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Objectives of the lecture

This lecture is an introduction to visual learning through a partial
selection of classi�cation techniques and learning models, that are
useful / popular in computer vision. The aim is to address the
following key concepts:

Dimension reduction of descriptors

"Low dimension" machine learning

Convolutional Neural Networks
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Images and Machine Learning

In computer vision, decision rarely relies on a purely analytical
and imperative approach; it is generally based on prior

knowledge that is represented within the system's memory.

This memory was acquired by the experience (or the training)
undergone by the system before (o�ine learning) and / or
during (online learning) its activation.

The training is carried out from exemplary data for which the
expected decision can be provided (supervised learning) or
absent (unsupervised learning).
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Which decisions in Computer Vision?

Classi�cation Detection = Localisation + Classi�cation

Semantic segmentation Automatic Captioning
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Classi�cation vs Regression

Learning can be modelled as the construction of a function

from an observation space (data extracted from the image) to
a decision space.

The decision space is often discrete and devoid of metrics (set
of . . . classes): we then speak of Classi�cation.

The decision space can sometimes be continuous and
structured (for example an image, in a restoration or
super-resolution problem . . . ), so we speak of Regression.
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Explicit Features...

In a traditional approach, the observation space consists of ad hoc

features extracted from the images by a dedicated processing:
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...or Implicit Features

Since the 2010s, more and more approaches such as Deep
Convolutional Networks apply end-to-end learning, i.e. where the
observation space is the image itself. The features are therefore
learned in the same way as the other levels of representation:
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Principal Component Analysis
K-means

Observation space Reduction

In "low dimension" learning, it is often necessary to reduce the
dimension of features to: (1) Reduce complexity and (2) Limit
redundancy between features.

Principal Component Analysis (PCA): Algebraic approach
of dimension reduction to directions of maximum variance.

Clustering: Metric approach to quantify the number of

features by limiting them to a small number of representatives.
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Principal Component Analysis
K-means

Principal Component Analysis

Let {Xi}i=1...n be a set of n points in
a vector space of dimension d ≥ 2.
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Principal Component Analysis

We are looking for an
one-dimensional optimal

representation of vectors {Xi}, i.e. a
coordinate system (A,u) that
minimises the total error:

e =
n∑

i=1

||Xi − (A + uiu)||

where A is a point and u a unit
vector of the space.
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Principal Component Analysis

The solution is provided by the
coordinate system (G ,u), where
G is the centre of mass (mean),
and u is the principal

component of {Xi}.
u corresponds to the direction

with largest variance of data
{Xi}.
u is given by the eigen vector of
the covariance matrix of the
{Xi} associated to the greatest

eigen value.
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Principal Component Analysis

The process naturally extends to several principal components: if
we denote X the matrix (d × n) composed of all the n observation
vectors {Xi} organised in columns:

X =

X 1
1 X 1

2 . . . X 1
n

...
...

. . .
...

X d
1 X d

2 . . . X d
n

 , et G =
1

n

n∑
i=1

Xi

The (d × d) covariance matrix of the observations writes:

C =
1

n
XXt − GG t
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Principal Component Analysis

PCA Algorithm

Calculate the covariance matrix C = 1
nXX

t − GG t

Calculate and sort the eigen values (λ1, . . . , λn), such that
λ1 > · · · > λn, and their associated eigen vectors
(U1, . . . ,Un).

The k (k << d) �rst eigen vectors {U1, . . . ,Uk} are the
principal components.

The principal components are the theoretical dimensions (i.e
they don't have a physical meaning in general!) that "best
explain" the repartition of the {Xi} in the observation space.

The matrix C is symmetric ⇒, so the principal components
are orthogonal.
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PCA for Face Recognition

32× 32 Learning Images {Xi}

"Mean" Face G

Images from Derek Hoiem,

University of Illinois.
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Principal Component Analysis
K-means

PCA for Face Recognition

Uk

G + 3
√
λkUk

G − 3
√
λkUk

"Eigenfaces for Recognition"

[Turk91]

Images from Derek Hoiem,

University of Illinois.
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Principal Component Analysis
K-means

Clustering: K-means Algorithm

The clustering algorithm K-means performs a partition C of
the observation set {Xi} into K classes Ck (1 ≤ k ≤ K ).

Let Π = {πk} be a set of K prototypes chosen in the
observation space, and representing each one of the classes.

Let d be a distance in the observation space.

The objective is to minimise the following cost function:

JΠ
C =

K∑
k=1

∑
Xi∈Ck

d(Xi , πk)2
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Principal Component Analysis
K-means

Clustering: K-means Algorithm

The objective is to minimise the following cost function:

JΠ
C =

K∑
k=1

∑
Xi∈Ck

d(Xi , πk)2

The solution is trivial in any of those two cases:

If the set of prototypes Π is �xed:
Ck = {Xi ;∀j 6= k , d(Xi , πk) ≤ d(Xi , πj)}

If the partition into classes C is �xed: πk =
1

|Ck |
∑
Xi∈Ck

Xi

Antoine Manzanera Classi�cation and Machine Learning 19 / 101



Introduction
Dimension Reduction and Clustering

Bayesian Learning
Other Supervised Techniques

Convolutional Neural Networks
Conclusion

Principal Component Analysis
K-means

Clustering: K-means Algorithm

K-means is an iterative algorithm that converges to a local
minimum of JΠ

C , by alternatively adjusting C and Π :

K-means Algorithm

Initialisation: A set of K prototypes Π = {πk} is chosen.
Repeat until convergence:

1 Update C : Ck = {Xi ; ∀j 6= k , d(Xi , πk) ≤ d(Xi , πj)}

2 Update Π : πk =
1

|Ck |
∑
Xi∈Ck

Xi
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Principal Component Analysis
K-means

Clustering: K-means Algorithm

[Π](0)

[C](1) [Π](1)

Initialisation is critically
important!

Partition C ↔ Voronoi Diagram

Images: Wikipedia
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Principal Component Analysis
K-means

Clustering: K-means Algorithm

[C](2) [Π](2)

[C](3) [Π](3)

Initialisation is critically
important!

Partition C ↔ Voronoi Diagram

Images: Wikipedia
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Bayesian Classi�cation

The observation data X ,and the classes c are modelled as random
vectors (resp. variables). We denote:

P(X ) and P(c) the prior probabilities.

P(X , c) the joint probability.

P(X/c) the conditional likelihood of data X .

P(c/X ) the posterior probability of class c .

Learning: Build the probability laws from a collection of
labelled data {Xi , c(Xi )}.
Inference: Associate to a test data X its class c?.
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Bayesian Inference

Inference: Associate to a test data X its class c?.

Maximum Likelihood (ML) criterion

c?(X ) = arg max
c

P(X/c)

Bayesian Inference: Maximum a Posteriori (MAP) criterion

c?(X ) = arg max
c

P(c/X )
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Bayesian Learning

Learning: The joint distribution P(X , c), and then the
posterior law, is estimated from the learning data {Xi}.

Indeed P(X , c) = P(X ).P(c/X ) = P(c).P(X/c), and so:

Bayes Theorem

P(c/X ) = P(X/c).P(c)
P(X )

P(c) is the occurrence probability of class c , arbitrarily set, or
empirically estimated from statistics over the learning data.

P(X/c) is provided by statistics over the labelled data (i.e.
whose class is known = supervised learning).
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Bayesian Classi�cation

The MAP criterion then writes:

c?(X ) = arg max
c

P(X/c).P(c)

= arg max
c

logP(X/c)︸ ︷︷ ︸
(Data)

+ logP(c)︸ ︷︷ ︸
(Modèle)

Finally it is the weighting by the a prior law that distinguishes
the MAP from the ML criterion.

The classi�cation model then consists in empirically estimating
P(X/c) from statistics over {Xi}.
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Multivariate Bayesian Model

A simple parametric model of the distribution of P(X/c), like the
Gaussian, is often used:

P(X/c) = fc(X ) =
1√

(2π)d detCc

exp

(
−1
2

(X − Gc)tC−1c (X − Gc)

)
where Gc and Cc are respectively, the mean vector and the
covariance matrix of the learning data labelled at class c .
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Bayesian Classi�cation: Gaussian Models
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Bayesian Classi�cation: Gaussian Models
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Naive Bayesian Model

The naive Bayesian model makes the hypothesis of independence of
the di�erent dimensions of X conditionally to the class c :

P(X/c) = P(x1, . . . , xd/c) =
d∏

j=1

P(xj/c)

and �nally:

c?(X ) = arg max
c

logP(c) +
d∑

j=1

logP(xj/c)

Estimates only scalar distributions, maybe more complex than
unimodal Gaussian (Law mixtures, histograms, . . . ).

May work better than a unimodal multivariate model.
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Nearest Neighbours Classi�cation

In Nearest Neighbours classi�cation
(k-NN), we consider:

a set of labelled points in an
observation space {Xi , c(Xi )},
the class c(Xi ) is provided by
supervision,

d a distance in the observation
space.
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SVM
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1-NN

The 1-NN classi�cation of an unknown vector

X consists in assigning it to the class of its

nearest neighbour among the learning vectors:

c?(X ) = c

(
arg min

Xi

d(X ,Xi )

)
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k-nearest neighbours
SVM
Random Forest

k-NN

The k-NN classi�cation of an unknown vector

X consists in assigning it to the most frequent

class among its k nearest neighbours in the

learning vectors.
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k-nearest neighbours
SVM
Random Forest

Advantages of k-NN

Versatile: can be adapted to ane kind of distribution in the
observation space, without probabilistic prior.

Simple: the model is simply the set of learning vectors and
their classes.

General: it trivially extends to the regression of a function:

f ?(X ) = f

(
arg min

Xi

d(X ,Xi )

)
.
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k-nearest neighbours
SVM
Random Forest

Limitations of k-NN

Memory cost: the model size can be huge.

Computation cost: the complexity of the exhaustive search of
NN linearly depends on the number of data n, and on their
dimension d . The average complexity can be reduced to
O(log n) by using kd-trees:
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k-nearest neighbours
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Limitations of k-NN

Curse of dimensionality: the number of samples needed to
estimate with the same reliability a distribution in the
observation space increases exponentially with the dimension.
The same goes regarding the number of learning examples for
the methods without probabilistic prior like k-NN. Possible
solutions are:

Use a probabilistic model! (cf Section 3).
Reduce the dimension! (cf Section 2).
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Overview of SVMs

Support Vector Machines are a discriminative approach that
builds optimal separation surfaces between two classes in the
observation space, from labelled learning example vectors.

The optimal surface is the one that maximises the separation
margin, i.e. the distance of the nearest vectors from the
surface (= the support vectors):

Small margin Large margin
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Overview of SVMs

Image : Wikipedia

In the linear case the separation surface is a
hyperplane of equation:

X .w − b = 0

w is a vector normal to the hyperplane.

b is proportional to d(P,O), the
distance of the hyperplane to the
origin.
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Overview of SVMs

Image : Wikipedia

X .w − b = 0

w and b are normalised by the margin m
(distance from P to the support vectors) :

||w|| = 1
m

b = d(P,O)
m
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Classi�cation by SVM

Image : Wikipedia

The classi�cation of an unknown
vector X is simply done by comparing
X .w to b:

c?(X ) = sign(X .w − b)

The con�dence of the classi�cation
can be quanti�ed by the absolute value
(= distance from X to the hyperplane,
in "number of margins") :

κ(X ) = |X .w − b|
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Training a SVM

Training a linear SVM on labelled learning data {Xi , c(Xi )}, with
c(Xi ) = +1 or c(Xi ) = −1 is a quadratic optimisation problem
under linear constraints:

min
(w,b)
||w||2 u.c. ∀i , c(Xi )(Xi .w − b) ≥ 1

The support vectors Xs are those which satisfy:

c(Xs)(Xs .w − b) = 1
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Soft Margin SVM

The linear SVM can be extended to the case where the two classes
are not linearly separable, by softening the margin. The following
optimisation can be used:

min
(w,b)

{[
1

n

n∑
i=1

max
(
0, 1− c(Xi )(Xi .w − b)

)]
+ λ||w||2

}
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Non linear SVM

The idea of the non linear SVMs is to transform the observation
space (vectors X ) into a higher dimension space (vectors Φ(X ))
where the vectors would be linearly separable.

Image : Wikipedia
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Non linear SVM

The so-called Kernel trick consists in not calculating explicitly Φ,
but using a non linear real-valued function (kernel) to replace the
dot product: K (X ,Y ) = Φ(X ).Φ(Y ).

Image : Wikipedia
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Conclusion on the SVMs

The SVMs are extremely compact models: one separating
hyperplane (w, b) by SVM.

The classi�cation is extremely fast: one single dot product to
classify a vector between the two classes.

The SVMs are exclusively binary classi�ers. To extend them to
a N-class classi�cation, two approaches are possibles:

1-against-all: N binary classi�ers.

1-against-1: N(N−1)
2

binary classi�ers.
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Random Forests

The principle of Random Forests, (RF) is based on classi�cation by
decision trees:

Figure by Anil K. Jain
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Training of a Random Tree

The learning (creation of a tree) consists in partitioning recursively
the learning set {Xi , c(Xi )} into two subsets, until some stop
criterion, typically related to:

the cardinality of the leaf (i.e. minimal size of the subset,
below which it is no longer considered representative).

the quality of the leaf (e.g. low class entropy of the subset,
meaning that the leaf correctly "isolated" one or more classes).
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Training of a Random Tree

The creation of each node of the tree is made as follows:

randomly draw a large number of binary predicates typically
related to one component of the vectors {Xi} (e.g. "X k

i < t").

evaluate the (provisional) quality of the leaves resulting from
the corresponding partition (e.g. by calculating their class
entropy).

keep the predicate that realises the best quality score.

NB: Note the kinship with kd-trees.
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Classi�cation by RF

The classi�cation by a Random Tree consists in submitting an
unknown vector X to the sequence of predicates met during
the traversal of the tree from the root to a leaf (see kd-trees
and k-NN search).

The histogram of classes represented in the arrival leaf is
interpreted as a probability density for the class of the vector:
P(c/X ).

The process is repeated on many trees of the forest, and the
decisions are combined (majority vote, or average of the
histograms...).
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Classi�cation by RF

Figure by Raghav Aggiwal
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Conclusion on Random Forests

+ Possibility to combine components of very di�erent nature
(continuous or discrete, with or without metrics).

+ Readability ("Explainability") of the model.

+ Speed of classi�cation.

- Large memory cost of the model.

- Performance drop with the increase in the number of training
data, as well as their dimension (i.e. number of features).
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Arti�cial Neural Networks

Image: Wikipedia

1940s: Formal Neuron Model - Hebb's
Rule.

1950-60s: Works on Perceptron.

1980s: Hop�eld's networks,
Boltzmann's machines.

1980s: Multilayers Perceptrons,
Gradient Back-propagation Algorithm.

2010s: Strong Comeback via the Deep
Networks.
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Formal Neuron Model
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Neural Networks

A formal Neural Network is an oriented
graph, where:

The source nodes form the input
vector X , that represents the data, or
is the data itself (end-to-end learning).

The sink nodes form the output vector
Y , which is interpreted as the result of
the classi�cation or regression.
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Neural Networks

The architecture (i.e. the graph), and
the activation functions are generally
de�ned a priori and static.

The weights of the connexions W (and
the bias values b) are adaptive and
modelled by the learning process.
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Convolutional Neural Networks

In a Convolutional Neural Networks (CNN),
a same neuron (i.e. same weight vector and
activation function) is used for all the parts
of the input vector associated to each layer.
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Convolutional Neural Networks

The operation performed between two
layers I and J is then a translation invariant
linear mapping, i.e. a convolution...
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Convolutional Neural Networks

In fact, there are generally several neurons
that are applied this way to each layer,
which corresponds to a convolution �lter
bank...
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Fully Connected Layers

An important special case: when the size of
the weight vectors is the same as the size of
the input vector, this corresponds to a Fully
Connected (FC) Layer.
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CNN: Dimension Reduction Mechanisms

(1) (2)

1 stride: Use of an increased sampling
step while applying the convolution.

2 pooling: Sub-sample the data after
applying a local combination (average,
maximum...) of its values.
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Example of a Convolutional Network
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Supervised Training of a NN

A NN is trained from a learning set {Xi ,Vi} where Xi are the
training data and Vi the expected outputs (Ground Truth).

A loss function L(Y ,V ) ≥ 0 is designed, that measures the
di�erence (error) between the predicted output Y and the
expected output V .

The objective of the training is to minimise the global error

over the training set:
∑
i

L(O(Xi ),Vi ), where O(X ) is the

output predicted by the network on the input X .

Antoine Manzanera Classi�cation and Machine Learning 65 / 101



Introduction
Dimension Reduction and Clustering

Bayesian Learning
Other Supervised Techniques

Convolutional Neural Networks
Conclusion

Introduction
Training a Neural Network
Backpropagation of the Gradient
Learning modes and Hyperparameters
Examples

Supervised Training of a NN (forward)

In the forward pass, the data X is
submitted to the network, and its predicted
output Y is compared to the expected
output V using the loss function L(Y ,V ).
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Forward Propagation

To simplify the notation, all activation functions are assumed equal
to g . wkj denotes the weight of the connection from neuron k to
neuron j . The forward pass is then written:

Forward Propagation Y ← ForwardProp(W ,X )

For all neuron i from the input layer: si = xi .

For all following layer l :

For all neuron j from layer l : sj = g

(∑
k

wkjsk + bj

)
.

For all neuron j from the output layer: yj = sj .
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Example of forward pass

Compute, in parallel:

sf = f
(
w f
1 x1 + w f

2 x2 + w f
3 x3
)

sg = g
(
wg
1 x2 + wg

2 x3
)
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Example of forward pass

Compute, in parallel:

sh = h
(
wh
1 sf + wh

2 sg
)

sk = k
(
wk
1 sf + wk

2 sg
)
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Example of forward pass

sq = q
(
wq
1 sf + wq

2 sg + wq
3 sk
)

y1 = sh

y2 = sq
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Training a NN (backward)

In the backward pass, the computed error L(Y ,V ) is
back-propagated to all the neurons, and the
connexion weights are adjusted, depending on their
contribution to the error:

wij ← wij − ε
∂L
∂wij

where ε is the learning rate.
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E�ective calculus of the contributions

But the contribution to the error of each connection weight ∂L
∂wij

is

only directly computable for the connections to the output layer.
We then use the chain derivation rule to recursively calculate the
weights contributions for the previous layers. Let us �rst de�ne our
notations / conventions:

We denote by wij the weight of the connection from neuron i
to neuron j .

We denote by si the output value of neuron i .

We suppose all activation functions equal to g .

We denote by aj =
∑
i

wijsi + bj the activation value of

neuron j , so that its output is sj = g(aj).
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Recursive calculus of the contributions

The update equation is written:

wij ← wij − ε
∂L
∂wij

By introducing aj , the activation value of neuron j , we get:

∂L
∂wij

=
∂L
∂aj
×

∂aj
∂wij

=
∂L
∂aj
× si ,

since aj =
∑
i

wijsi + bj . On the other hand we have:

∂L
∂aj

=
∂L
∂sj
×
∂sj
∂aj

=
∂L
∂sj
× g ′(aj),

since sj = g(aj).
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Recursive calculus of the contributions

Finally, by developing the impact of the output of neuron j on all
the inputs k of the next layer:

∂L
∂sj

=
∑
k

∂L
∂ak

∂ak
∂sj

=
∑
k

∂L
∂ak

wjk ,

since ak =
∑
j

wjksj + bk . As a conclusion, it is su�cient to know

the error gradient on the last layer to compute it on all the
previous layers by recursivity.
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Calculus for the last layer

Now for the last layer the calculus is straightforward.
Let us assume to simplify a quadratic loss function:

L(Y ,V ) =
1

2
||Y − V ||2.

For the last layer we get sj = yj and then: L =
1

2

∑
j

(sj − vj)
2, we

then get: {
∂L
∂aj

= ∂L
∂sj

∂sj
∂aj

= (sj − vj)× g ′(aj)
∂L
∂wij

= ∂L
∂aj

∂aj
∂wij

= (sj − vj)× g ′(aj)× si
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Updating the biases

The biases need also to be updated:

bj ← bj − ε
∂L
∂bj

It then su�ces to notice that:

∂L
∂bj

=
∂L
∂aj
×
∂aj
∂bj

=
∂L
∂aj

because aj =
∑
i

wijsi + bj

Then on the last layer:

∂L
∂bj

= (sj − vj)× g ′(aj)
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Gradient Backpropagation Algorithm

Finally, the backward pass algorithm is written (for a quadratic loss
function L):

Gradient Backpropagation W ← BackProp(W ,Y ,V )

For all neuron j from the output layer:

compute the error ∆j = (sj − vj)× g ′(aj)

For all previous layer l :
For all neuron i from layer l :

compute the error ∆i =

(∑
k

∆kwik

)
× g ′(ai )

For all connection (i , j) of the network:

update the weight wij ← wij − ε× si ×∆j

update the bias bj ← bj − ε×∆j
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Example of backward pass

Calculate the error on the output
layer, in parallel:

∆h = (y1 − v1)× h′(ah)

∆q = (y2 − v2)× q′(aq)
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Example of backward pass

Intermediate layer:

∆k =
(
∆qw

q
3

)
× k ′(ak)
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Example of backward pass

Input layer, in parallel:

∆f =(
∆hw

h
1 + ∆qw

q
1 + ∆kw

k
1

)
×

f ′(af )

∆g =(
∆hw

h
2 + ∆qw

q
2 + ∆kw

k
2

)
×

g ′(ag )
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Example of backward pass

Finally, update all weights wij , in
parallel:

wij ← wij − εsi∆j
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Learning Algorithm: Stochastic Gradient Descent

SGD W ← Train(W , {Xi ,Vi})
Initialisation: W ← RANDOM(]− η,+η[)

Repeat until convergence (?):
For each learning sample k :

Yk ← ForwardProp(W ,Xk)
W ← BackProp(W ,Yk ,Vk)

Training is longer (1 BackProp per training example)

Convergence is faster, i.e. less iterations ? over the entire base
("epochs")

Progression is irregular
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Learning Algorithm: Batch Gradient Descent

BGD W ← Train(W , {Xi ,Vi})
Initialisation: W ← RANDOM(]− η,+η[)

Divide the learning base A = {Xi ,Vi} into batches Ab

Repeat until convergence (?) :
For each batch b:

Lb ←
∑

(Xk ,Vk )∈Ab

L(ForwardProp(W ,Xk),Vk)

W ← BackProp(W ,Lb)

Training is faster (1 BackProp per batch)

Convergence is slower (More "epochs" ?)

Progression is more regular
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Some popular loss functions

L2 Error

L(Y ,V ) = 1
2 ||Y − V ||2

Mean Logarithmic Error (Vi ,Yi ≥ 0)

L(Y ,V ) =
1

n

n∑
i=1

(log(1 + Vi )− log(1 + Yi ))2

Kullback-Leibler Divergence, (0 < Vi ,Yi < 1)

L(Y ,V ) =
∑
i

Vi
logVi

logYi
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Some usual activation functions

Sigmoid
fλ(x) = 1

1+e−λx

f ′λ(x) = λfλ(x)(1− fλ(x))

TanH
f (x) = 1−e−2x

1+e−2x

f ′(x) = 1− f (x)2

ReLU
f (x) = x+|x |

2

f ′(x) = x+|x |
2x

Antoine Manzanera Classi�cation and Machine Learning 85 / 101



Introduction
Dimension Reduction and Clustering

Bayesian Learning
Other Supervised Techniques

Convolutional Neural Networks
Conclusion

Introduction
Training a Neural Network
Backpropagation of the Gradient
Learning modes and Hyperparameters
Examples

Some variants to the optimisation scheme

Some variants to the Gradient Descent (GD) wij ← wij − ε ∂L∂wij
:

GD with Momentum

Gt = βGt−1 + (1− β) ∂L∂wij
;β ∈ [0, 1]

w t
ij = w t−1

ij − εGt

The Momentum limits direction �uctuations of the gradient
between 2 iterations (batches) t − 1 et t.

β → O: Classic GD.

β → 1: The gradient keeps its direction.
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Some variants to the optimisation scheme

Some variants to the Gradient Descent (GD) wij ← wij − ε ∂L∂wij
:

Adam

Gt = β1Gt−1 + (1− β1) ∂L∂wij
;β1 ∈ [0, 1]

Kt = β2Kt−1 + (1− β2)
(
∂L
∂wij

)2
;β2 ∈ [0, 1]

w t
ij = w t−1

ij − ε Gt√
Kt+η

Adam also limits the temporal direction �uctuations of the
gradient, and also adapts the learning speed to the curvature
(second derivative) of the loss function.

2 additional hyperparameters: {β1, β2}.
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Deep CNN for image classi�cation

The 96 �rst 11× 11 convolutions

AlexNet [Krizhevsky12]:

Trained on ImageNet
ILSVRC-2010

1,2M learning images

1000 Classes
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Deep CNN for object detection

YOLO [Redmon16]
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Deep CNN for object detection

YOLO [Redmon16]
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Deep CNN for semantic segmentation

SegNet [Badrinarayanan15]
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Deep CNN for 3d reconstruction

PoseNet + DepthNet [Pinard18]
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Self-supervised Deep CNN

Autoencoder (Figure: Wikipedia)

By using a loss function L(X̂ ,X ), the
autoencoder learns to reconstruct a
copy X̂ , or a enhanced (denoised,
restored...) version of its input X .
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Conclusion on the NN

Free lunch? Not yet!

Empirism / Handcraft!

Annotated Image Datasets!

Explainability...?

Choice for L...?
Domain adaptation...?

Online learning vs catastrophic
Forgetting...
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Outline of the lecture
1 Introduction
2 Dimension Reduction and Clustering

Principal Component Analysis
K-means

3 Bayesian Learning
4 Other Supervised Techniques

k-nearest neighbours
SVM
Random Forest

5 Convolutional Neural Networks
Introduction
Training a Neural Network
Backpropagation of the Gradient
Learning modes and Hyperparameters
Examples

6 Conclusion
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General Conclusion

Takeaway from this lecture:

Dimension Reduction

Statistical: PCA
Metric: K-means

Supervised Learning

Bayesian Learning
K-nearest neighbours
SVM
Random Forest
CNN / L(Y ,V )

Unsupervised Learning

K-means (VBoW)
CNN / L(X̂ ,X )
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General Conclusion

To be studied as complement:

Pratical Learning

Dataset Partition into Learning / Validation / Test sets
Cross-validation

Evaluation

Classi�cation: Error rate
Classi�cation: Confusion Matrix
Classi�cation: Accuracy / Recal Curves...
Regression: Ln Norms...
Detection: Jaccard Index, IoU...

Over�tting and Regularisation

Dropout - Batch Normalisation - Weight Decay
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