> Sorbonne Université M2 IMA - "UE VISION" Motion detection in videos

> > Antoine Manzanera ENSTA-Paris

Context and Objectives Problem statement Change detection

Motion Detection and Video Analysis

Three kinds of image processing primitives in Video analysis:

Detection Separate mobile pixels from the static background

Estimation Calculate the apparent velocity of each pixel

Tracking Match spatial structures from frame to frame

Context and Objectives Problem statement Change detection

Content and Goals of the lecture

- Present the characteristics, challenges and difficulties of mobile objects detection in image sequences.
- Explain the different techniques of background modelling used in temporal change detection.
- Briefly expose some spatiotemporal regularisation methods related to motion detection.

Context and Objectives Problem statement Change detection

Lecture outline

- 1 Introduction
 - Context and Objectives
 - Problem statement
 - Change detection
- 2 Static background estimation
 - Recursive averages
 - Density estimation
 - Σ - Δ estimation
 - Multi-modal estimation
 - Sample-Consensus methods
- Space-time regularization
 - Markov fields
 - Spatiotemporal Morphology
 - **Conclusion**

Context and Objectives Problem statement Change detection

Application fields

Smart videosurveillance

- Geofencing / Abnormal activity
- Aggression / distress detection / crowd surveillance
- Oynamic (e g gait) biometry

Human-Machine Interfaces

- Visual command
- Avatar control
- Language sign

Bio-medical applications

- Gait analysis
- Elderly monitoring
- Sport analysis

Antoine Manzanera

Motion Detection

5/48

Context and Objectives Problem statement Change detection

Motion segmentation

Context

• Stationary camera

Uncontrolled acquisition

Background segmentation

Objective: Separate the moving object (foreground) from the static scene (background).

- Robust estimation problem
- Temporal statistics representation
- Computational cost: Space and Time complexities

Context and Objectives Problem statement Change detection

Detection: global view

- Temporal change estimation: Temporal statistics are calculated on every pixel, from which outlier values can be deduced.
- Option Spatiotemporal regularisation: The results are aggregated to form regular shapes.
- Objects selection: The obtained regions are selected according to morphological or kinematic criteria.

Context and Objectives Problem statement Change detection

Which observations?

What kind of temporal variation shall we consider?

Temporal gradient

 $D_t = |I_t - I_{t-1}|.$

- \oplus Very simple!
- \oplus Very adaptive!
- \ominus Aperture problem!

Marginal values

$$D_t = |I_t - B_t|.$$

- \oplus Aperture problem
- \oplus Complex background

management

 \ominus Adaptation is trickier

Context and Objectives Problem statement Change detection

Temporal gradient

Antoine Manzanera

Motion Detection

Context and Objectives Problem statement Change detection

Setting the threshold

The global level of threshold may be dynamically adjusted by:

- Assuming that isolated points are only due to noise.
- Setting a target rate r_{target} of isolated points.

Let r the rate of isolated points in the binary image.

If $r < r_{target}$ then $\tau_t \leftarrow \tau_{t-1} - 1$, else $\tau_t \leftarrow \tau_{t-1} + 1$.

Context and Objectives Problem statement Change detection

Static background estimation

Video

X

Foreground (mobile objects)

- Temporal series processing
- Non stationary estimation
- Foreground/Background classification

Context and Objectives Problem statement Change detection

A robust estimation problem...

æ

э

< A >

Recursive averages Density estimation Σ - Δ estimation Multi-modal estimation Sample-Consensus methods

Temporal average?

Naive recursive average

$$B_t = \frac{1}{t}I_t + \frac{t-1}{t}B_{t-1}$$

- Recursive computation of the arithmetic average
- Not computable for large values of t!

æ

Recursive averages Density estimation Σ - Δ estimation Multi-modal estimation Sample-Consensus methods

Temporal average

Exponential filter

$$B_t = \alpha I_t + (1 - \alpha) B_{t-1}$$
; $\alpha \in]0, 1[$

- α is the learning rate ; $\alpha \approx \frac{1}{t}$
- If $\alpha = 2^{-N}$: very efficient computation
- Incremental formulation: $B_t = B_{t-1} + \alpha (I_t B_{t-1})$

æ

Recursive averages Density estimation Σ-Δ estimation Multi-modal estimation Sample-Consensus methods

General incremental formulation

Recursive estimation of the background (1st order)

$$B_t = B_{t-1} + \delta_t(I_t, B_{t-1})$$

For the exponential filter: $\delta_t(I_t, B_{t-1}) = \alpha(I_t - B_{t-1})$ The increment function is linear...

Figure: 2 examples of increment functions for the exponential filter.

Recursive averages Density estimation Σ - Δ estimation Multi-modal estimation Sample-Consensus methods

Bi-level exponential filter

Bi-level temporal average

$$egin{aligned} B_t &= B_{t-1} + lpha_1(I_t - B_{t-1}); ext{ if } I_t \in \mathsf{Background} \ B_t &= B_{t-1} + lpha_2(I_t - B_{t-1}); ext{ if } I_t \in \mathsf{Foreground} \ (lpha_2 << lpha_1) \end{aligned}$$

A classification criterion is then
necessary.
E.g., a threshold:
$$|I_t - B_{t-1}| > \tau_t$$

Figure: 1 example of increment
function for the bi-level
exponential filter.

æ

Recursive averages Density estimation Σ - Δ estimation Multi-modal estimation Sample-Consensus methods

Recursive estimation of the average and variance

The same recursive scheme can be used to estimate the temporal variance, which allows to *locally adjust* the classification Foreground/Background threshold:

Recursive Average and Variance

$$\begin{array}{l} D_t = I_t - B_{t-1} \\ \text{If } |D_t| > n \sqrt{V_{t-1}}, \ E_t = 1 \ (\text{Foreground}), \ \text{else} \ E_t = 0 \ (\text{Background}). \\ B_t = B_{t-1} + \alpha_t D_t \\ V_t = V_{t-1} + \alpha_t D_t^2 \end{array}$$

- B_t is the average, V_t the variance.
- *n* is an integer, typically 2 or 3.
- $\alpha_t = \alpha_1$ if $E_t = 0$, and $\alpha_t = \alpha_2$ otherwise ($\alpha_2 \ll \alpha_1$).

Recursive averages Density estimation Σ-Δ estimation Multi-modal estimation Sample-Consensus methods

Recursive estimation of the average and variance

Recursive Average and Variance

$$\begin{array}{l} D_t = I_t - B_{t-1} \\ \text{If } |D_t| > n \sqrt{V_{t-1}}, \ E_t = 1 \ (\text{Foreground}), \ \text{else} \ E_t = 0 \ (\text{Background}). \\ B_t = B_{t-1} + \alpha_t D_t \\ V_t = V_{t-1} + \alpha_t D_t^2 \end{array}$$

Estimating the variance allows to locally adapt the threshold, however the increment function remains linear (α) and/or discontinuous ($\alpha_2 < \alpha_1$).

Recursive averages Density estimation ∑-∆ estimation Multi-modal estimation Sample-Consensus methods

Estimation weighted by the density

In fact, considering the incremental expression $B_t = B_{t-1} + \delta_t(I_t, B_{t-1})$, the increment function δ_t should also depend on the probability to observe the value I_t :

Weighted estimation (general case)

$$\delta_t(I_t, B_{t-1}) = \frac{\alpha_{max}f_t(I_t)}{f_t(B_{t-1})} \times (I_t - B_{t-1})$$

with:

- $f_t(x) = P(B_t = x)$ probability density of the background.
- α_{max} maximal learning rate.
- B_{t-1} corresponds to the current mode of the distribution.

Recursive averages Density estimation ∑-Δ estimation Multi-modal estimation Sample-Consensus methods

Temporal density estimation

The temporal density can be estimated using the recursive histogram update method:

Temporal density estimation

- Let $\{1, \ldots, N\}$ be the histogram bins.
- Initialization: $f_0(i) = 1/N$ for every $i \in \{1, \dots, N\}$
- For *t* > 0:

•
$$f_t(I_t) = f_{t-1}(I_t) + e^{it}$$

• Renormalize f_t

The reference value of the background B_t can (if necessary) be defined as the *mode* of the histogram $\arg \max_{i \in \{1,...,N\}} f_t(i)$, or as the *median* value, using $F_t^{-1}(1/2)$, where $F_t(i) = \sum_{i < i} f_t(i)$.

Recursive averages Density estimation Σ-Δ estimation Multi-modal estimation Sample-Consensus methods

Temporal density estimation

Temporal density estimation

- Let $\{1, \ldots, N\}$ be the histogram bins.
- Initialization: $f_0(i) = 1/N$ for every $i \in \{1, \dots, N\}$
- For *t* > 0:

•
$$f_t(I_t) = f_{t-1}(I_t) + \varepsilon$$

• Renormalize f_t

The classification can also be made directly (i.e. without estimating the reference background B_t), from the density, for example: if $f_t(I_t) < \tau$, then $E_t = 1$.

э

Recursive averages Density estimation ∑-∆ estimation Multi-modal estimation Sample-Consensus methods

Estimation of Gaussian density

If the density corresponds to a known model, the estimation can be simplified, for example in the case of a single Gaussian (1 mode/average, 1 variance) :

Recursive averages Density estimation ∑-∆ estimation Multi-modal estimation Sample-Consensus methods

Estimation of Gaussian density

Gaussian increment function

$$\delta_t(I_t, B_{t-1}) = \alpha_{max} \times \exp(\frac{-(I_t - B_{t-1})^2}{2V_{t-1}}) \times (I_t - B_{t-1})$$

Variance estimation:

 $V_t = V_{t-1} + \alpha_V ((I_t - B_t)^2 - V_{t-1})$ Classification:

$$E_t = 1 \Leftrightarrow |I_t - B_t| > k imes \sqrt{V_t}$$

Figure: 2 examples of increment functions for a Gaussian density.

Recursive averages Density estimation Σ-Δ estimation Multi-modal estimation Sample-Consensus methods

The Zipf-Mandelbrot distribution

Centred Zipfian Distribution

$$Z_{(\mu,k,s)}(x) = rac{(s-1)k^{s-1}}{2(|x-\mu|+k)^s}$$

- μ is the average (mode) of the distribution
- k determines the dispersion (≃ variance)
- *s* ≃ 1; *s* > 1

< A ▶

Recursive averages Density estimation Σ-Δ estimation Multi-modal estimation Sample-Consensus methods

The Zipf-Mandelbrot distribution

Centred Zipfian Distribution

$$Z_{(\mu,k,s)}(x) = \frac{(s-1)k^{s-1}}{2(|x-\mu|+k)^s}$$

- Origin: linguistics (frequence of words in most languages).
- Has been used in spatial image processing (coding, segmentation).
- Used here as a temporal distribution model.

Recursive averages Density estimation Σ-Δ estimation Multi-modal estimation Sample-Consensus methods

Zipfian background estimation

Zipfian increment function

The Zipfian increment function can be approximated by a Heaviside function:

 $\delta_t \simeq H_{(\mu,\kappa)}(x) = -\kappa \text{ if } x < \mu, +\kappa \text{ if } x > \mu \text{ (with } \kappa = lpha_{max}k^s)$

Thus, the Zipfian estimation can be approximated by the $\Sigma\text{-}\Delta$ modulation:

 $B_t = B_{t-1} + \varepsilon \text{ if } I_t > B_{t-1}$ $B_t = B_{t-1} - \varepsilon \text{ if } I_t < B_{t-1}$

But the elementary increment ε should depend on the variance of the background.

Figure: 2 examples of increment functions for a Zipfian density.

Recursive averages Density estimation Σ-Δ estimation Multi-modal estimation Sample-Consensus methods

Σ - Δ estimation algorithm (1)

The elementary increment corresponds to the Least Significant Bit (LSB), i.e. ± 1 . The average increment is temporally adjusted by changing the update frequence: This corresponds to the condition C(t)(typically $C(t) \equiv (t\%n) == 0$)

Recursive averages Density estimation Σ-Δ estimation Multi-modal estimation Sample-Consensus methods

Σ - Δ estimation algorithm (2)

As the average increment should depend on the variance of the background, the update condition should also depend on the dispersion estimator V_t . (The larger V_t , the more frequent the update). The dispersion estimator V_t is also calculated by Σ - Δ estimation, based on the absolute difference sequences $|I_{t} - B_{t}|.$

Recursive averages Density estimation Σ-Δ estimation Multi-modal estimation Sample-Consensus methods

Σ - Δ estimation algorithm (3)

Finally, the classification Foreground/Background is simply obtained by comparing the absolute difference to the current dispersion estimate.

Recursive averages Density estimation Σ-Δ estimation Multi-modal estimation Sample-Consensus methods

Example: Sequence with radial motion

Foreground

< 4 → <

Recursive averages Density estimation Σ-Δ estimation Multi-modal estimation Sample-Consensus methods

Quantitative evaluation

Figure: Comparison of several background subtraction algorithms based on Σ - Δ or Gaussian estimation, using different temporal parameters.

Recursive averages Density estimation Σ-Δ estimation Multi-modal estimation Sample-Consensus methods

Computational advantages

- The computational cost of Σ - Δ is extremely low:
 - *Memory*: 2 integers per pixel.
 - Instruction set: reduced to difference, comparison, and increment/decrement.
 - *Data size*: No approximation, adapted to Fixed-Point Arithmetic of any size.
- It was implemented on various embedded platforms, like:
 - Cellular parallelism: Programmable retina PVLSAR 34.
 - Vector parallelism: Multimedia extensions SSE2, Altivec.
 - Programmable Components: FPGA Xilinx XSA3S1000.

Recursive averages Density estimation Σ-Δ estimation Multi-modal estimation Sample-Consensus methods

Multi-modal background estimation

The use of mono-modal distributions as probabilistic model can be irrelevant in the case of complex background (e.g. sea waves, moving flags,...). However, the previous methods can be extended to multi-modal (mixture) models, as follows:

Multi-modal background estimation

Let $\{B^i, V^i, W^i\}_{i=1..N}$ represent the N modes For every pixel I_t , for every mode i:

$$\text{if } |I_t - B_t^i| < n \sqrt{V_t^i}$$

Update the corresponding $\{B_t^i, V_t^i, W_t^i\}$ $(B^i, V^i$ updated as in the monomodal case, W_t^i is incremented then normalized)

Rank the different modes according to their "importance" $W^i/\sqrt{V^i}$, and choose the first ones as background.

Recursive averages Density estimation Σ-Δ estimation Multi-modal estimation Sample-Consensus methods

Multi-modal background estimation

- The multi-modal distribution is represented by 3N scalar values {Bⁱ, Vⁱ, Wⁱ}_{i=1..N} per pixel.
- N the number of modes, is typically between 3 and 7.
- *Bⁱ* and *Vⁱ* represent the average (mode) and variance of each sub-distribution.
- Wⁱ represent the relative weights of the different modes.

Recursive averages Density estimation Σ-Δ estimation Multi-modal estimation Sample-Consensus methods

Sample-Consensus methods

- Some methods represent the background without calculating explicitly statistics, but by keeping in memory some values {*I*_{t1},..., *I*_{tK}} (sampling).
- Foreground/Background classification is performed by deciding whether the current value is close to the sample or not (*consensus*). Example ViBe:
 - $E_t = 1 \Leftrightarrow |\{i \in \{1, \ldots, K\}; d(I_t, I_{t_i}) > \tau\}| > T.$
- The sample is then updated, possibly by considering the value of *E*_t.

Recursive averages Density estimation Σ-Δ estimation Multi-modal estimation Sample-Consensus methods

Sample-Consensus methods

The Sample-Consensus methods can be applied on the gray level, on multidimensional colour spaces, or even on local feature spaces (e.g. filter banks, or deep features...).

Recursive averages Density estimation ∑-Δ estimation Multi-modal estimation Sample-Consensus methods

Example: Feature-ViBe

æ

イロト イボト イヨト イヨト

Markov fields Spatiotemporal Morphology

Markovian regularization

Temporal change detection is not sufficient to perform mobile object segmentation. Spatiotemporal regularization based on Markov fields has been used for mobile objects detection:

- Modelling: the Fixed/Mobile binary label is assumed to be a Markov field in the discrete space-time.
- Hammersley-Clifford theorem: the density can be calculated from a function (energy) defined on the cliques of the discrete mesh.
- Simulation: some samples of this random field can be obtained (e.g. Gibbs sampler).
- **Optimisation:** to find the most likely realisation of this field (e.g. ICM, Simulated annealing).

- ∢ ≣ →

Markov fields Spatiotemporal Morphology

Markovian regularization: Modelling the Gibbs Energy

$$\underbrace{U(x)}_{\text{Energy}} = \underbrace{U_m(x)}_{\text{Model}} + \underbrace{U_a(x, y)}_{\text{Data}}$$

x: binary (B/F) label image (E_t) . y: absolute difference image $(|D_t|)$.

Model energy term (Potts Model)

$$U_m(x) = \sum_{s \in \mathbb{S}} \sum_{r \in \mathcal{V}(s)} V_x(s, r)$$

with
$$V_x(s,r) = -\beta_{sr}$$
 if $x(s) = x(r)$,
 $+\beta_{sr}$ otherwise, and $\beta_{sr} > 0$.

Data energy term

$$U_{a}(x,y) = \frac{1}{2\sigma^{2}} \sum_{s \in \mathbb{S}} y(s) - \alpha x(s)$$

with
$$lpha > 0$$

Markov fields Spatiotemporal Morphology

Markovian regularization: Modelling the Gibbs Energy

Model Energy Term

$$U_m(x) = \sum_{s \in \mathbb{S}} \sum_{r \in \mathcal{V}(s)} \pm \beta_{sr}$$

The B/F label image X is assumed to be a Markov field:

$$P(X=x)=\frac{e^{-U_m(x)}}{Z_1}$$

The Model energy expresses a regularity hypothesis.

Data Energy Term

$$U_a(x,y) = \frac{1}{2\sigma^2} \sum_{s \in \mathbb{S}} y(s) - \alpha x(s)$$

The observation (difference) image Y is assumed to be related to X by:

$$P(Y = y/X = x) = \frac{e^{-U_a(x,y)}}{Z_2}$$

Where α and σ are the mean and standard deviation of Y.

・ロト ・同ト ・ヨト ・ヨト

Markov fields

< A ▶

Markovian regularization: Bayesian labelling

Model Energy Term

$$U_m(x) = \sum_{s \in \mathbb{S}} \sum_{r \in \mathcal{V}(s)} \pm \beta_{sr}$$

$$Data Energy Term$$

$$U_a(x, y) = \frac{1}{2\sigma^2} \sum_{s \in \mathbb{S}} y(s) - \alpha x(s)$$

$$P(X = x) = \frac{e^{-U_m(x)}}{Z_1}$$

$$P(Y = y/X = x) = \frac{e^{-U_a(x,y)}}{Z_2}$$

Bayesian labelling: Maximum A Posteriori criterion

$$\arg\min_{x} U(x) = \arg\max_{x} P(X = x)P(Y = y/X = x)$$

=
$$\arg\max_{x} P(X = x/Y = y)$$

[Bouthémy93]

æ

Markov fields Spatiotemporal Morphology

Regularization by Spatiotemporal Morphology

Space-time regularization is often performed on binary images of Foreground using the operators from Mathematical Morphology:

• Alternated Sequential Filters (ASF): $F_n(E_t) = \delta_{B_n}(\varepsilon_{B_n}(\delta_{B_{n-1}}(\varepsilon_{B_{n-1}}(\dots \delta_{B_1}(\varepsilon_{B_1}(E_t))\dots)))).$

Markov fields Spatiotemporal Morphology

Regularization by Spatiotemporal Morphology

Connected Morphological operatosrs:

• ASF by reconstruction: $E'_t = R_{E_t}(F_n(E_t))$.

Markov fields Spatiotemporal Morphology

Regularisation by Spatiotemporal Morphology

Spatiotemporal connected operators:

• Spatiotemporal connected filter: $E''_t = R_{E_t} (F_n(E_t) \cap \delta_{B_m}(E'_{t-1})).$

Takeaway key notions

- Change detection \leftrightarrow Looking for singularities in time series.
- Background representations:
 - Parameters of a single or multi-modal distribution.
 - Histogram of any distribution.
 - Sample of any distribution.
- Trade-off between computational cost (time, memory) / Representation complexity (number and length of statistics / value bins / modes / samples / ...)
- Space-time regularization: Markov fields, Mathematical Morphology,...

References

- [Elga99] A. ELGAMMAL, D. HARDWOOD and L.S. DAVIS Non-parametric Model for Background Subtraction Proc. of ICCV '99 FRAME-RATE Workshop(1999)
- [Stauf00] C. STAUFFER and C. GRIMSON Learning patterns of activity using real-time tracking. IEEE Trans. on PAMI 22(8), 747-757. (2000)
 - [Mittal04] A. MITTAL and N. PARAGIOS Motion-based background subtraction using adaptive kernel density estimation. IEEE CVPR'04

References

[Power02] P. POWER and J. SCHONEES Understanding background mixture models for foreground segmentation.

In: Imaging and Vision Computing New Zealand, Auckland, NZ (2002)

- 📔 [Manza07a] A. MANZANERA and J. RICHEFEU

A new motion detection algorithm based on Sigma-Delta background estimation.

Pattern Recognition Letters 28(3), 320-328. (2007)

[Manza07b] A. MANZANERA Sigma-Delta Background Subtraction and the Zipf Law. Progress in Pattern Recognition, Image Analysis and Applications (CIARP'07) pp. 42-51.

References

[Wang07] H. WANG and D. SUTER

A consensus-based method for tracking: Modelling background scenario and foreground appearance Pattern Recognition 40(3), 1091-1105. (2007)

[Barnich09] O. BARNICH and M. VAN DROGENBROECK ViBe: a powerful random technique to estimate the background in video sequences

International Conference on Acoustics, Speech, and Signal Processing 945-948. (2009)

Bouthémy93] P. BOUTHÉMY and P. LALANDE Recovery of moving object masks in an image sequence using local spatiotemporal contextual information. Optical Engineering, 32(6):1205-1212, June 1993.