Gilles Louppe
78 / 141

Deep learning introduction
Convolutional Neural Network
Different layers of convolutional neural network

Inside a CNN 36

VGG-16, convolutional layer 3-1, a few of the 256 filters

36Credits: Gilles Louppe
79 / 141

Deep learning introduction
Convolutional Neural Network
Different layers of convolutional neural network

Inside a CNN 37

VGG-16, convolutional layer 4-1, a few of the 512 filters

37Credits: Gilles Louppe
80 / 141

Deep learning introduction
Convolutional Neural Network
Different layers of convolutional neural network

Inside a CNN 38

VGG-16, convolutional layer 5-1, a few of the 512 filters

38Credits: Gilles Louppe
81 / 141

Deep learning introduction
Convolutional Neural Network
Different layers of convolutional neural network

Inside a CNN 39

39Credits: Gilles Louppe
82 / 141

Deep learning introduction
Transformer architecture
Attention in NLP + the bases

Attention layer 40

Transformer layers were invented for Natural Language Processing. Yet,
it is more and more use in computer vision.

40Credits: Jay Alammar
83 / 141

Deep learning introduction
Transformer architecture
Attention in NLP + the bases

Attention layer 41

First, you need to represent each word by a representation. There are
nice tools to do that. You can use the word2vec embedding.

41Credits: Jay Alammar
84 / 141

Deep learning introduction
Transformer architecture
Attention in NLP + the bases

Attention layer 42

The core component in the transformer architecture is the attention
layer, or called attention for simplicity. An input of the attention layer is
called a query. For a query, the attention layer returns the output based
on its memory, which is a set of key-value pairs.

42Credits: Jay Alammar
85 / 141

Deep learning introduction
Transformer architecture
Attention in NLP + the bases

Attention layer 43

Let us consider that we have a querry q, a set of keys {ki}i , and a set
of values {vi}i . To compute the output, we first assume there is a score
function α which measure the similarity between the query and a key.
Then we compute all n scores a1, . . . , an defined by

ai = α(q, ki).

Next we use softmax to obtain the attention weights

b1, . . . , bn = softmax(a1, . . . , an).

The final output is a weighted sum of the values

o =
∑
i

bivi .

43Credits: d2l.ai
86 / 141

Deep learning introduction
Transformer architecture
Attention in NLP + the bases

Transformer layer 44

44Credits: Jay Alammar
87 / 141

Deep learning introduction
Transformer architecture
Attention in NLP + the bases

Attention layer 45

45Credits: Jay Alammar
88 / 141

Deep learning introduction
Transformer architecture
Attention in NLP + the bases

Attention layer 46

In NLP we do not apply just one attention layer, but mutliple one.

46Credits: Jay Alammar
89 / 141

Deep learning introduction
Transformer architecture
Attention in NLP + the bases

multi-headed Self-Attention layer 47

47Credits: Jay Alammar
90 / 141

Deep learning introduction
Transformer architecture
Attention in NLP + the bases

multi-headed Self-Attention layer 48

48Credits: Jay Alammar
91 / 141

Deep learning introduction
Transformer architecture
Attention in NLP + the bases

multi-headed Self-Attention layer 49

49Credits: Jay Alammar

92 / 141

Deep learning introduction
Transformer architecture
Attention in Computer Vision (VIT)

VIT 50

50https://arxiv.org/pdf/2010.11929.pdf
93 / 141

Deep learning introduction
Training a neural network

1 Linear Regression

2 Typical recognition Algorithm

3 Neural Network

4 Convolutional Neural Network

5 Transformer architecture

6 Training a neural network

7 Regularization

8 Examples of applications of classical CNN

94 / 141

Deep learning introduction
Training a neural network
Gradient descent

Optimization

We have a set of data {xi , ti}N1
i=1 :

F(ω) = β

2

N1∑
i=1

‖f (ω, xi)− ti‖2. (18)

Now ω stands for all the weights and biases of the CNN and f (ω, xi) is
the result of the CNN with the weights and biases ω applied on xi .
Finding the optimal ω that minimizes F is complicated. There are
different techniques:

genetic optimization (Neuro evolution, markov chain,...)
stochastic gradient descent

95 / 141

Deep learning introduction
Training a neural network
Gradient descent

Basic of deep learning optimization

Let us start with the previous problem:

minωF(ω) , with F(ω) =
N1∑
i=1

‖f (ω, xi)− ti‖2 (19)

How can we proceed? A simple algorithm called gradient descent consists
in the following, after having checked that F is convex (F ′′(ω) > 0) and
is of class C1.
First we initialize ω0.
Then, at each iteration we calculate:

ωt+1 = ωt − λ
∂F
∂ω

(20)

λ > 0 is a parameter that modulates the correction (when λ is too low,
slow convergence, when λ is too high, there are oscillations)

96 / 141

Deep learning introduction
Training a neural network
Gradient descent

Basic of deep learning optimization

Why does it work?
We remind the derivative of a function:

∂g

∂x
= limh→0

g(x + h)− g(x)

h
(21)

For simplicity, we consider for h really small :

∂g

∂x
' g(x + h)− g(x)

h
(22)

Now let us consider that h = −λ∂g∂x .
Then have

g(x + h)− g(x) ' −λ× (
∂g

∂x
)2 (23)

Since λ > 0, then
g(x + h) < g(x) (24)

97 / 141

Deep learning introduction
Training a neural network
Gradient descent

Basic of deep learning optimization

98 / 141

Deep learning introduction
Training a neural network
Gradient descent

Basic of deep learning optimization

Now let us focus on ∂F
∂ω . This term is

∂F
∂ω

=
∂

∂ω

N1∑
i=1

(f (ω, xi)− yi)
t(f (ω, xi)− yi) (25)

∂F
∂ω

=
∂

∂ω

N1∑
i=1

(
f (ω, xi)

t f (ω, xi)− 2y t
i f (ω, xi) + y t

i yi
)

(26)

∂F
∂ω

=
N1∑
i=1

(
∂

∂ω
f (ω, xi)

t f (ω, xi)−
∂

∂ω
2y t

i f (ω, xi)

)
(27)

Now let us consider that N1 is really big (about a billion), this might take
ages to sum all the gradients over N1 and over all the parameters w and
to iterate it one million times.

99 / 141

Deep learning introduction
Training a neural network
Stochastic gradient descent

Stochastic gradient descent

Now let us focus on ∂F
∂ω . This term is

∂F
∂ω
' ∂

∂ω

∑
i∈Bj

‖f (ω, xi)− yi‖2 (28)

With Bj a sample of the dataset.
One dataset Bj might not be representative of the full dataset so we take
all the possible Bj

Hence at each iteration we calculate

ωt+1 = ωt − λ
∂Fj

∂ω
(29)

with
∂Fj

∂ω
=

∂

∂ω

∑
i∈Bj

‖f (ω, xi)− yi‖2 (30)

100 / 141

Deep learning introduction
Training a neural network
Stochastic gradient descent

Stochastic gradient descent

101 / 141

Deep learning introduction
Training a neural network
Stochastic gradient descent

stochastic gradient descent with momentum

The stochastic gradient descent

First, we initialized the parameters ω0.
Then, at each iteration we calculate

ωt+1 = ωt − λ
∂Fj

∂w
(31)

The stochastic gradient descent with momentum

First, we initialized the parameters ω0.
Then, at each iteration we calculate

ut+1 = γut + λ
∂Fj

∂ω
(32)

ωt+1 = ωt − ut+1 (33)

the term ut+1 allow us to stabilize the gradient descent. γ ≥ 0 is the
momentum parameter. This parameter add inertia in the choice of the
step direction.

102 / 141

Deep learning introduction
Training a neural network
Stochastic gradient descent

Adam algorithm

The Adam algorithm uses moving averages of each coordinate.The
update rule is:

The Adam algorithm

mt+1 = β1mt + (1− β1)
∂Fj

∂ω
(34)

ˆmt+1 =
mt+1

1− β1
(35)

vt+1 = β2vt + (1− β2)(
∂Fj

∂ω
)2 (36)

ˆvt+1 =
vt+1

1− β2
(37)

ωt+1 = ωt −
λ√
ˆvt+1 + ε

ˆmt+1 (38)

This is a mix with momentum and having a special learning rate for each
parameter w . There are 3 parameters: λ, β1, β2.

103 / 141

Deep learning introduction
Training a neural network
Stochastic gradient descent

Chain rule

The chain rule states that (f ◦ g)′ = (f ′ ◦ g)g ′. Let us have a look at
functions of two variables.

let f : Rn → R be a differentiable function,
let g : Rp → Rn be a differentiable function,
let h = (f ◦ g) be a differentiable function,

h is differentiable and h′ = (f ′ ◦ g)g ′

h′ =
(
∂h
∂x1

∂h
∂x2

. . . ∂h
∂xp

)

104 / 141

Deep learning introduction
Training a neural network
Stochastic gradient descent

Chain rule

h is differentiable and h′ = (f ′ ◦ g)g ′

h′ =
(
∂h
∂x1

∂h
∂x2

. . . ∂h
∂xp

)

g ′ =


∂g1
∂x1

∂g1
∂x2

. . . ∂g1
∂xp

∂g2
∂x1

∂g1
∂x2

. . . ∂g2
∂xp

...
...

∂gn
∂x1

∂gn
∂x2

. . . ∂gn
∂xp


f ′(g) =

(
∂f
∂g1

∂h
∂g2

. . . ∂f
∂gn

)

105 / 141

Deep learning introduction
Training a neural network
Stochastic gradient descent

Chain rule

h is differentiable and h′ = (f ′ ◦ g)g ′

h′ =
(
∂h
∂x1

∂h
∂x2

. . . ∂h
∂xp

)

h′ =
(
∂f
∂g1

∂h
∂g2

. . . ∂f
∂gn

)
×


∂g1
∂x1

∂g1
∂x2

. . . ∂g1
∂xp

∂g2
∂x1

∂g1
∂x2

. . . ∂g2
∂xp

...
...

∂gn
∂x1

∂gn
∂x2

. . . ∂gn
∂xp


Hence, the chain rule results is:

∂h

∂xi
=

n∑
k=1

∂f

∂gk

∂gk
∂xi︸︷︷︸

recursive case

106 / 141

Deep learning introduction
Training a neural network
Stochastic gradient descent

Chain rule

Let us consider a simplified 2-layer MLP and the following loss function:
f (x;W1,W2) = σ

(
WT

2 σ
(
WT

1 x
))

`(y , ŷ ;W1,W2) = cross_ent(y , ŷ)

107 / 141

Deep learning introduction
Training a neural network
Stochastic gradient descent

Chain rule51

Let us zoom in on the computation of the network output ŷ and of its
derivative with respect to W1.

51Credits: Gilles Louppe
108 / 141

Deep learning introduction
Training a neural network
Stochastic gradient descent

Chain rule52

Forward pass: values u1, u2, u3 and ŷ are computed by traversing the
graph from inputs to outputs given x, W1 and W2.

52Credits: Gilles Louppe
109 / 141

Deep learning introduction
Training a neural network
Stochastic gradient descent

Chain rule53

For simplicity let us consider that W1, W2, x and ŷ are scalar.
We replace W1, W2 by w1 and w2.

Backward pass: by the chain rule we have

∂ŷ

∂w1
=

∂ŷ

∂u3

∂u3

∂u2

∂u2

∂u1

∂u1

∂w1

=
∂σ(u3)

∂u3

∂w2.u2

∂u2

∂σ(u1)

∂u1

∂w1.x
∂w1

53Credits: Gilles Louppe
110 / 141

Deep learning introduction
Training a neural network
Stochastic gradient descent

Chain rule54

Let us develop the chain rule of f (x ;w1,w2,w3) = σ (w3σ (w2σ (w1x))).
Let us rewrite the intermediate functions

u1 = w1x

u2 = σ(u1)

u3 = w2u2

u4 = σ(u3)

u5 = w3u4

ŷ = σ(u5)

Now,we can write ∂ŷ
∂w1

as :

∂ŷ

∂w1
=

∂ŷ

∂u5

∂u5

∂u4

∂u4

∂u3

∂u3

∂u2

∂u2

∂u1

∂u1

∂w1

=
∂σ(u5)

∂u5
w3
∂σ(u3)

∂u3
w2
∂σ(u1)

∂u1
x

54Credits: Gilles Louppe
111 / 141

Deep learning introduction
Training a neural network
Stochastic gradient descent

Forward/backward

112 / 141

Deep learning introduction
Training a neural network
Stochastic gradient descent

Which one of these learning rates is best to use?

113 / 141

Deep learning introduction
Training a neural network
Stochastic gradient descent

Which one of these learning rates is best to use?

Solution : Learning rate decay over time.
step decay: a decay learning rate by half every few epochs.
exponential decay: λ(t) = λ0 × e−kt

1/t decay: λ(t) = λ0/(1+ kt)

114 / 141

Deep learning introduction
Training a neural network
Stochastic gradient descent

Vanishing gradients

Now let us have a look at the sigmoid function :

σ(x) =
1

1+ e−x
=

ex

ex + 1
.

Can you evaluate the derivative?

115 / 141

Deep learning introduction
Training a neural network
Stochastic gradient descent

Vanishing gradients

Now let us have a look at the sigmoid function :

σ(x) =
1

1+ e−x
=

ex

ex + 1
.

Can you evaluate the derivative?

σ(x)′ = σ(x)(1− σ(x)).

116 / 141

Deep learning introduction
Training a neural network
Stochastic gradient descent

Vanishing gradients

Now let assume that the weights are initialized randomly from a Gaussian
with zero-mean and small variance, such that wi ∈ [−1, 1] for i ∈ 1, 2, 3.
Then we have:

dŷ
dw1

=
∂σ(u5)

∂u5︸ ︷︷ ︸
≤1/4

w3︸︷︷︸
≤1

∂σ(u3)

∂u3︸ ︷︷ ︸
≤1/4

w2︸︷︷︸
≤1

∂σ(u1)

∂u1︸ ︷︷ ︸
≤1/4

x

This implies that the gradient dŷ
dw1

shrinks . A solution use Relu, then
fore,

dŷ
dw1

=
∂σ(u5)

∂u5︸ ︷︷ ︸
=1

w3
∂σ(u3)

∂u3︸ ︷︷ ︸
=1

w2
∂σ(u1)

∂u1︸ ︷︷ ︸
=1

x

117 / 141

Deep learning introduction
Training a neural network
Initialization

initialization of neural networks

In convex problems, provided a good learning rate γ, convergence is
guaranteed regardless of the initial parameter values. In the non-convex
regime, initialization is more important!

118 / 141

Deep learning introduction
Training a neural network
Initialization

initialization of neural networks

A lot of weights have to be initialized. What value can we put? The
same value for all the convolution layer is a bad idea because of the
weight sharing.
The solution is to use a random initialization, not too small and not too
big.
Xavier55 initialisation and He 56 are the most used in practice since the
weights depend on the size of the output/input. They have good
properties.

55Xavier Glorot and Yoshua Bengio (2010): Understanding the difficulty of training
deep feedforward neural networks. International conference on artificial intelligence
and statistics.

56Kaiming He, etal (2015): Delving Deep into Rectifiers:Surpassing Human-Level
Performance on ImageNet Classification

119 / 141

Deep learning introduction
Training a neural network
Initialization

He initialization

Let us consider a deep neural network modelled by:

g
(1)
k = b

(1)
k +

Din∑
j=1

ω
(1)
k,j xi,j ∀k ∈ [1,M2]

a
(1)
k = a(g

(1)
k) ∀k ∈ [1,M2]

a() is a Rectified Linear Unit (ReLU) function:

a(x) =

{
0 if x < 0
x if x ≥ 0

Then we have:

g
(2)
k1 = b

(2)
k1 +

M2∑
k=1

ω
(2)
k1,k .a

(1)
k ∀k1 ∈ [1,M3]

a
(2)
k1 = a(g

(2)
k1) ∀k1 ∈ [1,M3]

120 / 141

Deep learning introduction
Training a neural network
Initialization

He initialization

g(xi , ω)k2 = b
(3)
k2 +

M3∑
k1=1

ω
(3)
k2,k1.a

(2)
k1 ∀k2 ∈ [1,Dout]

These equations are can be synthesize:

g(xi , ω)k2 = b
(3)
k2 +

M3∑
k1=1

ω
(3)
k2,k1.a

(2)

b
(2)
k1 +

M2∑
k=1

ω
(2)
k1,k .a

(1)

b
(1)
k +

Din∑
j=1

ω
(1)
k,j xi,j


with k2 ∈ [1,Dout].
g(xi , , ω) is a vector that belongs to RDout, for now we will just focus on
the element k2 of this vector.
The variance of the deep neural network is :

varW (g(x ,W)k2) = EW

(
g2(x ,W)k2

)
− (EW g(x ,W)k2)

2 (39)

121 / 141

Deep learning introduction
Training a neural network
Initialization

He initialization

By assuming that the elements i in a
(l−1)
i are also mutually independent

and share the same distribution, and that a(l−1)
i and ω(l)

i1,i , we have:

var
(
g(x ,W)(l)

)
= Mlvar

(
ω(l)a(l−1)

)
(40)

Using :
- the variance of the product of independent variables
- ω(l) have zero mean
Then:

var
(
g(x ,W)(l)

)
= Mlvar

(
ω(l)
)
E
(
(a(l−1))2

)
(41)

122 / 141

Deep learning introduction
Training a neural network
Initialization

He initialization

we use the fact that ω(l−1) has a symmetric distribution around zero
So

E
(
(a(l−1))2

)
= 1/2var

(
g(x ,W)(l−1)

)
(42)

Then we have:

var
(
g(x ,W)(l)

)
= Ml/2var

(
ω(l)
)
var
(
g(x ,W)(l−1)

)
(43)

With L layers put together, we have

var
(
g(x ,W)(L)

)
= var (x)

L∏
l=2

(
Ml/2var

(
ω(l)
))

(44)

123 / 141

Deep learning introduction
Training a neural network
Initialization

He initialization

A good initialization method should avoid reducing or magnifying the
magnitudes of input signals exponentially.
So we want : ∀l ∈ [1, L] Ml/2var

(
ω(l)
)
= 1

∀l ∈ [1, L] var
(
ω(l)
)
=

2
Ml

and E
(
ω(l)
)
= 0 (45)

124 / 141

Deep learning introduction
Regularization

1 Linear Regression

2 Typical recognition Algorithm

3 Neural Network

4 Convolutional Neural Network

5 Transformer architecture

6 Training a neural network

7 Regularization

8 Examples of applications of classical CNN

125 / 141

Deep learning introduction
Regularization

Regularization

We remind you that you have two sets: a training set {(xi , ti)}N1
i=1 and

the validation set {(xi , ti)}N2
i=1 .

What is the utility of these two sets?
What can we deduce from these curbs?

126 / 141

Deep learning introduction
Regularization

Regularization

127 / 141

Deep learning introduction
Regularization

Regularization

Overfitting
Training too much on training set limits generalization
Important to keep an eye on validation error
Stop learning if validation error increase

128 / 141

Deep learning introduction
Regularization

Solution : regularization

You can use weight decay :

L(ω) = Fdata(ω) +
λ2

2
‖ω‖2 (46)

Then during the gradient descent we have

∂F
∂w

(ω) =
∂Fdata
∂w

(ω) + λ2w (47)

129 / 141

Deep learning introduction
Regularization

Solution: regularization with dropout

130 / 141

Deep learning introduction
Regularization

Solution: regularization batch normalization

131 / 141

Deep learning introduction
Regularization

Solution: Cross validation

Data sets
If possible, make 3 sets : training, validation, test
Use Training for training ...
Use Validation to check training quality, tune algorithm params
Use test only to report final performance (hidden in ML
competitions)

K-fold Cross validation
When little data : split dataset in k sets
Train on k-1, validate on remaning one
Repeat k times
Report mean performances

132 / 141

Deep learning introduction
Regularization

Solution: Reporting performances

Detection performance
precision,recall
F1 score : harmonic mean of precision/recall
mAP

Classification performance
Accuracy
Confusion matrix

133 / 141

Deep learning introduction
Examples of applications of classical CNN

1 Linear Regression

2 Typical recognition Algorithm

3 Neural Network

4 Convolutional Neural Network

5 Transformer architecture

6 Training a neural network

7 Regularization

8 Examples of applications of classical CNN

134 / 141

Deep learning introduction
Examples of applications of classical CNN

object detection

135 / 141

Deep learning introduction
Examples of applications of classical CNN

Style transfer

136 / 141

Deep learning introduction
Examples of applications of classical CNN

Segmentation

137 / 141

Deep learning introduction
Examples of applications of classical CNN

Deep dream

138 / 141

Deep learning introduction
Examples of applications of classical CNN

Style transfer

139 / 141

Deep learning introduction
Examples of applications of classical CNN

Image captioning

140 / 141

Deep learning introduction
Examples of applications of classical CNN

Ganimation

141 / 141

	Introduction
	Linear Regression
	Typical recognition Algorithm
	Neural Network
	Perceptron
	Multilayer Perceptron (MLP)

	Convolutional Neural Network
	1D convolution
	2D convolution
	Different layers of convolutional neural network

	Transformer architecture
	Attention in NLP + the bases
	Attention in Computer Vision (VIT)

	Training a neural network
	Gradient descent
	Stochastic gradient descent
	Initialization

	Regularization
	Examples of applications of classical CNN

