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© Neural Network
@ Perceptron
o Multilayer Perceptron (MLP)
@ Convolutional Neural Network
@ 1D convolution
@ 2D convolution
@ Different layers of convolutional neural network
© Transformer architecture
@ Attention in NLP + the bases
@ Attention in Computer Vision (VIT)
@ Training a neural network
o Gradient descent
@ Stochastic gradient descent
@ Initialization
@ Regularization
© Examples of applications of classical CNN
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Some references

(a) :Christopher M. Bishop " Pattern Recognition and Machine Learning
" Springer Verlag, 2006

(b) : Kevin P. Murphy, " Machine Learning " MIT Press, 2013

(c) : lan Goodfellow , Yoshua Bengio, and Aaron Courville. " Deep
Learning (Adaptive Computation and Machine Learning series) ", The
MIT Press (November 18, 2016)
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Introduction

Example of applications

o classify data (images, music,...)

@ denoise images

@ find and localize objects in images
segment objects in images
translate text

synthesize new images

play video games
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Linear Regression

Notations and problem

First let us consider two kinds of data: the observation denoted x € R
and the prediction denoted t € R.

We want to be able to predict t given the observation x. Example: we
want to predict the salary given the age.

We consider that we have a set called the training set where we have N;
examples of pairs (x;, t;) with i € Ny and we have a second set called the
testing set composed just of the observations (x;,..) i € No.
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Linear Regression

The linear regression

Let us consider that the observations belong to RP.

So for all i € Ny and i € N> we have x; € RP

So for simplicity and i € N; we have x; € RP

A simple model often used in regression is to consider that the prediction
function is given by:

D
f(w,x;) =wo +wixj1+ ... +wpxip = wo + ijx,-J. (1)
j=1
Our goal is to learn the parameters w = {wo, ..., wp} thanks to the

training set. This model is called linear regression, and may have
some limitations.

Let us consider that the target data is given by the previous deterministic
function, corrupted by Gaussian noise € of zero mean Gaussian and
inverse variance (3, such that:

t = f(w, x;) + €,
with ¢ ~ A(0,1/3).
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Linear Regression

The linear regression

Hence, we call 7; the random variable associated to the target value t;,
such that we have 7 ~ N(f(w, x;), 37), which depends on two
parameters, w and 3 and the observation x;.

We remind that X ~ N(u, 02) then P(X = x) = —2 e T n)’
Let us consider that the training set is drawn independently from the
previous law. Then we can write the likelihood function of the
parameters w and S:

Ny
['(tla ceey tN1/w7ﬁ) = HN(f(w’X")7B_1)'
i=1

7 (<M,

Taking the logarithm of the likelihood function, we have:

Ny
L:(th' B tNl/w75) = H
i=1

log £ (t1,... ta/w,B) =Y _ (1/2.log B —1/2log 2w — B/2(t; — f(w,x))?) -
i=1
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Linear Regression

The linear regression

If we want to find the set of parameters that maximize the likelihood, we
have first to derive it according to each of the parameters of the
log-likelihood, and set it to zero. On the previous expression the term
that depends just on w is:

Z(t f(w, x;))
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Linear Regression

The linear regression

We can rewrite it in a matrix form. First let us define the following
matrices: t € My, 1(R) is defined by:

t
t =
tn,
x € My, p+1(R) is defined by:
Lxx:i ... xip
X = .
Lxpg1 -0 XD
w € Mpy1,1(R) is defined by:
wo
w=
wp
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The linear regression

We can rewrite Ep in a matrix form

Ey(w) = g(t — xw)(t — xw).

Ey(w) = g(tt.t +wixixw — thxw — wix'.t).

tt
However we know that 22X — 2 x (xtx)w and
Ottt xw _ dwixtt _ t
5o = S5 =2xx"t

G%Ed(w) = B((x'x)w — x".t).

We can set it to zero, to finally obtain that:
Lxtt, (2)

wm = (x x)~
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Linear Regression

The linear regression

It is also possible to estimate By as:

1 & 2
Bm = Ny Z (ti — winxi) ™, 3)
i=1

such that 8y provides us information on the precision of the regression.
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Linear Regression

The linear regression

Instead of solving :

6 Z(t, f(w, x;))

In order to control over-fitting, the total error function to be minimized
takes the form:

Eq(w) == Z(t,- — fw,x))* + %m.

By following the same calculus as previously the solution is:

WML = ()\ID+1 +xt X)_1Xt t, (4)
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Linear Regression

The linear regression

We are now able to learn a simple function f linking the target t and the
observation x.

if t is continuous it is a regression
if t is discrete it is a classification
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Typical recognition Algorithm

road
ieatu;e vehicle
ransform pedestrian

image feature machine
processing vector learning

Standard procedure

@ Feature transform: problem-dependent, hand-crafted, transforms
image into a form useful for classification

o Classification: generic, trained, takes feature vector and produces
decision
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© Neural Network
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Neural Network

Perceptron

History of Deep learning

Deep Learning is a long story. It all started with the Perceptron:
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Neural Network
Perceptron

Perceptron algorithm

Deep Learning is a long story. It all started with perceptron:

Wo

(1
2 Y0 Wi o=1s Y gwaz; >0
n 0 “I/—H\] : 2
o = () sinon
wﬂ
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Neural Network

Perceptron

Perceptron algorithm

The issue is the XOR. How to solve it?

AND OR XOR
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Neural Network
Multilayer Perceptron (MLP)

neural network

(Artificial) neural networks are approaches which attempt to find a

mathematical representation of how our biological system processes
information.

Let us start with the following simple neural network:

Hidden
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Multilayer Perceptron (MLP)

The Neural Network

In regression, the optimization problem was modeled by:

D

f(w,x,-) :w0—|—ijx,-,j. (5)
j=1

Here we will build a first neuron denoted ¢, with k € [1, K1] (in this
example Ky =4 and D =3) :

D
Gk = wc()lzl + ij(lk) Vij- (6)
j=1

each ¢ is a neuron of the first layer. The superscript (1) indicates that
these parameters are the parameters of the first hidden layer. Then, a
nonlinear activation function a is applied on these quantities c:

Zk = a(l)(ck). (7)

with k € [1, Kq].
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Multilayer Perceptron (MLP)

The Neural Network

We can choose different kinds of activation functions, typically:

o A sigmoid function a(x) =

Tre *'
e a(x) = tanh(x);
- . . ) [0 ifx<O
o Rectified Linear Unit (ReLU): a(x) = { x ifx>0
We have now the Kj first neurons ci, ¢, . .., ck, (according to the

exampleK; = 4).

Thanks to activation functions the neural network acts like human
neurons. Moreover, the activation functions allow the neural network to
approximate any functions.
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Multilayer Perceptron (MLP)

The Neural Network

On the output of the first layer, a second linear combination is applied:

dy = w + Z Wk1 kzkl (8)
ki=1

with k € [1, K2] (on this example K3 = 2).
In this example, d; and d» are the outputs of the CNN.
To summarize, the output is equal to :

Ki D
dk:w((f,)(—kz ,(( a(w +Zw11v 9)
ki=1

In addition we can add multiple layers. So the function represented by
the neural network can be really complicated.
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Neural Network
Multilayer Perceptron (MLP)

Neural network deeper

4 hidden layer 1  hidden layer 2 hidden layer 3
input layer
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Neural Network

Multilayer Perceptron (MLP)
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@ Convolutional Neural Network
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Convolutional Neural Network
1D convolution

1D convolution

For real functions f, g defined on the set Z of integers, the discrete
convolution of f and g is given by:

(f+g)lnl = Z flmlg[n — m] (10)

m=—0o0

or equivalently (see commutativity) by:

(fxg)ln] = Z fln — mlg[m]. (11)

m=—oo

when g and f have finite supports; g in the set
{-M,-M+1....M—1 M}and fin{0,1,...,N—1 N} a finite
summation is used:

(f « g)[n] = Z f[n— m]g[m] ¥n € [M,N — M] (12)
m=—M

with M < N
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Convolutional Neural Network
1D convolution

Example 1D convolution for deep learning®

Be careful, this is the cross-correlation.

1 4 -1 0 2 -2 1 3 3 1

Qutput

W—-—w+1

1Credits: Francois Fleuret
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Convolutional Neural Network
1D convolution

Example 1D convolution for deep learning?

w
1 2 0 -1
w
Output
9
W-w+1

2Credits: Francois Fleuret
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Convolutional Neural Network
1D convolution

Example 1D convolution for deep learning®

Input
1 4 -1 2 -2 1 3 3 1
w
i 2 -1
w
Output
9 0
W—-—w+1

3Credits: Francois Fleuret
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Convolutional Neural Network
1D convolution

Example 1D convolution for deep learning®

Input

Qutput

W—w+1

4Credits: Francois Fleuret
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Convolutional Neural Network
1D convolution

Example 1D convolution for deep learning®

Output

9 0 1 3

W-—w+1

5Credits: Francois Fleuret
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Convolutional Neural Network
1D convolution

Example 1D convolution for deep learning®

Qutput

W-—-—w+1

6Credits: Francois Fleuret
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1D convolution

Example 1D convolution for deep learning’

Qutput

9 0 1 3 -5 -3

W— w41

7Credits: Francois Fleuret
35 /141



Deep learning introduction
Convolutional Neural Network
1D convolution

Example 1D convolution for deep learning®

Qutput

9 0 1 3 -5 -3 6

W—-w+1

8Credits: Francois Fleuret
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Convolutional Neural Network
2D convolution

2D convolution

Similarly to the 1D case, let us define two functions f, g. g is a function
of two variables defined in the set {~M,~-M +1,...,M — 1, M}? and f
in {0,1,...,N — 1, N} We can define the 2D convolution for all

(I’Il7 n2) S [/M7 N — M]2

M M
(F*g)[m,n] = Z Z flm — m, np — my)g[my, my]  (13)

m1:—M m2:—M

However, color images are discrete functions of two variables with values
in R3,
3 M M
(f = g)[n1, n2] = Z Z Z flni — my, na — ma, klg[mi, mz, k] (14)

k=0 my=—M ma=—M
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Convolutional Neural Network
2D convolution

2D convolution

We note that in deep learning, we do not use the convolution but the
cross-correlation, and we call it the convolution.

Here is the definition of the convolution used in most of the deep learning
libraries:

3 M

(f xg)[n, n2] = Z Z Z fln1 4+ m1, no + mo, klg[my, ma2, k]. (15)

M
k=0 my=—M ma=—M
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2D convolution

Example 2D convolution®

Input

Kernel

e
&

9Credits: Francois Fleuret 30 /141
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Convolutional Neural Network

2D convolution

Example 2D convolution'®
Input
Output
r//)_
/ 57

Kernel /

T
(&

10Credits: Francois Fleuret
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Convolutional Neural Network
2D convolution

Example 2D convolution!?

Input

—
C

Kernel

11crediter Francoic Fleuret
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2D convolution

Example 2D convolution!?

Input

—
C

Kernel

12 caditer Francoic Fleuret
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Convolutional Neural Network
2D convolution

3

Example 2D convolution?

Input
Output

Kernel

—
G

13Credits: Francois Fleuret 43 /141
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Convolutional Neural Network

2D convolution

Example 2D convolution'*
Input
Qutput
w
Kernel /
") U
H ”I

—
c

14Credits: Francois Fleuret 44 /141
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Convolutional Neural Network
2D convolution

Example 2D convolution?

5

Input

—
&

Kernels

15Credits: Francois Fleuret

Qutput

W-—-w+1

H-h+1
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2D convolution

2D convolution

o Let f € RGin*"*Y be an image. it is a 3D tensor called the input

feature map.

o Let u € ROUt™Sin* ¥ he 3 kernel across the input feature map,
along its height and width. The size h x w is the size of the
receptive field.

@ The final output o is a 3D tensor of size Coyt X (Hout) X (Wout)
called the output feature map

Cin h—1w—1

O[COUt,j] = bias[COUt,j] + Z Z Z f[k7 n +_/7 m + i]u[COUt,j7 kv n, m] (16)

k=0 n=0 m=0

Cout x(H=h+1)x(W-w+1)
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2D convolution

The output feature map size Coyt X (Hout) X (Wout) depends on :

@ The padding which specifies number of zeros concatenated at the
beginning and at the end of an axis

@ The stride which specifies a step size when moving the kernel across
the signal.

@ The dilation which modulates the expansion of the filter without
adding weights.

| Hin + 2 x padding[0] — dilation[0] x (h—1) — 1
Hour = { stride[0] 1
Wi, 4+ 2 x padding[1] — dilation[1] x (w —1) — 1

- +1
stride[1]

Wout = L
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Convolutional Neural Network
2D convolution

2D convolution!®

Padding is useful to control the spatial dimension of the feature map, for
example to keep it constant across layers.

16Credits: https://arxiv.org/pdf/1603.07285.pdf
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Convolutional Neural Network

2D convolution

2D convolution!’

Stride is useful to reduce the spatial dimension of the feature map by a
constant factor.

17Credits: https://arxiv.org/pdf/1603.07285.pdf
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Convolutional Neural Network

2D convolution

2D convolution!®

The dilation modulates the expansion of the kernel. Having a dilation
coefficient greater than one increases the units receptive field size
without increasing the number of parameters.

18Credits: https://arxiv.org/pdf/1603.07285.pdf
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2D convolution

Convolutions as matrix multiplications

As a guiding example, let us consider the convolution of single-channel
tensors x € R*** and u € R3*3:

X® U=

®
W = =
w b b
=W =

(122 148
~\126 134

S W N
01 o o O
~ o o
o N~ 00~
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Convolutional Neural Network
2D convolution

Convolutions as matrix multiplications

The convolution operation can be equivalently re-expressed as a single
matrix multiplication:

the convolutional kernel u is rearranged as a sparse Toeplitz circulant
matrix, called the convolution matrix:

1410143033100000
0141014303310000
0000141014303310
0000014101430331

the input x is flattened row by row, from top to bottom:
x=(4587188836646578)"

Then, v(x) = (122 148 126 134)T which we can reshape to a 2 x 2
matrix to obtain x ® u.
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2D convolution

Transposed convolution

The need for transposed convolutions generally arises from the desire
to use atransformation going in the opposite direction of a normal
convolution, This operationis known as deconvolution.

19Credits: https://arxiv.org/pdf/1603.07285.pdf
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Convolutional Neural Network

2D convolution

Transposed convolution 2°

Input Kemel Output
oo of1 ofof1

0|1 01
-{o]o + 23|+[of2 + ofa|=[0]4]se

20Credits: http://d2l.ai/ and https://distill.pub/2016 /deconv-checkerboard/
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Convolutional Neural Network
Different layers of convolutional neural network

initialization of the 2D convolution

A convolutional neural network (CNN) uses different types of layers:
e Convolution layer
@ Activation layer
@ Pooling layer
o Fully connected layer

We already saw the Convolution and Fully connected layers.
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Different layers of convolutional neural network

Activation function layer

Every activation function (or non-linearity) takes a single number and
performs a certain fixed mathematical operation on it. There are several
activation functions you may encounter. In practice, the most used is the

RELU.
f(x) = max(0, x) (17)

Activation Functions

10

-10 10

RelLU
(Rectified Linear Unit)

56 /141



Deep learning introduction
Convolutional Neural Network
Different layers of convolutional neural network

Pooling layer

Consider a pooling area of size h x w and a 3D input tensor
N = RCX(rh)X(sw)_

Max-pooling produces a tensor o € R€*"*S such that

Ocji= max xlc,j+n, i+ m]

Average pooling produces a tensor o € R€* **such that

h—1w-1

Ocji = hWZZX[c1+n/+m]

n=0 m=0

Pooling is very similar in its formulation to convolution.
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Pooling layer

A common pooling layer : the max pooling (or the average pooling).
Max pooling is a discretization process. The goal of the pooling is to
concentrate the information in a down-sampled input representation.

MAX POOLING
Single depth slice
- 11112 | 4
max pool with 2x2 filters
5|16 |7 |8 and stride 2 6|8
3|12(1|0 3|4
112 (3|4
y
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Different layers of convolutional neural network

Example 2D pooling®!

Input

Output

sh

—
C

21Credits: Francois Fleuret 50 /141
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Different layers of convolutional neural network

Example 2D pooling?

Input

Output

sh

—
@

22Credits: Francois Fleuret 60/ 141
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Convolutional Neural Network
Different layers of convolutional neural network

Example 2D pooling??

Input

Output

sh

—
C

23Credits: Francois Fleuret
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Convolutional Neural Network
Different layers of convolutional neural network

Example 2D pooling?*

Output

sh

—
€

24Credits: Francois Fleuret 62/ 141
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Different layers of convolutional neural network

Example 2D pooling®®

Input

Output

L]

sh
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Different layers of convolutional neural network

Example 2D pooling®®

Input

Output

sh

—
€
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Different layers of convolutional neural network

Example 2D pooling®’

Input

Qutput

sh| H

27 Credits: Francois Fleuret
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Different layers of convolutional neural network

CNN : architecture

convolution linear max convolution
rectification pooling
convolution layer pooling layer
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Different layers of convolutional neural network

)
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Deep learning introduction

nal neural network

Different layers of convolu

&)
&)
=

Example of CNN

| 960V 24
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\ J

—
z/100d
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Convolutional Neural Network
Different layers of convolutional neural network

Example of CNN : GoogleNet 28

Each inception block is itself defined as a convolutional network with 4
parallel paths.

———»| Concatenation

]
| 3x3 Conv, pad 1 | | 5x5 Conv, pad 2 | | 1x1 Cony |
1x1 Conv I t 1 t
| 1x1 Conv | | 1x1 Conv | | 3x3 MaxPool, pad 1 |
Input J
Inception block

28Credits: Dive Into Deep Learning, 2020.
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Convolutional Neural Network
Different layers of convolutional neural network

Example of CNN : GoogleNet 2°

w
<
w
9]
E
<

AUOD) /X[
[COdXeN EXE
[COdXBN EXE
[0OdXBN EXE
|oOdXBN EXE
|10odbay [eqol9

29Credits: Dive Into Deep Learning, 2020.
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Convolutional Neural Network

nal neural network

Example of CNN : resnet 34

Different layers of convolu

34-layer residual

33 conv, 256, /2

313 conv, 256

image

T conw, 64,12

pool. /2

[Coow s

33 conv, 128

Hagis

33 cony, 512

348 conv, 512

333 conv, 512 .
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Convolutional Neural Network
Different layers of convolutional neural network

t30

Example of CNN : resne

Training networks of this depth is made possible because of the skip
connections in the residual blocks. They allow the gradients to shortcut
the layers and pass through without vanishing.

! 1
! 1
! 1
I 1
! 1
! 1
! 1
! 1
! 1
e [(mo

1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1

Batch Norm

Batch Norm

X X

30Credits: Dive Into Deep Learning, 2020.
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Convolutional Neural Network
Different layers of convolutional neural network

Example of CNN : resnet 3!

AUBD) 2XL
wuoN yaleg

1004 afieiany [2qo19

fe————— =009 NS g —————>|

31Credits: Dive Into Deep Learning, 2020.
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Convolutional Neural Network
Different layers of convolutional neural network

CNN

Some observations:

@ The first layers appear to encode direction and color.
@ The direction and color filters get combined into grid and spot

textures.

@ These textures gradually get combined into increasingly complex

patterns.

Batch Norm

Batch Norm

3x3 Conv

i

I
|
I
I
I
I
|
ReLu | | [ 1x1
I
I
I
I
I
|
I
I
I
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Convolutional Neural Network

Different layers of convolutional neural network

Evolution of CNN 32

152 layers

\
L]
' 7.3

V6.7

357 I

ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

32Credits: Gilles Louppe
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Different layers of convolutional neural network

Inside a CNN 33

AlexNet's first convolutional layer, first 20 filters.

JHA'E TEFELIONE—="aEl R

FEN=R A ERIINGNE=TANEN D
EEN=SL BFFRRISENEETNENE

33Credits: Gilles Louppe
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Convolutional Neural Network
Different layers of convolutional neural network

Inside a CNN 34

VGG-16, convolutional layer 1-1, a few of the 64 filters

34Credits: Gilles Louppe
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Convolutional Neural Network
Different layers of convolutional neural network

Inside a CNN 3°

VGG-16, convolutional layer 2-1, a few of the 128 filters

35Credits: Gilles Louppe
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Convolutional Neural Network
Different layers of convolutional neural network

Inside a CNN 30

VGG-16, convolutional layer 3-1, a few of the 256 filters

36Credits: Gilles Louppe
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Convolutional Neural Network
Different layers of convolutional neural network

Inside a CNN 37

VGG-16, convolutional layer 4-1, a few of the 512 filters

37Credits: Gilles Louppe
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Convolutional Neural Network
Different layers of convolutional neural network

Inside a CNN 38

VGG-16, convolutional layer 5-1, a few of the 512 filters

38Credits: Gilles Louppe
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Convolutional Neural Network
Different layers of convolutional neural network

Inside a CNN 3°

Low-Level| |[Mid-Level| [High-Level Trainable
— — —
Feature Feature Feature Classifier
4 i A

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Feraus 20131

39Credits: Gilles Louppe
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Transformer architecture
Attention in NLP + the bases

Attention layer 4°

Transformer layers were invented for Natural Language Processing. Yet,
it is more and more use in computer vision.

0 e & THE
Je suis  étudiant —'% TRANSFORMER — (! am 2 student

40Credits: Jay Alammar
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Transformer architecture
Attention in NLP + the bases

Attention layer 4!

First, you need to represent each word by a representation. There are
nice tools to do that. You can use the word2vec embedding.

x: [ x: [ x: [N

Je suis étudiant

41Credits: Jay Alammar
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Transformer architecture
Attention in NLP + the bases

Attention layer #?

The core component in the transformer architecture is the attention
layer, or called attention for simplicity. An input of the attention layer is
called a query. For a query, the attention layer returns the output based
on its memory, which is a set of key-value pairs.

Input Thinking Machines

Embedding X\\ \ \ \ \ XJ\ \ \ \ \

Queries o[ o[ wea
Keys (rJ (rm

Values RN 1r1j

42Credits: Jay Alammar
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Transformer architecture
Attention in NLP + the bases

Attention layer 43

Let us consider that we have a querry g, a set of keys {k;};, and a set
of values {v;};. To compute the output, we first assume there is a score
function a which measure the similarity between the query and a key.
Then we compute all n scores ay, ..., a, defined by

ai = a(q, ki).

Next we use softmax to obtain the attention weights

by, ..., b, = softmax(ai,...,an).

The final output is a weighted sum of the values

o = Z b,'V,'.

43Credits: d2l.ai
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Transformer architecture
Attention in NLP + the bases

4

Transformer layer 4

Input Thinking Machines

Embedding LT 1] x [
Queries CI o [
Keys |:|:|:| l:‘:l:‘
Values D:D Dj:‘

Score qie ki= qieke =

Divide by 8 (vd; )

Softmax

44Credits: Jay Alammar
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Transformer architecture
Attention in NLP + the bases

Attention layer #°

X wa Q

softmax( Hﬂﬂ ; @ ) H}}

Vi,

- HH

45Credits: Jay Alammar
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Transformer architecture
Attention in NLP + the bases

Attention layer 4°

In NLP we do not apply just one attention layer, but mutliple one.

ATTENTION HEAD #0

Qo

H_‘»

40 Credits: Jay Alammar

ATTENTION HEAD #1

Qi
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Transformer architecture
Attention in NLP + the bases

multi-headed Self-Attention layer 7

1) This is our 2) We embed 3) Split into 8 heads. 4) Calculate attention
input sentence* each word* We multiply X or using the resulting
with weight matrices  Q/K/V matrices

X W@
i Qo
w ———— " B
i )
w,Q
(e]]

*In all encoders other than #0, 1"
we don't need embedding. I
We start directly with the output F—l‘

of the encoder right below this one

EEEE

47Credits: Jay Alammar

5) Concatenate the resulting ~ matrices,

then multiply with weight matrix to
produce the output of the layer

FF

H S
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Transformer architecture
Attention in NLP + the bases

multi-headed Self-Attention layer 4

,-b( Add & Normalize )
]

' 4 4

' ( Self-Attention )
*

L L T
POSITIONAL
ENCODING

X1 X2 _I_I_l_‘

Thinking Machines

48Credits: Jay Alammar
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Transformer architecture
Attention in NLP + the bases

multi-headed Self-Attention layer 4

R LayerNorm(HlH+HH_)

Y Y

b 1 1

E ( Self-Attention )
. A 4

s xlLL ) oo oo X LT

POSITIONAL
ENCODING 92 /141
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Transformer architecture
Attention in Computer Vision (VIT)

VIT 90

Transformer Encoder

* Extra learnable
[class] embedding Llncar Pl‘O_] ection of Flattened Patches

SHE I
Hite ™ —> -.%@ M) e EWE

s e

50https://arxiv.org/pdf/2010.11929.pdf
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© Training a neural network
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Deep learning introduction
Training a neural network
Gradient descent

Optimization

We have a set of data {x;, t;} ™", :

Fw) = EZ 1 (w, x) = . (18)

Now w stands for all the weights and biases of the CNN and f(w, x;) is
the result of the CNN with the weights and biases w applied on x;.
Finding the optimal w that minimizes F is complicated. There are
different techniques:

@ genetic optimization (Neuro evolution, markov chain,...)

@ stochastic gradient descent
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Training a neural network
Gradient descent

Basic of deep learning optimization

Let us start with the previous problem:
Ny
min,, F(w) , with F(w) = [|f(w, %) — & (19)
i=1

How can we proceed? A simple algorithm called gradient descent consists
in the following, after having checked that F is convex (F”(w) > 0) and
is of class C1.
First we initialize wg.
Then, at each iteration we calculate:
OF
w =W — A— 20
== A (20)

A > 0 is a parameter that modulates the correction (when X is too low,
slow convergence, when ) is too high, there are oscillations)
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Training a neural network
Gradient descent

Basic of deep learning optimization

Why does it work?
We remind the derivative of a function:

0 . x+ h) — g(x
675 = ||mh_,0—g( /)7 g( ) (21)
For simplicity, we consider for h really small :
9g , g(x+h)—elx)
Jg 22
Ox h (22)
Now let us consider that h = f)\%.
Then have 5
glx+h) —g() = =X x (55 (23)
Since A > 0, then
g(x+h) < g(x) (24)
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Training a neural network

Gradient descent

Basic of deep learning optimization

J(w)

, .
,,'/ Gradient
1
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Deep learning introduction
Training a neural network
Gradient descent

Basic of deep learning optimization

Now let us focus on ‘g—f. This term is
OF 0 & ¢
0 = a5 2 (@x) = y) (Flw.x) = y) (25)
i=1
or _ 9. g: (Flw, X)) F(w, ) — 2vfF(w,x) + yivi)  (26)
ow  Ow P
or _ NZ D ) F(wr 1) — 22yt F (w0, ) (27)
ow Ow T Y Ow Vi ’I

i=1

Now let us consider that Ny is really big (about a billion), this might take
ages to sum all the gradients over N; and over all the parameters w and
to iterate it one million times.
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Training a neural network
Stochastic gradient descent

Stochastic gradient descent

Now let us focus on gf. This term is

~ S ()~ il? (28)

i€B;

With B; a sample of the dataset.

One dataset B; might not be representative of the full dataset so we take
all the possible B;

Hence at each iteration we calculate

oF;
Wil = Wy — )\67(&)1 (29)
with
O = O S () il (30)

i€B;
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Training a neural network
Stochastic gradient descent

Stochastic gradient descent

Loss surface

Current solution

* No guarantee that this is what

New e colution is going to always happen.

¢ But the noisy SGC gradients can
help some times escaping local
optima
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Training a neural network
Stochastic gradient descent

stochastic gradient descent with momentum

The stochastic gradient descent

First, we initialized the parameters wy.
Then, at each iteration we calculate

OF,

Wenl = wr = A

(31)

| A

The stochastic gradient descent with momentum

First, we initialized the parameters wy.
Then, at each iteration we calculate

OF;
Upr1 = YU + )\a—wj (32)
Wil = Wt — Upt1 (33)

the term wu;y; allow us to stabilize the gradient descent. v > 0 is the
momentum parameter. This parameter add inertia in the choice of the
step direction.
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Stochastic gradient descent

Adam algorithm

The Adam algorithm uses moving averages of each coordinate.The
update rule is:

The Adam algorithm

Mey1 = Pime + (1 — 51)8}— (34)

iy = 1’”;7;1 (35)

Vey1 = Bave + (1 - 52)(6]: )? (36)
Wi = 1V1+;2 (37)

W41 = Wt — \/Tj\l—i—em;rl (38)

v

This is a mix with momentum and having a special learning rate for each
parameter w. There are 3 parameters: A, 51, 3>.
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Training a neural network
Stochastic gradient descent

Chain rule

The chain rule states that (f o g)’ = (f' o g)g’. Let us have a look at
functions of two variables.

o let f : R" — R be a differentiable function,

o let g : RP — R" be a differentiable function,

@ let h=(f o g) be a differentiable function,
h is differentiable and b’ = (f' o g)g’

B = (2h 2Bh Oh
— \ Ox1 Oxa T Oxp
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Training a neural network
Stochastic gradient descent

Chain rule

h is differentiable and h" = (f' o g)g’

yo_(on  on oh
— \ Ox1 Oxa T Oxp

g1 O dg1
Ox1 Oxa e Oxp
9g2  Og1 982
/ Oxa Ox2 e Oxp

agn agn 8gn
Ox1 Oxa e Oxp

of oh of
f'(g):(@ 2 ag")
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Training a neural network
Stochastic gradient descent

Chain rule

h is differentiable and h" = (' o g)g’

1 _ (Oh  Oh
h = (6x1 Oxa
g1
Ox1
Og2
r_ (of  oh of Ix
h _(6g1 Og2 7 8gn)x :
ogn
Ox1

Hence, the chain rule results is:

Oh = Of  Ogk
T = 2

=R

Oh
Oxp

9&1
Oxa
9g1

Oxa

0gn
Oxa

recursive case

9&1
Oxp
082

Ixp

0gn
Oxp
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Training a neural network
Stochastic gradient descent

Chain rule

Let us consider a simplified 2-layer MLP and the following loss function:
f(x; Wi,Wy) =0 (W2TO' (WlTx))
U(y, 9 W1, W2) = cross_ent(y, y)

107 / 141
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Training a neural network
Stochastic gradient descent

Chain rule®®

Let us zoom in on the computation of the network output § and of its
derivative with respect to Wj.

51Credits: Gilles Louppe
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Deep learning introduction
Training a neural network
Stochastic gradient descent

Chain rule®?

Forward pass: values w1, uop, us and y are computed by traversing the
graph from inputs to outputs given x, Wy and W,.

52Credits: Gilles Louppe
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Deep learning introduction
Training a neural network
Stochastic gradient descent

Chain rule®3

For simplicity let us consider that Wy, W5, x and  are scalar.
We replace W1, W5 by wy and ws.

Backward pass: by the chain rule we have

ay dy Ous Oup Juq

8W1 n 8U3 8U2 8u1 8w1
0o (uz) Owa.up 0o (uy) Owy.x
T Quz Oun  Ouy Om

53Credits: Gilles Louppe
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Training a neural network
Stochastic gradient descent

Chain rule®

Let us develop the chain rule of f(x; wy, wa, w3) = o (wso (wao (wix))).
Let us rewrite the intermediate functions

Uy = wix

up =o(uy)
uz = wauz
uy = o(uz)
Us = Wsly
y = o(us)

Now,we can write aa—y as :
wa

0y _ 99 Ous Oug Ous Juz Ouy
(9W1 o 8U5 8U4 (9U3 (9U2 (9U1 8W1
Oo(us) Oo(uz) Oo(ur)
= w w X

8U5 3 8U3 2 8u1

54Credits: Gilles Louppe
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Training a neural network
Stochastic gradient descent

Forward /backward

¢ backward |
input  hidden
layer  layer

Xt

output
Xe-1 OO OXesn
XX hy train goal(le-10)
Xt 2 i . ¥4 Xcuulfl‘_ne )
e I. Original gas price
O ].g 2. [)cc%omp(icdicrics

| )

forward
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Training a neural network
Stochastic gradient descent

Which one of these learning rates is best to use?

loss

low learning rate

high learning rate

good learning rate
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Training a neural network
Stochastic gradient descent

Which one of these learning rates is best to use?

4 Loss

Learning rate decay!

Epoch

Solution : Learning rate decay over time.
o step decay: a decay learning rate by half every few epochs.
o exponential decay: A(t) = \g x ek

o 1/t decay: A(t) = Ao/(1 + kt)
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Training a neural network
Stochastic gradient descent

Vanishing gradients

Now let us have a look at the sigmoid function :

(x) 1 eX
o(x) = = .
1+ e % ex+1

Can you evaluate the derivative?
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Training a neural network
Stochastic gradient descent

Vanishing gradients

Now let us have a look at the sigmoid function :

1 e*

U(X):l—i—e—x_ex—i—l'

Can you evaluate the derivative?

o(x) = o(x)(1 - o(x)).
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Training a neural network
Stochastic gradient descent

Vanishing gradients

Now let assume that the weights are initialized randomly from a Gaussian
with zero-mean and small variance, such that w; € [-1,1] for i € 1,2, 3.
Then we have:

dy _ Oo(us) Oo(us)  Oo(w)

3 p)
dwq Ous ~~ Ouz =~~~ O0Ou
—— <1 N <] S
<1/4 <1/4 <1/4

This implies that the gradient % shrinks . A solution use Relu, then
fore,

dy _ o (us) ” Oo(u3) ) Oo(uy) N

3
d wq 8U5 8U3 8U1
—— —— ——
=1 =1 =1
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Training a neural network
Initialization

initialization of neural networks

In convex problems, provided a good learning rate ~, convergence is
guaranteed regardless of the initial parameter values. In the non-convex
regime, initialization is more important!
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Initialization

initialization of neural networks

A lot of weights have to be initialized. What value can we put? The
same value for all the convolution layer is a bad idea because of the
weight sharing.

The solution is to use a random initialization, not too small and not too
big.

Xavier®® initialisation and He 56 are the most used in practice since the
weights depend on the size of the output/input. They have good
properties.

55Xavier Glorot and Yoshua Bengio (2010): Understanding the difficulty of training
deep feedforward neural networks. International conference on artificial intelligence
and statistics.

56Kaiming He, etal (2015): Delving Deep into Rectifiers:Surpassing Human-Level

Performance on ImageNet Classification
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Training a neural network
Initialization

He initialization

Let us consider a deep neural network modelled by:

in
V= b+ 3wl Yk € [1, My

D = a(gl)) Yk € [1,M)]
a() is a Rectified Linear Unit (ReLU) function:

[0 ifx<O
a(x) = x ifx>0

Then we have:

gy = by + Z (2),k'35<1) Vkl € [1, Ms]

a7 = a(g?) vkl € [1, Ms]
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Training a neural network
Initialization

He initialization

Ms
3 3
g(xi,wlke = be) + E wl(<2)k1 ak1 Vk2 € [1, Doyt]
k1=1

These equations are can be synthesize:

Ms Din
e = B2+ 3 oDy0a® (6D + 30D (60 + 55l
kl=1 k=1 i=1

with k2 € [1, Doyt]-

g(xi,,w) is a vector that belongs to R”out, for now we will just focus on
the element ky of this vector.

The variance of the deep neural network is :

varw(g(x, W)k2) = Ew (€2(x, W)i2) — (Ewg(x, W)i2)®  (39)
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Initialization

He initialization

By assuming that the elements i in a1 are also mutually independent

i
and share the same distribution, and that a,(-lfl) and wf{)i, we have:

var (g(x, W)(’)) = Mvar (w(’)a('*l)> (40)
Using :
- the variance of the product of independent variables

- w have zero mean
Then:

var (g(x, W)(’)) = Mvar (w(’)) E ((a(’*l))2) (41)
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Training a neural network
Initialization

He initialization

we use the fact that w(=1) has a symmetric distribution around zero
So

E ((a<’—1>)2) = 1/2var (g(x, W)<'—1>) (42)
Then we have:
var (g(x, W)(/)) = M, /2var (w(’)> var (g(x, W)(/_l)) (43)

With L layers put together, we have

var ( (x, W) ) = var ( ﬁ (M//2var (w(’)>) (44)

1=2
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Training a neural network
Initialization

He initialization

A good initialization method should avoid reducing or magnifying the
magnitudes of input signals exponentially.
So we want : V/ € [1, L] M;/2var (w) =1

VI e [1,L] var (w(’)) = %’ and E (w(')) =0 (45)
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@ Regularization
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Regularization

Regularization

We remind you that you have two sets: a training set {(x;, t;)}™, and
the validation set {(x;, t;)} 2, .

What is the utility of these two sets?

What can we deduce from these curbs?

Error

Walidation set

Training set

0 Early Number of
stopping iterations
point
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Regularization

Acc. ¢
Train

Val

Overfitting

epoch
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Regularization

Regularization

Overfitting
@ Training too much on training set limits generalization
@ Important to keep an eye on validation error

@ Stop learning if validation error increase

Under-fitting Appropriate-fitting Over-fitting
(too simple to (forcefitting — too
explain the good to be true)

variance)
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Regularization

Solution : regularization

You can use weight decay :
— A2 2
L(w) = Fgata(w) + 5 lIwl] (46)

Then during the gradient descent we have

OF _ 8]:data

%(w) B (w) + Xow (47)
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Regularization

i)
>
(©)
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©
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e
>
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—
c

kS

i)
=
(©)
)]

(b) After applying dropout.

(a) Standard Neural Net
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Regularization

Solution: regularization batch normalization

Input: Values of r overa mini-batch: B = {x; .}
Parameters to be leamed: ~, 3
Dut]}ut: {u: - BN-;._S [J"!\J}

m

1
B A — T /f mini-batch mean
KB T ;
mi
2 2 - .
oR +— — r;— UR) # mini-batch variance
B m 2( HB)
" T — .
2 i HE /I normalize
AY CI'B + €
y; + v, + 3 = BN, s(x;) # scale and shift

Algorithm 1: Batch Normalizing Transform, applied to
activation = over a mini-batch.
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Regularization

Solution: Cross validation

Data sets
o If possible, make 3 sets : training, validation, test
@ Use Training for training ...
@ Use Validation to check training quality, tune algorithm params
@ Use test only to report final performance (hidden in ML
competitions)
K-fold Cross validation
@ When little data : split dataset in k sets
@ Train on k-1, validate on remaning one
@ Repeat k times
@ Report mean performances

|<7 Total Number of Dataset 4%

Experiment 4 |

Experiment 1 | [ [ | [ |
Experiment 2 | \ [ [ | .
[ ] Training
Experiment 3 | [ [ [ ‘ S
Validation
[ | | \
[ | l |

Experiment 5 |
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Regularization

Solution: Reporting performances

Detection performance
@ precision,recall
@ F1 score : harmonic mean of precision/recall
e mAP
Classification performance
@ Accuracy
o Confusion matrix

o8
Normalized confusion matix
03 oo om 002 003 010 006 0
000 om0 oo 00 oo om o1
o6
08 0o 00 010 007 om o0
@002 003 o007 FEN 00 02 om oos oo o003 -
g aerom 002 o1 oo KO8
£ wg{o001 oo o003 o018 o4
g 001 00 004 007
0
jorse | 001 001 004 o5
sp) 008 010 om ox 02
e 001 01 001 o2
o

R I
srescteatase
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© Examples of applications of classical CNN
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object detection
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Style transfer
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Segmentation
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Deep dream
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Style transfer
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Examples of applications of classical CNN

Image captioning

? : R gl EREES
alitle girl sitting on a bench holding an shecp srazing on a lSh SIEEn o drantona sidewalk,
umbrelfa- hillside. fire sidewalk

¥

ayellow plate topped with meat and
broccoli

a stainless steel oven in a kitchen with wood
cabinets.

s e

a man riding a bike down a road next to a
body of water.

two birds sitting on top of a tree branch. an elephant standing next to rock wall.
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Ganimation

141 /141



	Introduction
	Linear Regression
	Typical recognition Algorithm
	Neural Network
	Perceptron
	Multilayer Perceptron (MLP)

	Convolutional Neural Network
	1D convolution
	2D convolution
	Different layers of convolutional neural network

	Transformer architecture
	Attention in NLP + the bases
	Attention in Computer Vision (VIT)

	Training a neural network
	Gradient descent
	Stochastic gradient descent
	Initialization

	Regularization
	Examples of applications of classical CNN

