Deep learning introduction Master 2 Image Mining Course

Gianni Franchi

29/09/2021

Plan

- Linear Regression
- 2 Typical recognition Algorithm
- 3 Neural Network
 - Perceptron
 - Multilayer Perceptron (MLP)
- 4 Convolutional Neural Network
 - 1D convolution
 - 2D convolution
 - Different layers of convolutional neural network
- Transformer architecture
 - Attention in NLP + the bases
 - Attention in Computer Vision (VIT)
- 6 Training a neural network
 - Gradient descent
 - Stochastic gradient descent
 - Initialization
- 7
 - Regularization
 - Examples of applications of classical CNN

Linear Regression

- 2 Typical recognition Algorithm
- 3 Neural Network
- Convolutional Neural Network
- 5 Transformer architecture
- 6 Training a neural network

Regularization

8 Examples of applications of classical CNN

Some references

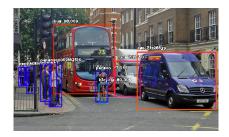
(a) :Christopher M. Bishop " Pattern Recognition and Machine Learning " Springer Verlag, 2006

(b): Kevin P. Murphy, "Machine Learning "MIT Press, 2013
(c): Ian Goodfellow, Yoshua Bengio, and Aaron Courville. "Deep Learning (Adaptive Computation and Machine Learning series) ", The MIT Press (November 18, 2016)

Deep learning introduction Introduction

Example of applications

7210414959 0690159734 9665407401 3134727121 242351244



- classify data (images, music,...)
- denoise images
- find and localize objects in images
- segment objects in images
- translate text
- synthesize new images
- play video games

- 2 Typical recognition Algorithm
- 3 Neural Network
- 4 Convolutional Neural Network
- 5 Transformer architecture
- 6 Training a neural network

Regularization

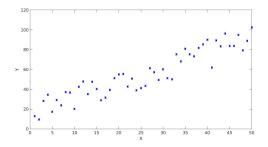
8 Examples of applications of classical CNN

Notations and problem

First let us consider two kinds of data: the observation denoted $x \in \mathbb{R}$ and the prediction denoted $t \in \mathbb{R}$.

We want to be able to predict t given the observation x. Example: we want to predict the salary given the age.

We consider that we have a set called the **training set** where we have N_1 examples of pairs (x_i, t_i) with $i \in N_1$ and we have a second set called the **testing set** composed just of the observations $(x_i, ..)$ $i \in N_2$.



Let us consider that the observations belong to \mathbb{R}^D . So for all $i \in N_1$ and $i \in N_2$ we have $x_i \in \mathbb{R}^D$ So for simplicity and $i \in N_1$ we have $x_i \in \mathbb{R}^D$ A simple model often used in regression is to consider that the prediction function is given by:

$$f(\omega, x_i) = \omega_0 + \omega_1 x_{i,1} + \ldots + \omega_D x_{i,D} = \omega_0 + \sum_{j=1}^D \omega_j x_{i,j}.$$
 (1)

Our goal is to learn the parameters $\omega = \{\omega_0, \dots, \omega_D\}$ thanks to the training set. This model is called linear regression, and may have some limitations.

Let us consider that the target data is given by the previous deterministic function, corrupted by Gaussian noise ϵ of zero mean Gaussian and inverse variance β , such that:

$$t_i = f(\omega, x_i) + \epsilon,$$

with $\epsilon \sim \mathcal{N}(0, 1/\beta)$.

Hence, we call τ_i the random variable associated to the target value t_i , such that we have $\tau \sim \mathcal{N}(f(\omega, x_i), \beta^{-1})$, which depends on two parameters, ω and β and the observation x_i . We remind that $X \sim \mathcal{N}(\mu, \sigma^2)$ then $P(X = x) = \frac{1}{\sqrt{2\sigma^2 \pi}} e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$ Let us consider that the training set is drawn independently from the previous law. Then we can write the likelihood function of the parameters ω and β :

$$\mathcal{L}(t_1,\ldots,t_{N_1}/\omega,\beta) = \prod_{i=1}^{N_1} \mathcal{N}(f(\omega,x_i),\beta^{-1}).$$
$$\mathcal{L}(t_1,\ldots,t_{N_1}/\omega,\beta) = \prod_{i=1}^{N_1} \frac{\sqrt{\beta}}{\sqrt{2\pi}} \exp\left(\frac{-\beta(t_i-f(\omega,x_i))^2}{2}\right)$$

. .

Taking the logarithm of the likelihood function, we have:

$$\log \mathcal{L}(t_1,\ldots,t_n/\omega,\beta) = \sum_{i=1}^n (1/2 \log \beta - 1/2 \log 2\pi - \beta/2(t_i - f(\omega,x_i))^2).$$

If we want to find the set of parameters that maximize the likelihood, we have first to derive it according to each of the parameters of the log-likelihood, and set it to zero. On the previous expression the term that depends just on ω is:

$$E_d(\omega) = \frac{\beta}{2} \sum_{i=1}^{N_1} (t_i - f(\omega, x_i))^2.$$

We can rewrite it in a matrix form. First let us define the following matrices: $t \in M_{N_1,1}(\mathbb{R})$ is defined by:

$$t = \begin{pmatrix} t_1 \\ \vdots \\ t_{N_1} \end{pmatrix}$$

 $x \in M_{N_1,D+1}(\mathbb{R})$ is defined by:

$$x = \begin{pmatrix} 1, x_{1,1} & \dots & x_{1,D} \\ \vdots & \ddots & \vdots \\ 1, x_{N_1,1} & \dots & x_{N_1,D} \end{pmatrix}$$

 $\omega \in M_{D+1,1}(\mathbb{R})$ is defined by:

$$\omega = \begin{pmatrix} \omega_0 \\ \vdots \\ \omega_D \end{pmatrix}$$

We can rewrite E_D in a matrix form

$$E_d(\omega) = \frac{\beta}{2}(t-x\omega)^t(t-x\omega).$$

$$E_d(\omega) = rac{eta}{2}(t^t.t + \omega^t x^t x \omega - t^t.x \omega - \omega^t x^t.t).$$

However we know that
$$\frac{\partial \omega^t x^t x \omega}{\partial \omega} = 2 * (x^t x) \omega$$
 and
 $\frac{\partial t^t x \omega}{\partial \omega} = \frac{\partial \omega^t x^t t}{\partial \omega} = 2 * x^t t$.
 $\frac{\partial}{\partial \omega} E_d(\omega) = \beta((x^t x)\omega - x^t t) \omega$

We can set it to zero, to finally obtain that:

$$\omega_{ML} = (x^t x)^{-1} x^t t,$$
 (2)

It is also possible to estimate $\beta_{\textit{ML}}$ as:

$$\beta_{ML} = \frac{1}{N_1} \sum_{i=1}^{N_1} \left(t_i - \omega_{ML}^t x_i \right)^2,$$
 (3)

such that $\beta_{\textit{ML}}$ provides us information on the precision of the regression.

Instead of solving :

$$E_d(\omega) = \frac{\beta}{2} \sum_{i=1}^{N_1} (t_i - f(\omega, x_i))^2.$$

In order to control over-fitting, the total error function to be minimized takes the form:

$$E_d(\omega) = rac{eta}{2} \sum_{i=1}^{N_1} (t_i - f(\omega, x_i))^2 + rac{\lambda}{2} \omega^t \omega.$$

By following the same calculus as previously the solution is:

$$\omega_{ML} = (\lambda I_{D+1} + x^t x)^{-1} x^t t,$$
(4)

We are now able to learn a simple function f linking the target t and the observation x.

- if t is continuous it is a regression
- if t is discrete it is a classification

Deep learning introduction Typical recognition Algorithm

Typical recognition Algorithm

Standard procedure

- Feature transform: problem-dependent, hand-crafted, transforms image into a form useful for classification
- Classification: generic, trained, takes feature vector and produces decision

Linear Regression

2 Typical recognition Algorithm

3 Neural Network

- 4 Convolutional Neural Network
- 5 Transformer architecture
- 6 Training a neural network

Regularization

8 Examples of applications of classical CNN

Deep learning introduction Neural Network Perceptron

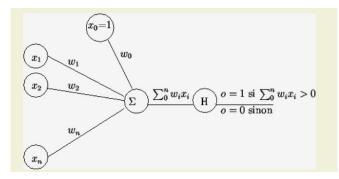
History of Deep learning

Deep Learning is a long story. It all started with the Perceptron:

Deep learning introduction Neural Network Perceptron

Perceptron algorithm

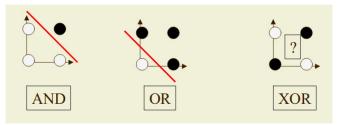
Deep Learning is a long story. It all started with perceptron:



Deep learning introduction Neural Network Perceptron

Perceptron algorithm

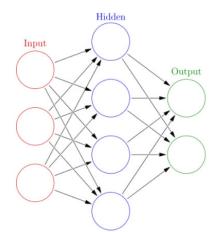
The issue is the XOR. How to solve it?



neural network

(Artificial) neural networks are approaches which attempt to find a mathematical representation of how our biological system processes information.

Let us start with the following simple neural network:



The Neural Network

In regression, the optimization problem was modeled by:

$$f(\omega, x_i) = \omega_0 + \sum_{j=1}^{D} \omega_j x_{i,j}.$$
 (5)

Here we will build a first neuron denoted c_k with $k \in [1, K_1]$ (in this example $K_1 = 4$ and D = 3):

$$c_k = \omega_{0,k}^{(1)} + \sum_{j=1}^D \omega_{j,k}^{(1)} v_{i,j}.$$
 (6)

each c_k is a neuron of the first layer. The superscript (1) indicates that these parameters are the parameters of the first hidden layer. Then, a nonlinear activation function a is applied on these quantities c_k :

$$z_k = a^{(1)}(c_k).$$
 (7)

with $k \in [1, K_1]$.

The Neural Network

We can choose different kinds of activation functions, typically:

- A sigmoid function $a(x) = \frac{1}{1+e^{-x}}$;
- a(x) = tanh(x);
- Rectified Linear Unit (ReLU): $a(x) = \begin{cases} 0 & \text{if } x < 0 \\ x & \text{if } x \ge 0 \end{cases}$.

We have now the K_1 first neurons $c_1, c_2, \ldots, c_{K_1}$ (according to the example $K_1 = 4$).

Thanks to activation functions the neural network acts like human neurons. Moreover, the activation functions allow the neural network to approximate any functions.

The Neural Network

On the output of the first layer, a second linear combination is applied:

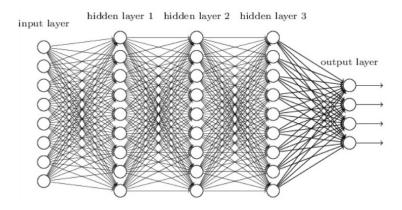
$$d_k = \omega_{0,k}^{(2)} + \sum_{k_1=1}^{K_1} \omega_{k_1,k}^{(2)} z_{k_1}.$$
(8)

with $k \in [1, K_2]$ (on this example $K_2 = 2$). In this example, d_1 and d_2 are the outputs of the CNN. To summarize, the output is equal to :

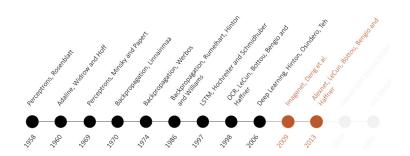
$$d_{k} = \omega_{0,k}^{(2)} + \sum_{k_{1}=1}^{K_{1}} \omega_{k_{1},k}^{(2)} a^{(1)} (\omega_{0,k_{1}}^{(1)} + \sum_{j=1}^{D} \omega_{j,k_{1}}^{(1)} v_{i,j}).$$
(9)

In addition we can add multiple layers. So the function represented by the neural network can be really complicated.

Neural network deeper



Story of Neural network



Linear Regression

- 2 Typical recognition Algorithm
- 3 Neural Network
- 4 Convolutional Neural Network
- 5 Transformer architecture
- 6 Training a neural network

Regularization

8 Examples of applications of classical CNN

Deep learning introduction Convolutional Neural Network 1D convolution

1D convolution

For real functions f, g defined on the set \mathbb{Z} of integers, the discrete convolution of f and g is given by:

$$(f * g)[n] = \sum_{m=-\infty}^{\infty} f[m]g[n-m]$$
(10)

or equivalently (see commutativity) by:

$$(f * g)[n] = \sum_{m=-\infty}^{\infty} f[n-m]g[m].$$
(11)

when g and f have finite supports; g in the set $\{-M, -M+1, \ldots, M-1, M\}$ and f in $\{0, 1, \ldots, N-1, N\}$ a finite summation is used:

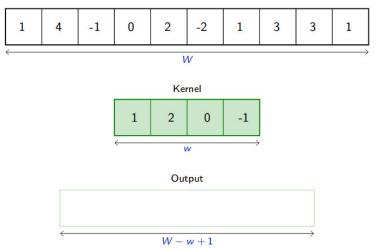
$$(f * g)[n] = \sum_{m=-M}^{M} f[n-m]g[m] \ \forall n \in [M, N-M]$$
(12)

with $M \leq N$

Deep learning introduction Convolutional Neural Network 1D convolution

Example 1D convolution for deep learning¹

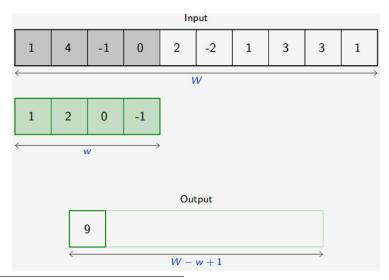
Be careful, this is the cross-correlation.



¹Credits: Francois Fleuret

1D convolution

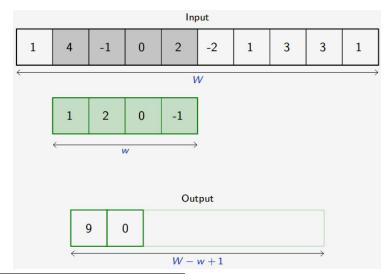
Example 1D convolution for deep learning²



²Credits: Francois Fleuret

1D convolution

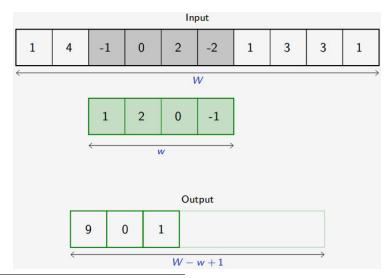
Example 1D convolution for deep learning³



³Credits: Francois Fleuret

1D convolution

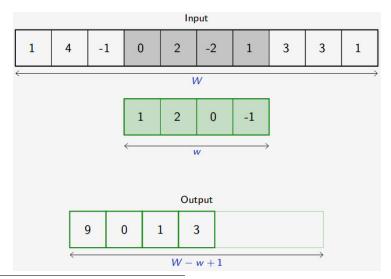
Example 1D convolution for deep learning⁴



⁴Credits: Francois Fleuret

1D convolution

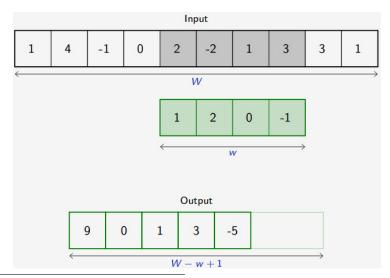
Example 1D convolution for deep learning⁵



⁵Credits: Francois Fleuret

1D convolution

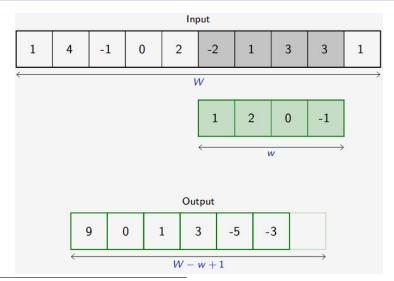
Example 1D convolution for deep learning⁶



⁶Credits: Francois Fleuret

1D convolution

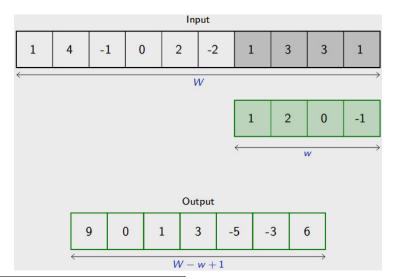
Example 1D convolution for deep learning⁷



⁷Credits: Francois Fleuret

1D convolution

Example 1D convolution for deep learning⁸



⁸Credits: Francois Fleuret

2D convolution

Similarly to the 1D case, let us define two functions f, g. g is a function of two variables defined in the set $\{-M, -M + 1, \ldots, M - 1, M\}^2$ and f in $\{0, 1, \ldots, N - 1, N\}^2$ We can define the 2D convolution for all $(n_1, n_2) \in [M, N - M]^2$

$$(f * g)[n_1, n_2] = \sum_{m_1 = -M}^{M} \sum_{m_2 = -M}^{M} f[n_1 - m_1, n_2 - m_2]g[m_1, m_2] \quad (13)$$

However, color images are discrete functions of two variables with values in $\mathbb{R}^3.$

$$(f * g)[n_1, n_2] = \sum_{k=0}^{3} \sum_{m_1=-M}^{M} \sum_{m_2=-M}^{M} f[n_1 - m_1, n_2 - m_2, k]g[m_1, m_2, k]$$
(14)

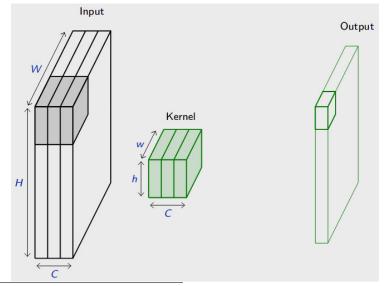
2D convolution

We note that in deep learning, we do not use the convolution but the cross-correlation, and we call it the convolution.

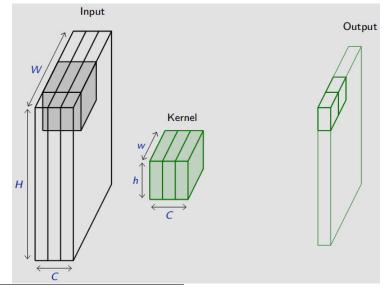
Here is the definition of the convolution used in most of the deep learning libraries:

$$(f * g)[n_1, n_2] = \sum_{k=0}^{3} \sum_{m_1=-M}^{M} \sum_{m_2=-M}^{M} f[n_1 + m_1, n_2 + m_2, k]g[m_1, m_2, k].$$
(15)

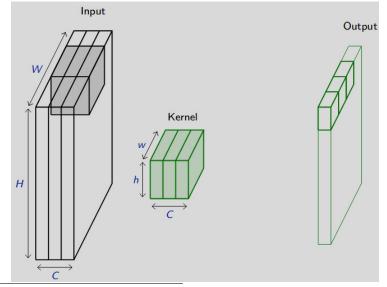
Example 2D convolution⁹



Example 2D convolution¹⁰

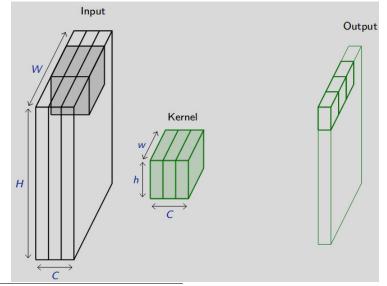


Example 2D convolution¹¹



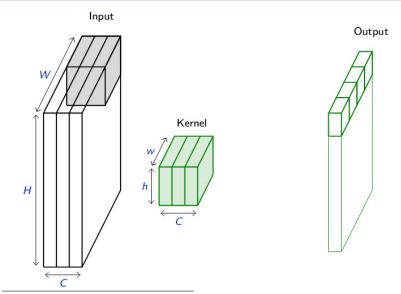
¹¹Credits: Francois Fleuret

Example 2D convolution¹²



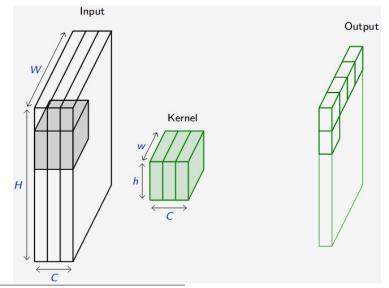
¹²Credits: Francois Fleuret

Example 2D convolution¹³

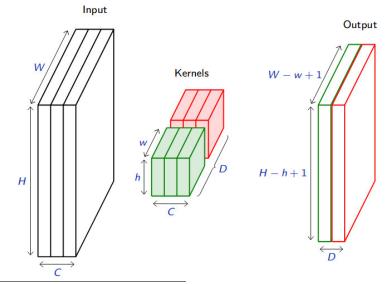


¹³Credits: Francois Fleuret

Example 2D convolution¹⁴



Example 2D convolution¹⁵



¹⁵Credits: Francois Fleuret

2D convolution

- Let f ∈ ℝ^Cin^{×H×W} be an image. it is a 3D tensor called the input feature map.
- Let u ∈ ℝ^Cout^{×C}in^{×h×w} be a kernel across the input feature map, along its height and width. The size h × w is the size of the receptive field.
- The final output o is a 3D tensor of size $C_{out} \times (H_{out}) \times (W_{out})$ called the output **feature map**

$$o[C_{\text{out},j}] = \text{bias}[C_{\text{out},j}] + \sum_{k=0}^{C_{\text{in}}} \sum_{n=0}^{h-1} \sum_{m=0}^{w-1} f[k, n+j, m+i] u[C_{\text{out},j}, k, n, m]$$
(16)

 $C_{\mathsf{out}} \times (H - h + 1) \times (W - w + 1)$

2D convolution

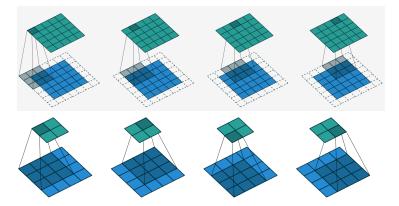
The output **feature map** size $C_{out} \times (H_{out}) \times (W_{out})$ depends on :

- The padding which specifies number of zeros concatenated at the beginning and at the end of an axis
- The stride which specifies a step size when moving the kernel across the signal.
- The dilation which modulates the expansion of the filter without adding weights.

$$\begin{split} \mathcal{H}_{out} &= \left\lfloor \frac{\mathcal{H}_{in} + 2 \times \mathsf{padding}[0] - \mathsf{dilation}[0] \times (h-1) - 1}{\mathsf{stride}[0]} + 1 \right\rfloor \\ \mathcal{W}_{out} &= \left\lfloor \frac{\mathcal{W}_{in} + 2 \times \mathsf{padding}[1] - \mathsf{dilation}[1] \times (w-1) - 1}{\mathsf{stride}[1]} + 1 \right\rfloor \end{split}$$

2D convolution¹⁶

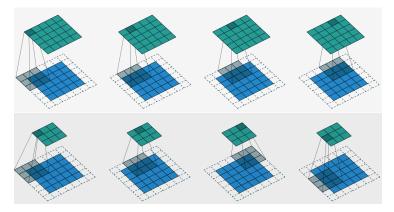
Padding is useful to control the spatial dimension of the feature map, for example to keep it constant across layers.



¹⁶Credits: https://arxiv.org/pdf/1603.07285.pdf

2D convolution¹⁷

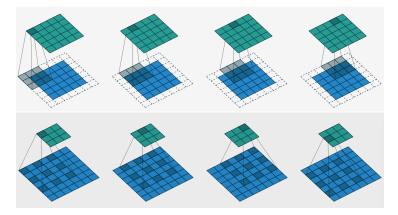
Stride is useful to reduce the spatial dimension of the feature map by a constant factor.



¹⁷Credits: https://arxiv.org/pdf/1603.07285.pdf

2D convolution¹⁸

The **dilation** modulates the expansion of the kernel. Having a dilation coefficient greater than one increases the units receptive field size without increasing the number of parameters.



¹⁸Credits: https://arxiv.org/pdf/1603.07285.pdf

Convolutions as matrix multiplications

As a guiding example, let us consider the convolution of single-channel tensors $x\in\mathbb{R}^{4\times4}$ and $u\in\mathbb{R}^{3\times3}$:

$$\mathbf{x} \circledast \mathbf{u} = \begin{pmatrix} 4 & 5 & 8 & 7 \\ 1 & 8 & 8 & 8 \\ 3 & 6 & 6 & 4 \\ 6 & 5 & 7 & 8 \end{pmatrix} \circledast \begin{pmatrix} 1 & 4 & 1 \\ 1 & 4 & 3 \\ 3 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 122 & 148 \\ 126 & 134 \end{pmatrix}$$

Convolutions as matrix multiplications

The convolution operation can be equivalently re-expressed as a single matrix multiplication:

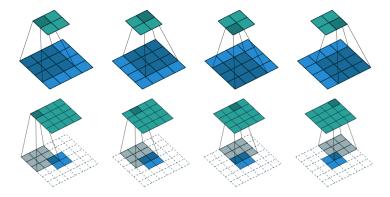
the convolutional kernel u is rearranged as a sparse Toeplitz circulant matrix, called the convolution matrix:

$$\mathsf{U} = \begin{pmatrix} 1 \ 4 \ 1 \ 0 \ 1 \ 4 \ 3 \ 0 \ 3 \ 3 \ 1 \ 0 \ 0 \ 0 \ 0 \\ 0 \ 1 \ 4 \ 1 \ 0 \ 1 \ 4 \ 3 \ 0 \ 3 \ 3 \ 1 \ 0 \ 0 \ 0 \\ 0 \ 0 \ 0 \ 1 \ 4 \ 1 \ 0 \ 1 \ 4 \ 3 \ 0 \ 3 \ 3 \ 1 \ 0 \\ 0 \ 0 \ 0 \ 0 \ 1 \ 4 \ 1 \ 0 \ 1 \ 4 \ 3 \ 0 \ 3 \ 3 \ 1 \ \end{pmatrix}$$

the input x is flattened row by row, from top to bottom: $x = (4 5 8 7 1 8 8 8 3 6 6 4 6 5 7 8)^{T}$ Then, $v(x) = (122 \quad 148 \quad 126 \quad 134)^{T}$ which we can reshape to a 2 × 2 matrix to obtain x \circledast u.

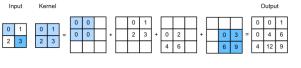
Transposed convolution ¹⁹

The need for **transposed convolutions** generally arises from the desire to use atransformation going in the opposite direction of a normal convolution, This operationis known as **deconvolution**.



¹⁹Credits: https://arxiv.org/pdf/1603.07285.pdf

Transposed convolution ²⁰



²⁰Credits: http://d2l.ai/ and https://distill.pub/2016/deconv-checkerboard/

initialization of the 2D convolution

A convolutional neural network (CNN) uses different types of layers:

- Convolution layer
- Activation layer
- Pooling layer
- Fully connected layer

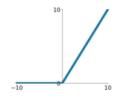
We already saw the Convolution and Fully connected layers.

Activation function layer

Every activation function (or non-linearity) takes a single number and performs a certain fixed mathematical operation on it. There are several activation functions you may encounter. In practice, the most used is the RELU.

$$f(x) = \max(0, x) \tag{17}$$

Activation Functions



ReLU (Rectified Linear Unit)

Pooling layer

Consider a pooling area of size $h \times w$ and a 3D input tensor $x \in \mathbb{R}^{C \times (rh) \times (sw)}$.

Max-pooling produces a tensor $o \in \mathbb{R}^{C \times r \times s}$ such that

$$o_{c,j,i} = \max_{n < h,m < w} x[c, j+n, i+m]$$

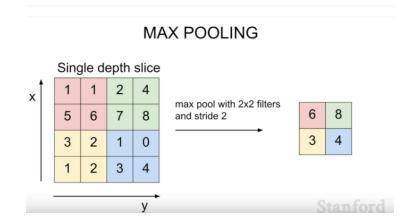
Average pooling produces a tensor $o \in \mathbb{R}^{C \times r \times s}$ such that

$$o_{c,j,i} = \frac{1}{hw} \sum_{n=0}^{h-1} \sum_{m=0}^{w-1} x[c, j+n, i+m]$$

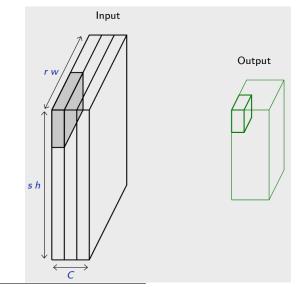
Pooling is very similar in its formulation to convolution.

Pooling layer

A common pooling layer : the max pooling (or the average pooling). Max pooling is a discretization process. The goal of the pooling is to concentrate the information in a down-sampled input representation.

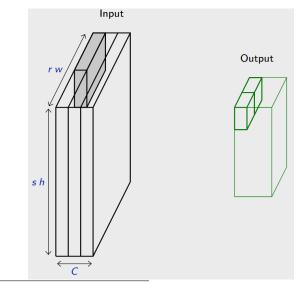


Example 2D pooling²¹



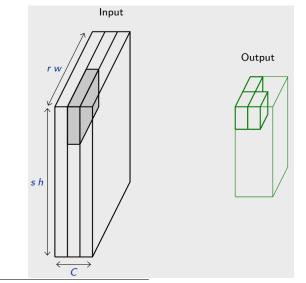
²¹Credits: Francois Fleuret

Example 2D pooling²²



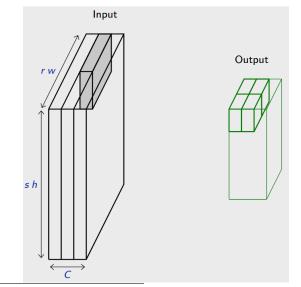
²²Credits: Francois Fleuret

Example 2D pooling²³



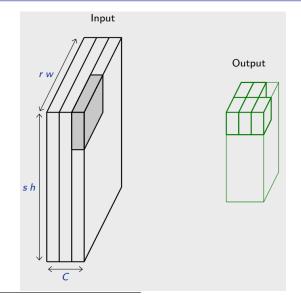
²³Credits: Francois Fleuret

Example 2D pooling²⁴

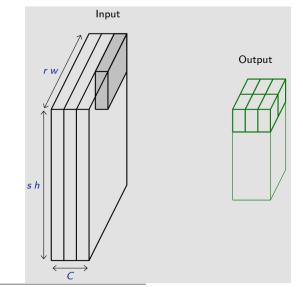


²⁴Credits: Francois Fleuret

Example 2D pooling²⁵

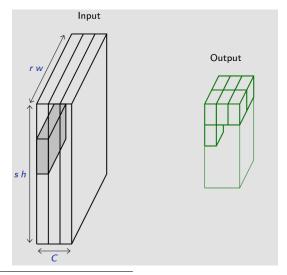


Example 2D pooling²⁶



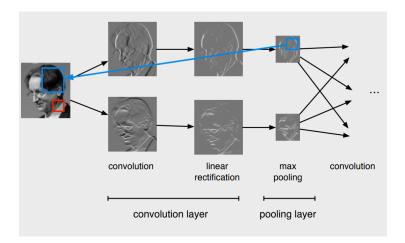
²⁶Credits: Francois Fleuret

Example 2D pooling²⁷

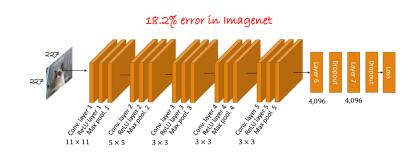


²⁷Credits: Francois Fleuret

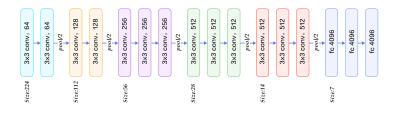
CNN : architecture



Example of CNN : AlexNet

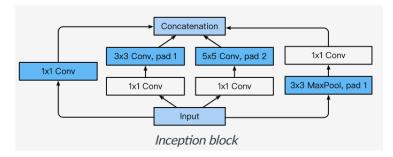


Example of CNN : VGG



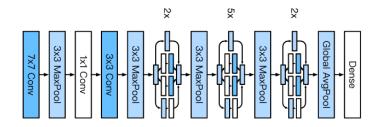
Example of CNN : GoogLeNet ²⁸

Each inception block is itself defined as a convolutional network with 4 parallel paths.



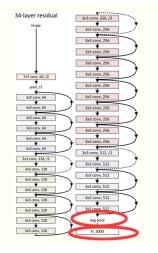
²⁸Credits: Dive Into Deep Learning, 2020.

Example of CNN : GoogLeNet ²⁹



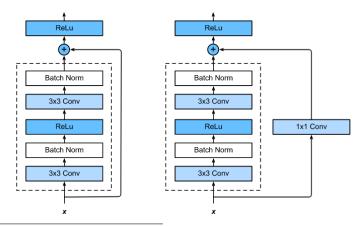
²⁹Credits: Dive Into Deep Learning, 2020.

Example of CNN : resnet 34



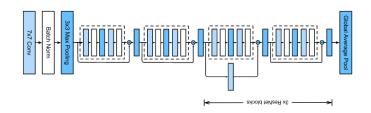
Example of CNN : resnet ³⁰

Training networks of this depth is made possible because of the skip connections in the residual blocks. They allow the gradients to shortcut the layers and pass through without vanishing.



³⁰Credits: Dive Into Deep Learning, 2020.

Example of CNN : resnet ³¹

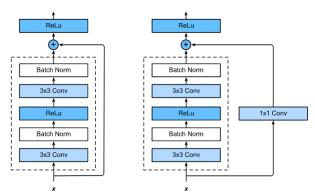


³¹Credits: Dive Into Deep Learning, 2020.

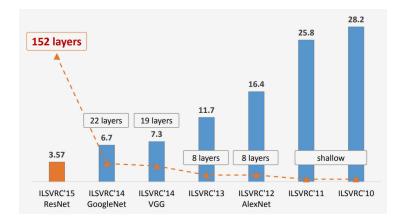
CNN

Some observations:

- The first layers appear to encode direction and color.
- The direction and color filters get combined into grid and spot textures.
- These textures gradually get combined into increasingly complex patterns.



Evolution of CNN ³²



³²Credits: Gilles Louppe

Inside a CNN ³³

AlexNet's first convolutional layer, first 20 filters.

³³Credits: Gilles Louppe

Inside a CNN ³⁴

VGG-16, convolutional layer 1-1, a few of the 64 filters

³⁴Credits: Gilles Louppe

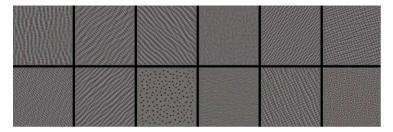
Inside a CNN ³⁵

VGG-16, convolutional layer 2-1, a few of the 128 filters

³⁵Credits: Gilles Louppe

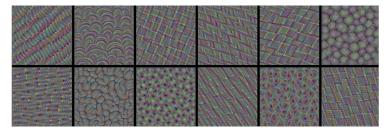
Inside a CNN ³⁶

VGG-16, convolutional layer 3-1, a few of the 256 filters



Inside a CNN ³⁷

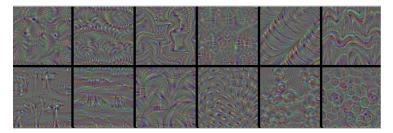
VGG-16, convolutional layer 4-1, a few of the 512 filters



³⁷Credits: Gilles Louppe

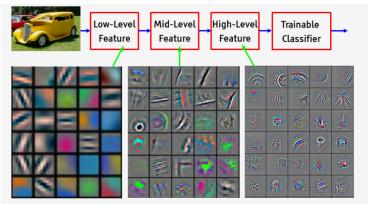
Inside a CNN ³⁸

VGG-16, convolutional layer 5-1, a few of the 512 filters



³⁸Credits: Gilles Louppe

Inside a CNN ³⁹



Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

³⁹Credits: Gilles Louppe

Attention layer 40

Transformer layers were invented for Natural Language Processing. Yet, it is more and more use in computer vision.

⁴⁰Credits: Jay Alammar

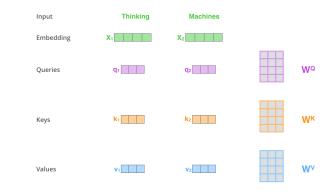
Attention layer ⁴¹

First, you need to represent each word by a representation. There are nice tools to do that. You can use the word2vec embedding.

⁴¹Credits: Jay Alammar

Attention layer 42

The core component in the transformer architecture is the attention layer, or called attention for simplicity. An input of the attention layer is called a **query**. For a query, the attention layer returns the output based on its memory, which is a set of **key-value** pairs.



⁴²Credits: Jay Alammar

Attention layer 43

Let us consider that we have a **querry** q, a set of **keys** $\{k_i\}_i$, and a set of **values** $\{v_i\}_i$. To compute the output, we first assume there is a score function α which measure the similarity between the query and a key. Then we compute all n scores a_1, \ldots, a_n defined by

 $ai = \alpha(q, ki).$

Next we use softmax to obtain the attention weights

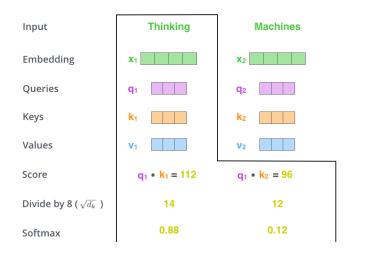
$$b_1,\ldots,b_n = softmax(a_1,\ldots,a_n).$$

The final output is a weighted sum of the values

$$o=\sum_i b_i v_i.$$

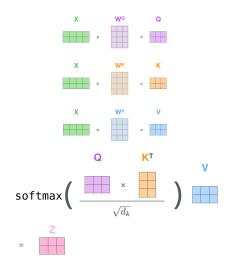
⁴³Credits: d2l.ai

Transformer layer 44



⁴⁴Credits: Jay Alammar

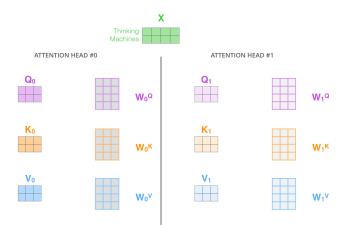
Attention layer 45



⁴⁵Credits: Jay Alammar

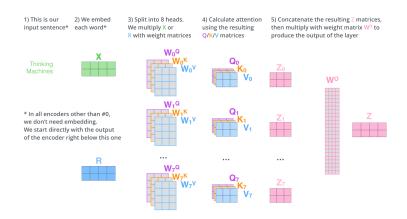
Attention layer ⁴⁶

In NLP we do not apply just one attention layer, but mutliple one.

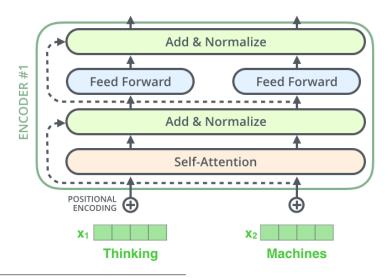


⁴⁶Credits: Jay Alammar

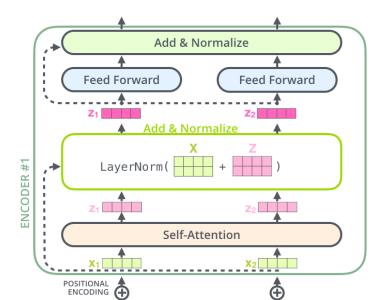
multi-headed Self-Attention layer 47



multi-headed Self-Attention layer 48



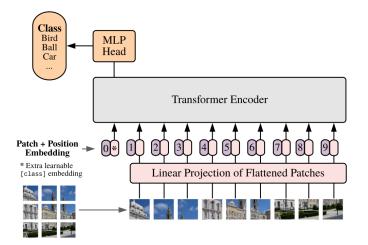
multi-headed Self-Attention layer 49



92/141

Deep learning introduction Transformer architecture Attention in Computer Vision (VIT)

VIT ⁵⁰



⁵⁰https://arxiv.org/pdf/2010.11929.pdf

Linear Regression

- 2 Typical recognition Algorithm
- 3 Neural Network
- 4 Convolutional Neural Network
- 5 Transformer architecture
- 6 Training a neural network

7 Regularization

8 Examples of applications of classical CNN

Optimization

We have a set of data $\{x_i, t_i\}_{i=1}^{N_1}$:

$$\mathcal{F}(\omega) = \frac{\beta}{2} \sum_{i=1}^{N_{\mathbf{1}}} \|f(\omega, x_i) - t_i\|^2.$$
(18)

Now ω stands for all the weights and biases of the CNN and $f(\omega, x_i)$ is the result of the CNN with the weights and biases ω applied on x_i . Finding the optimal ω that minimizes \mathcal{F} is complicated. There are different techniques:

- genetic optimization (Neuro evolution, markov chain,...)
- stochastic gradient descent

Basic of deep learning optimization

Let us start with the previous problem:

$$\min_{\omega} \mathcal{F}(\omega)$$
, with $\mathcal{F}(\omega) = \sum_{i=1}^{N_1} \|f(\omega, x_i) - t_i\|^2$ (19)

How can we proceed? A simple algorithm called gradient descent consists in the following, after having checked that \mathcal{F} is convex ($\mathcal{F}''(\omega) > 0$) and is of class C1.

First we initialize ω_0 .

Then, at each iteration we calculate:

$$\omega_{t+1} = \omega_t - \lambda \frac{\partial \mathcal{F}}{\partial \omega} \tag{20}$$

 $\lambda > 0$ is a parameter that modulates the correction (when λ is too low, slow convergence, when λ is too high, there are oscillations)

Basic of deep learning optimization

Why does it work? We remind the derivative of a function:

$$\frac{\partial g}{\partial x} = \lim_{h \to 0} \frac{g(x+h) - g(x)}{h}$$
(21)

For simplicity, we consider for h really small :

$$\frac{\partial g}{\partial x} \simeq \frac{g(x+h) - g(x)}{h} \tag{22}$$

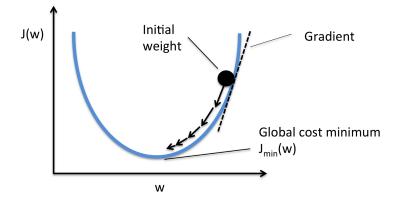
Now let us consider that $h = -\lambda \frac{\partial g}{\partial x}$. Then have

$$g(x+h) - g(x) \simeq -\lambda \times (\frac{\partial g}{\partial x})^2$$
 (23)

Since $\lambda > 0$, then

$$g(x+h) < g(x) \tag{24}$$

Basic of deep learning optimization



Basic of deep learning optimization

Now let us focus on $\frac{\partial \mathcal{F}}{\partial \omega}$. This term is

$$\frac{\partial \mathcal{F}}{\partial \omega} = \frac{\partial}{\partial \omega} \sum_{i=1}^{N_{\mathbf{1}}} (f(\omega, x_i) - y_i)^t (f(\omega, x_i) - y_i)$$
(25)

$$\frac{\partial \mathcal{F}}{\partial \omega} = \frac{\partial}{\partial \omega} \sum_{i=1}^{N_1} \left(f(\omega, x_i)^t f(\omega, x_i) - 2y_i^t f(\omega, x_i) + y_i^t y_i \right)$$
(26)

$$\frac{\partial \mathcal{F}}{\partial \omega} = \sum_{i=1}^{N_{\mathbf{1}}} \left(\frac{\partial}{\partial \omega} f(\omega, x_i)^t f(\omega, x_i) - \frac{\partial}{\partial \omega} 2y_i^t f(\omega, x_i) \right)$$
(27)

Now let us consider that N_1 is really big (about a billion), this might take ages to sum all the gradients over N_1 and over all the parameters w and to iterate it one million times.

Stochastic gradient descent

Now let us focus on $\frac{\partial \mathcal{F}}{\partial \omega}$. This term is

$$\frac{\partial \mathcal{F}}{\partial \omega} \simeq \frac{\partial}{\partial \omega} \sum_{i \in B_j} \|f(\omega, x_i) - y_i\|^2$$
(28)

With B_j a sample of the dataset.

One dataset B_j might not be representative of the full dataset so we take all the possible B_j

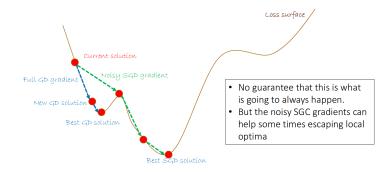
Hence at each iteration we calculate

$$\omega_{t+1} = \omega_t - \lambda \frac{\partial \mathcal{F}_j}{\partial \omega} \tag{29}$$

with

$$\frac{\partial \mathcal{F}_j}{\partial \omega} = \frac{\partial}{\partial \omega} \sum_{i \in B_j} \|f(\omega, x_i) - y_i\|^2$$
(30)

Stochastic gradient descent



stochastic gradient descent with momentum

The stochastic gradient descent

First, we initialized the parameters ω_0 . Then, at each iteration we calculate

$$\omega_{t+1} = \omega_t - \lambda \frac{\partial \mathcal{F}_j}{\partial w} \tag{31}$$

The stochastic gradient descent with momentum

First, we initialized the parameters ω_0 . Then, at each iteration we calculate

$$u_{t+1} = \gamma u_t + \lambda \frac{\partial \mathcal{F}_j}{\partial \omega} \tag{32}$$

$$\omega_{t+1} = \omega_t - u_{t+1} \tag{33}$$

the term u_{t+1} allow us to stabilize the gradient descent. $\gamma \ge 0$ is the momentum parameter. This parameter add inertia in the choice of the step direction.

Adam algorithm

The Adam algorithm uses moving averages of each coordinate. The update rule is:

The Adam algorithm	
$m_{t+1} = eta_1 m_t + (1-eta_1) rac{\partial \mathcal{F}_j}{\partial \omega}$	(34)
$\hat{m_{t+1}} = \frac{m_{t+1}}{1-\beta_1}$	(35)
$m{v}_{t+1}=eta_2m{v}_t+(1-eta_2)(rac{\partial\mathcal{F}_j}{\partial\omega})^2$	(36)
$\hat{v_{t+1}} = \frac{v_{t+1}}{1-\beta_2}$	(37)
$\omega_{t+1} = \omega_t - rac{\lambda}{\sqrt{v_{t+1}^2} + \epsilon} \hat{m_{t+1}}$	(38)

This is a mix with momentum and having a special learning rate for each parameter w. There are 3 parameters: λ , β_1 , β_2 .

Chain rule

The chain rule states that $(f \circ g)' = (f' \circ g)g'$. Let us have a look at functions of two variables.

- let $f : \mathbb{R}^n \to \mathbb{R}$ be a differentiable function,
- let $g: \mathbb{R}^p \to \mathbb{R}^n$ be a differentiable function,
- let $h = (f \circ g)$ be a differentiable function,

h is differentiable and $h' = (f' \circ g)g'$

$$h' = \begin{pmatrix} \frac{\partial h}{\partial x_1} & \frac{\partial h}{\partial x_2} & \dots & \frac{\partial h}{\partial x_p} \end{pmatrix}$$

Chain rule

h is differentiable and $h' = (f' \circ g)g'$

$$h' = \begin{pmatrix} \frac{\partial h}{\partial x_1} & \frac{\partial h}{\partial x_2} & \cdots & \frac{\partial h}{\partial x_p} \end{pmatrix}$$

$$g' = \begin{pmatrix} \frac{\partial g_1}{\partial x_1} & \frac{\partial g_1}{\partial x_2} & \cdots & \frac{\partial g_1}{\partial x_p} \\ \frac{\partial g_2}{\partial x_1} & \frac{\partial g_1}{\partial x_2} & \cdots & \frac{\partial g_2}{\partial x_p} \\ \vdots & & & \vdots \\ \frac{\partial g_n}{\partial x_1} & \frac{\partial g_n}{\partial x_2} & \cdots & \frac{\partial g_n}{\partial x_p} \end{pmatrix}$$
$$f'(g) = \begin{pmatrix} \frac{\partial f}{\partial g_1} & \frac{\partial h}{\partial g_2} & \cdots & \frac{\partial f}{\partial g_n} \end{pmatrix}$$

Chain rule

h is differentiable and $h' = (f' \circ g)g'$

$$h' = \begin{pmatrix} \frac{\partial h}{\partial x_1} & \frac{\partial h}{\partial x_2} & \cdots & \frac{\partial h}{\partial x_p} \end{pmatrix}$$

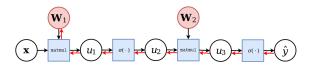
$$h' = \begin{pmatrix} \frac{\partial f}{\partial g_1} & \frac{\partial h}{\partial g_2} & \dots & \frac{\partial f}{\partial g_n} \end{pmatrix} \times \begin{pmatrix} \frac{\partial g_1}{\partial x_1} & \frac{\partial g_1}{\partial x_2} & \dots & \frac{\partial g_1}{\partial x_p} \\ \frac{\partial g_2}{\partial x_1} & \frac{\partial g_1}{\partial x_2} & \dots & \frac{\partial g_2}{\partial x_p} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial g_n}{\partial x_1} & \frac{\partial g_n}{\partial x_2} & \dots & \frac{\partial g_n}{\partial x_n} \end{pmatrix}$$

Hence, the chain rule results is:

Chain rule

Let us consider a simplified 2-layer MLP and the following loss function:
$$\begin{split} f(\mathsf{x};\mathsf{W}_1,\mathsf{W}_2) &= \sigma \left(\mathsf{W}_2^{\mathsf{T}}\sigma \left(\mathsf{W}_1^{\mathsf{T}}\mathsf{x}\right)\right) \\ \ell(y,\hat{y};\mathsf{W}_1,\mathsf{W}_2) &= \mathsf{cross_ent}(y,\hat{y}) \end{split}$$

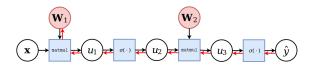
Chain rule⁵¹



Let us zoom in on the computation of the network output \hat{y} and of its derivative with respect to $\mathsf{W}_1.$

⁵¹Credits: Gilles Louppe

Chain rule⁵²

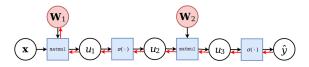


Forward pass: values u_1 , u_2 , u_3 and \hat{y} are computed by traversing the graph from inputs to outputs given x, W_1 and W_2 .

⁵²Credits: Gilles Louppe

Chain rule⁵³

For simplicity let us consider that W₁, W₂, x and \hat{y} are scalar. We replace W₁, W₂ by w₁ and w₂.



Backward pass: by the chain rule we have

$$\frac{\partial \hat{y}}{\partial w_1} = \frac{\partial \hat{y}}{\partial u_3} \frac{\partial u_3}{\partial u_2} \frac{\partial u_2}{\partial u_1} \frac{\partial u_1}{\partial w_1} \\ = \frac{\partial \sigma(u_3)}{\partial u_3} \frac{\partial w_2 \cdot u_2}{\partial u_2} \frac{\partial \sigma(u_1)}{\partial u_1} \frac{\partial w_1 \cdot x}{\partial w_1}$$

⁵³Credits: Gilles Louppe

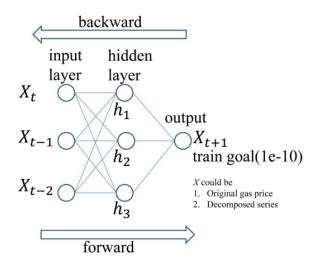
Chain rule⁵⁴

Let us develop the chain rule of $f(x; w_1, w_2, w_3) = \sigma(w_3\sigma(w_2\sigma(w_1x)))$. Let us rewrite the intermediate functions

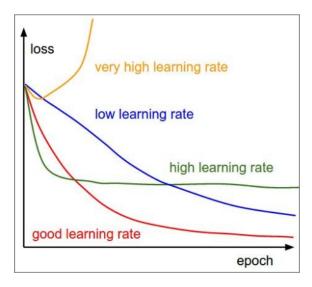
 $U_1 = W_1 X$ $u_2 = \sigma(u_1)$ $u_3 = w_2 u_2$ $u_4 = \sigma(u_3)$ $U_5 = W_3 U_4$ $\hat{y} = \sigma(u_5)$ Now, we can write $\frac{\partial \hat{y}}{\partial w_{\tau}}$ as : $\frac{\partial \hat{y}}{\partial w_1} = \frac{\partial \hat{y}}{\partial u_5} \frac{\partial u_5}{\partial u_4} \frac{\partial u_4}{\partial u_3} \frac{\partial u_3}{\partial u_2} \frac{\partial u_2}{\partial u_1} \frac{\partial u_1}{\partial w_1}$ $=\frac{\partial\sigma(u_5)}{\partial u_5}w_3\frac{\partial\sigma(u_3)}{\partial u_2}w_2\frac{\partial\sigma(u_1)}{\partial u_3}x$

⁵⁴Credits: Gilles Louppe

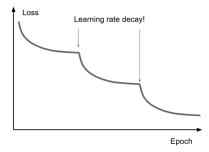
Forward/backward



Which one of these learning rates is best to use?



Which one of these learning rates is best to use?



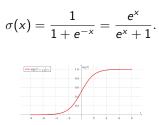
Solution : Learning rate decay over time.

- step decay: a decay learning rate by half every few epochs.
- exponential decay: $\lambda(t) = \lambda_0 imes e^{-kt}$

•
$$1/t$$
 decay: $\lambda(t) = \lambda_0/(1+kt)$

Vanishing gradients

Now let us have a look at the sigmoid function :

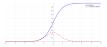


Can you evaluate the derivative?

Vanishing gradients

Now let us have a look at the sigmoid function :

$$\sigma(x) = rac{1}{1+e^{-x}} = rac{e^x}{e^x+1}.$$



Can you evaluate the derivative?

$$\sigma(x)' = \sigma(x)(1 - \sigma(x)).$$

Vanishing gradients

Now let assume that the weights are initialized randomly from a Gaussian with zero-mean and small variance, such that $w_i \in [-1, 1]$ for $i \in [1, 2, 3]$. Then we have:

$$\frac{\mathrm{d}\hat{y}}{\mathrm{d}w_1} = \underbrace{\frac{\partial\sigma(u_5)}{\partial u_5}}_{\leq 1/4} \underbrace{w_3}_{\leq 1} \underbrace{\frac{\partial\sigma(u_3)}{\partial u_3}}_{\leq 1/4} \underbrace{w_2}_{\leq 1} \underbrace{\frac{\partial\sigma(u_1)}{\partial u_1}}_{\leq 1/4} x$$

This implies that the gradient $\frac{d\hat{y}}{dw_1}$ shrinks . A solution use Relu, then fore,

$$\frac{\mathrm{d}\hat{y}}{\mathrm{d}w_1} = \underbrace{\frac{\partial\sigma(u_5)}{\partial u_5}}_{=1} w_3 \underbrace{\frac{\partial\sigma(u_3)}{\partial u_3}}_{=1} w_2 \underbrace{\frac{\partial\sigma(u_1)}{\partial u_1}}_{=1} x_2$$

initialization of neural networks

In convex problems, provided a good learning rate γ , convergence is guaranteed regardless of the initial parameter values. In the non-convex regime, initialization is more important!

initialization of neural networks

A lot of weights have to be initialized. What value can we put? The same value for all the convolution layer is a bad idea because of the weight sharing.

The solution is to use a random initialization, not too small and not too big.

Xavier⁵⁵ initialisation and He ⁵⁶ are the most used in practice since the weights depend on the size of the output/input. They have good properties.

⁵⁵Xavier Glorot and Yoshua Bengio (2010): Understanding the difficulty of training deep feedforward neural networks. International conference on artificial intelligence and statistics.

⁵⁶Kaiming He, etal (2015): Delving Deep into Rectifiers:Surpassing Human-Level Performance on ImageNet Classification

He initialization

Let us consider a deep neural network modelled by:

$$g_k^{(1)} = b_k^{(1)} + \sum_{j=1}^{D_{\mathsf{in}}} \omega_{k,j}^{(1)} x_{i,j} \; orall k \in [1,M_2]$$

$$a_k^{(1)} = a(g_k^{(1)}) \ \forall k \in [1, M_2]$$

a() is a Rectified Linear Unit (ReLU) function:

$$\mathsf{a}(x) = \left\{ egin{array}{cc} 0 & ext{if } x < 0 \ x & ext{if } x \geq 0 \end{array}
ight.$$

Then we have:

$$g_{k1}^{(2)} = b_{k1}^{(2)} + \sum_{k=1}^{M_2} \omega_{k1,k}^{(2)} \cdot a_k^{(1)} \ \forall k1 \in [1, M_3]$$

$$a_{k1}^{(2)} = a(g_{k1}^{(2)}) \ \forall k1 \in [1, M_3]$$

He initialization

$$g(x_i, \omega)_{k2} = b_{k2}^{(3)} + \sum_{k1=1}^{M_3} \omega_{k2,k1}^{(3)} \cdot a_{k1}^{(2)} \ \forall k2 \in [1, D_{\mathsf{out}}]$$

These equations are can be synthesize:

$$g(x_i,\omega)_{k2} = b_{k2}^{(3)} + \sum_{k1=1}^{M_3} \omega_{k2,k1}^{(3)} \cdot a^{(2)} \left(b_{k1}^{(2)} + \sum_{k=1}^{M_2} \omega_{k1,k}^{(2)} \cdot a^{(1)} \left(b_k^{(1)} + \sum_{j=1}^{D_{\text{in}}} \omega_{k,j}^{(1)} x_{i,j} \right) \right)$$

with $k2 \in [1, D_{out}]$. $g(x_i, \omega)$ is a vector that belongs to $\mathbb{R}^{D_{out}}$, for now we will just focus on the element k_2 of this vector. The variance of the deep neural network is :

$$\operatorname{var}_{W}(g(x,W)_{k2}) = \mathbb{E}_{W}\left(g^{2}(x,W)_{k2}\right) - \left(\mathbb{E}_{W}g(x,W)_{k2}\right)^{2} \quad (39)$$

He initialization

By assuming that the elements *i* in $a_i^{(l-1)}$ are also mutually independent and share the same distribution, and that $a_i^{(l-1)}$ and $\omega_{i1,i}^{(l)}$, we have:

$$\operatorname{var}\left(g(x,W)^{(l)}\right) = M_{l}\operatorname{var}\left(\omega^{(l)}a^{(l-1)}\right) \tag{40}$$

Using :

- the variance of the product of independent variables

- $\omega^{(I)}$ have zero mean

Then:

$$\operatorname{var}\left(g(x,W)^{(l)}\right) = M_{l}\operatorname{var}\left(\omega^{(l)}\right)\mathbb{E}\left(\left(a^{(l-1)}\right)^{2}\right) \tag{41}$$

He initialization

we use the fact that $\omega^{(l-1)}$ has a symmetric distribution around zero So

$$\mathbb{E}\left(\left(a^{(l-1)}\right)^2\right) = 1/2\mathsf{var}\left(g(x,W)^{(l-1)}\right) \tag{42}$$

Then we have:

$$\operatorname{var}\left(g(x,W)^{(l)}\right) = M_l/2\operatorname{var}\left(\omega^{(l)}\right)\operatorname{var}\left(g(x,W)^{(l-1)}\right) \tag{43}$$

With L layers put together, we have

$$\operatorname{var}\left(g(x,W)^{(L)}\right) = \operatorname{var}\left(x\right)\prod_{l=2}^{L}\left(M_l/2\operatorname{var}\left(\omega^{(l)}\right)\right) \tag{44}$$

He initialization

A good **initialization** method should avoid **reducing** or **magnifying** the magnitudes of input signals exponentially. So we want : $\forall l \in [1, L] \ M_l/2 \text{var} (\omega^{(l)}) = 1$

$$\forall l \in [1, L] \text{ var } \left(\omega^{(l)}\right) = \frac{2}{M_l} \text{ and } \mathbb{E}\left(\omega^{(l)}\right) = 0$$
 (45)

Linear Regression

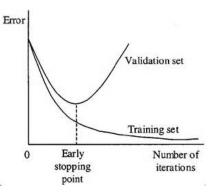
- 2 Typical recognition Algorithm
- 3 Neural Network
- 4 Convolutional Neural Network
- 5 Transformer architecture
- 6 Training a neural network

Regularization

8 Examples of applications of classical CNN

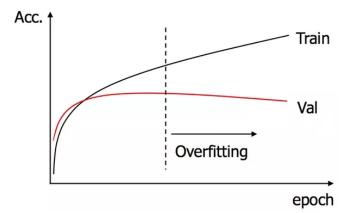
Regularization

We remind you that you have two sets: a training set $\{(x_i, t_i)\}_{i=1}^{N_1}$ and the validation set $\{(x_i, t_i)\}_{i=1}^{N_2}$. What is the utility of these two sets? What can we deduce from these curbs?



Deep learning introduction Regularization

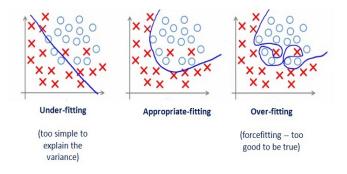
Regularization



Regularization

Overfitting

- Training too much on training set limits generalization
- Important to keep an eye on validation error
- Stop learning if validation error increase



Solution : regularization

You can use weight decay :

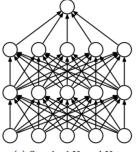
$$\mathcal{L}(\omega) = \mathcal{F}_{\mathsf{data}}(\omega) + \frac{\lambda_2}{2} \|\omega\|^2$$
(46)

Then during the gradient descent we have

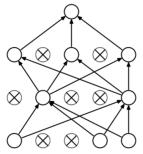
$$\frac{\partial \mathcal{F}}{\partial w}(\omega) = \frac{\partial \mathcal{F}_{\mathsf{data}}}{\partial w}(\omega) + \lambda_2 w \tag{47}$$

Deep learning introduction Regularization

Solution: regularization with dropout



(a) Standard Neural Net



(b) After applying dropout.

Solution: regularization batch normalization

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_1, \dots, m\}$; Parameters to be learned: γ, β **Output:** $\{y_i = BN_{\gamma,\beta}(x_i)\}$ $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$ // mini-batch mean $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$ // mini-batch variance $\widehat{x}_i \leftarrow \frac{x_i - \mu \beta}{\sqrt{\sigma_n^2 + \epsilon}}$ // normalize $y_i \leftarrow \gamma \hat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)$ // scale and shift

Algorithm 1: Batch Normalizing Transform, applied to activation *x* over a mini-batch.

Solution: Cross validation

Data sets

- If possible, make 3 sets : training, validation, test
- Use Training for training ...
- Use Validation to check training quality, tune algorithm params
- Use test only to report final performance (hidden in ML competitions)

K-fold Cross validation

- When little data : split dataset in k sets
- Train on k-1, validate on remaning one
- Repeat k times
- Report mean performances

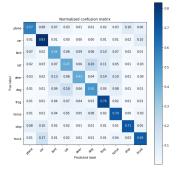
Solution: Reporting performances

Detection performance

- precision, recall
- F1 score : harmonic mean of precision/recall
- mAP

Classification performance

- Accuracy
- Confusion matrix



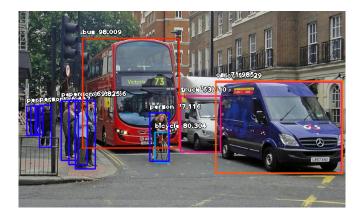
1 Linear Regression

- 2 Typical recognition Algorithm
- 3 Neural Network
- 4 Convolutional Neural Network
- 5 Transformer architecture
- 6 Training a neural network

Regularization

8 Examples of applications of classical CNN

object detection



Style transfer

Segmentation



Sky Building BRoad Sidewalk BFence EVegetation DPole Car ESign EPedestrian Cyclist

Deep dream

Style transfer

Image captioning

a little girl sitting on a bench holding an umbrella.

a herd of sheep grazing on a lush green hillside.

a close up of a fire hydrant on a sidewalk.

a yellow plate topped with meat and broccoli.

a zebra standing next to a zebra in a dirt field.

a stainless steel oven in a kitchen with wood cabinets.

a man riding a bike down a road next to a body of water.

an elephant standing next to rock wall.

two birds sitting on top of a tree branch.

Ganimation

