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Introduction

Context and Objectives
Problem statement
Change detection

Motion Detection and Video Analysis

Three kinds of image processing primitives in Video analysis:

Detection Estimation Tracking
Separate mobile Calculate the Match spatial
pixels from the apparent velocity of structures from
static background each pixel frame to frame
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Introduction R
Context and Objectives

Problem statement
Change detection

Content and Goals of the lecture

@ Present the characteristics, challenges and difficulties of mobile
objects detection in image sequences.

o Explain the different techniques of background modelling used
in temporal change detection.

@ Briefly expose some spatiotemporal regularisation methods
related to motion detection.
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Lecture outline

@ Introduction

o Context and Objectives

@ Problem statement

@ Change detection
@ Static background estimation

@ Recursive averages

@ Density estimation

@ X-A estimation

@ Multi-modal estimation

@ Sample-Consensus methods
© Space-time regularization

o Markov fields

@ Spatiotemporal Morphology
@ Conclusion
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Introduction

Context and Objectives
Problem statement
Change detection

Application fields

Smart videosurveillance

@ Geofencing / Abnormal activity
@ Aggression / distress detection / crowd surveillance
@ Dynamic (e.g. gait) biometry

Human-Machine Interfaces

@ Visual command

@ Avatar control

@ Language sign

Bio-medical applications

@ Gait analysis
@ Elderly monitoring

@ Sport analysis
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Introduction

Context and Objectives
Problem statement
Change detection

Motion segmentation

@ Stationary camera @ Uncontrolled acquisition

Background segmentation

Objective: Separate the moving object (foreground) from the static
scene (background).

N

@ Robust estimation problem

@ Temporal statistics
representation

e Computational cost: Space and
Time complexities
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Introduction

Context and Objectives
Problem statement
Change detection

Detection: global view

© Temporal change estimation:
Temporal statistics are calculated on
every pixel, from which outlier values
can be deduced.

@ Spatiotemporal regularisation:
The results are aggregated to form
regular shapes.

© Obijects selection: The obtained
regions are selected according to
morphological or kinematic criteria.
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Introduction

Context and Objectives
Problem statement
Change detection

Which observations?

What kind of temporal variation shall we consider?

Marginal values

Temporal gradient
Dt = |It - Bt‘

Dt = |It - /t—1|-

@ Aperture problem

@ Complex background
management

© Adaptation is trickier

@ Very simple!
@ Very adaptive!
© Aperture problem!
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Introduction .
Context and Objectives

Problem statement
Change detection

Temporal gradient

l: (256 gray levels)
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Introduction .
Context and Objectives

Problem statement
Change detection

Setting the threshold

The global level of threshold may be dynamically adjusted by:
@ Assuming that isolated points are only due to noise.

@ Setting a target rate riager Of isolated points.
Let r the rate of isolated points in the binary image.
If r < rta,get then Tt < Te—1 — 1, else Tt < Te—1 + 1.
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Introduction .
Context and Objectives

Problem statement
Change detection

Static background estimation

Video Background (static) Foreground (mobile objects)

@ Temporal series processing
@ Non stationary estimation

e Foreground/Background classification
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Change detection

A robust estimation problem...
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Recursive averages

Density estimation

3-A estimation
Multi-modal estimation
Sample-Consensus methods

Static background estimation

Temporal average?

Naive recursive average

@ Recursive computation of the arithmetic average

@ Not computable for large values of t!
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Recursive averages

Density estimation

3-A estimation
Multi-modal estimation
Sample-Consensus methods

Static background estimation

Temporal average

Exponential filter
B =ali+ (1 —a)Bi—1 ; a €]0,1]

@ « is the learning rate ; o = %

o If & =27N: very efficient computation

@ Incremental formulation: By = Bi—1 + a(ly — Bt—1)
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Recursive averages

Density estimation

3-A estimation
Multi-modal estimation
Sample-Consensus methods

Static background estimation

General incremental formulation

Recursive estimation of the background (1st order)
B: = Bt—1 + 0¢(lt, Bt—1)

Affing incramert function

For the exponential filter: . L
5t(/t7 Bt—l) = Of(/t - Bt—l) 2 /,,,//:'3/‘

The increment function is e T

linear... f - 1///'/ L

Figure: 2 examples of increment “

functions for the exponential = g

filter. 17

graylewel
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Static background estimation

Bi-level exponential filter

Bi-level temporal average

Recursive averages

Density estimation
3-A estimation

Multi-modal estimation
Sample-Consensus methods

B = Bi—1 + a1(ly — Bi—1); if I, € Background
Bt = Bi—1 + ax(ly — Bi—1); if It € Foreground (ap << aq)

A classification criterion is then
necessary.

E.g., a threshold:

|It — Bt—l’ > Tt

Figure: 1 example of increment
function for the bi-level
exponential filter.
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Recursive averages

Density estimation

3-A estimation
Multi-modal estimation
Sample-Consensus methods

Static background estimation

Recursive estimation of the average and variance

The same recursive scheme can be used to estimate the temporal
variance, which allows to flocally adjust the classification
Foreground/Background threshold:

Recursive Average and Variance
Di =1t — Bi1
If |D¢| > n\/Vi—1, E: = 1 (Foreground), else E; = 0 (Background).
Bt = Bt_l + atDt
Vt = th]_ -+ OétD?

@ B; is the average, V; the variance.
@ nis an integer, typically 2 or 3.

e oy =y if E; =0, and oy = ap otherwise (ap << a1).
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Recursive averages

Density estimation

3-A estimation
Multi-modal estimation
Sample-Consensus methods

Static background estimation

Recursive estimation of the average and variance

Recursive Average and Variance

Dt = /t - Bt—l

If |D¢| > n\/Vi_1, E; =1 (Foreground), else E; = 0 (Background).
By = Bt—1 + atD:

Vt = Vt_l + OétD?

Estimating the variance allows to locally adapt the threshold,
however the increment function remains linear () and/or
discontinuous (ap < a1).
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Recursive averages

Density estimation

3-A estimation
Multi-modal estimation
Sample-Consensus methods

Estimation weighted by the density

Static background estimation

In fact, considering the incremental expression
Bt = Bt—1 + 0t(lt, Bt—1), the increment function §; should also
depend on the probability to observe the value /;:

Weighted estimation (general case)

5t(/t> Bt—l) = ?{éii(llt)) X (It - Bt—l)

with:
e f;(x) = P(B: = x) probability density of the background.
@ (max Maximal learning rate.

@ B; 1 corresponds to the current mode of the distribution.
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Recursive averages

Density estimation

3-A estimation
Multi-modal estimation
Sample-Consensus methods

Static background estimation

Temporal density estimation

The temporal density can be estimated using the recursive
histogram update method:

Temporal density estimation

o Let {1,..., N} be the histogram bins.
o Initialization: fy(i) = 1/N for every i € {1,..., N}
@ Fort>0:

o fi(ly) =f_1(le)+¢
o Renormalize f;

The reference value of the background B; can (if necessary) be
defined as the mode of the histogram arg max;c(y . ny fi(/), or as

the median value, using F; *(1/2), where F(i) = Z fe ().
J<i
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Recursive averages

Density estimation

3-A estimation
Multi-modal estimation
Sample-Consensus methods

Static background estimation

Temporal density estimation

Temporal density estimation

o Let {1,..., N} be the histogram bins.
o Initialization: fy(i) = 1/N for every i € {1,..., N}
o Fort>0:

° ft(lt) = ft—l(lt) +e
o Renormalize f;

The classification can also be made directly (i.e. without estimating
the reference background B;), from the density, for example: if
ft(lt) <, then Et =1.

Antoine Manzanera Motion Detection 21 /48



Recursive averages

Density estimation

3-A estimation
Multi-modal estimation
Sample-Consensus methods

Estimation of Gaussian density

Static background estimation

If the density corresponds to a known model, the estimation can be
simplified, for example in the case of a single Gaussian (1
mode/average, 1 variance) :

Gaussian distribution

——— 55(100,30)
— - G50,50)

Gaussian distribution

) = 5o oo (-2

i I
100 150 200 250
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Recursive averages

Density estimation

3-A estimation
Multi-modal estimation
Sample-Consensus methods

Static background estimation

Estimation of Gaussian density

Gaussian increment function

—(k=Bt—1)?

0t(le, Bt—1) = atmax x exp( 2V 1 ) x (It — Bt—1)

Gaussian incramant function

Variance estimation:

Vi=Via +av((lt*Bt)2* Vt—l)
Classification:
Ei=1%|l— B > kxVV;
Figure: 2 examples of increment
functions for a Gaussian density.

incrament

graykwel
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Recursive averages

Density estimation

3-A estimation
Multi-modal estimation
Sample-Consensus methods

The Zipf-Mandelbrot distribution

Static background estimation

Centred Zipfian Distribution

—1)ks—t
Z(:ukas)(x) = 2E|SX—2LH-I()5

Fipfian distriution

e

@ 1 is the average (mode) : |
of the distribution ]

o k determines the ]
dispersion (~ variance) ]
@s~1l:s>1 1
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Recursive averages

Density estimation

3-A estimation
Multi-modal estimation
Sample-Consensus methods

Static background estimation

The Zipf-Mandelbrot distribution

Centred Zipfian Distribution

s—1)ks~1
Zipko5) (%) = o

@ Origin: linguistics (frequence of words in most languages).

@ Has been used in spatial image processing (coding,
segmentation).

@ Used here as a temporal distribution model.
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Recursive averages

Density estimation

3-A estimation
Multi-modal estimation
Sample-Consensus methods

Static background estimation

Zipfian background estimation

Zipfian increment function
The Zipfian increment function can be approximated by a Heaviside
function:

0 = Hyypy(x) = =k if x < p, +r if x > p (with £ = amaxk®)

Thus, the Zipfian estimation can Zten hesmen et ,

be approximated by the ¥-A . /

modulation: os /
Bi=Bi_1+eif ly > By o4 —_——
Bi=Bi1—cif I, < Be_y 3" {

But the elementary increment ¢ ! l‘

should depend on the variance of T

the background. e i

Figure: 2 examples of increment Of )

functions for a Zipfian density. ’ * * o
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Recursive averages

Density estimation

3-A estimation
Multi-modal estimation
Sample-Consensus methods

Static background estimation

Y -A estimation algorithm (1)

<

The elementary increment corresponds to
ﬁ ! the Least Significant Bit (LSB), i.e. £1.
The average increment is temporally
o/ adjusted by changing the update frequence:
This corresponds to the condition C(t)
(typically C(t) = (t%n) == 0)
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Recursive averages

Density estimation

3-A estimation
Multi-modal estimation
Sample-Consensus methods

Static background estimation

Y -A estimation algorithm (2)

As the average increment
should depend on the variance
of the background, the update
condition should also depend
on the dispersion estimator V;.
(The larger V4, the more
frequent the update).

The dispersion estimator V; is
also calculated by ¥-A
estimation, based on the
absolute difference sequences
|l; — Bt|.
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Recursive averages

Density estimation

3-A estimation
Multi-modal estimation
Sample-Consensus methods

Static background estimation

Y -A estimation algorithm (3)

@ Finally, the classification
v Foreground/Background
= Y is simply obtained by
SR comparing the absolute
1) et difference to the current

dispersion estimate.
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Recursive averages

Density estimation

3-A estimation
Multi-modal estimation
Sample-Consensus methods

Example: Sequence with radial motion

Static background estimation

Original Background

4t

Variance Foreground
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Recursive averages

Density estimation

3-A estimation
Multi-modal estimation
Sample-Consensus methods

Static background estimation

Quantitative evaluation

ROC diagram
1
O E-A(N=1)
08 0 I-a(N=2)
¢ E-A(Ned)
o8 «  Gaussian (o <184
. Gaussian fo__=146
e
oF 5 Gaussian o =14
EXT] - i
k] Sk | g, = 154
c i \ !
g 05 ! *
3 T,=1
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03
0z
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a

Q a1 0.2 0.2 04 05 06 0.7 0.8 08 1
False Alarm Rate

FlgU €. Comparison of several background subtraction algorithms based on ¥-A or Gaussian
estimation, using different temporal parameters.
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Recursive averages

Density estimation

3-A estimation
Multi-modal estimation
Sample-Consensus methods

Static background estimation

Computational advantages

@ The computational cost of X-A is extremely low:
o Memory: 2 integers per pixel.
o Instruction set: reduced to difference, comparison, and
increment/decrement.
e Data size: No approximation, adapted to Fixed-Point
Arithmetic of any size.
@ It was implemented on various embedded platforms, like:
o Cellular parallelism: Programmable retina PVLSAR 34.

o Vector parallelism: Multimedia extensions SSE2, Altivec.

e Programmable Components: FPGA Xilinx XSA351000.
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Recursive averages

Density estimation

3-A estimation
Multi-modal estimation
Sample-Consensus methods

Multi-modal background estimation

Static background estimation

The use of mono-modal distributions as probabilistic model can be
irrelevant in the case of complex background (e.g. sea waves,
moving flags,...). However, the previous methods can be extended
to multi-modal (mixture) models, as follows:

Multi-modal background estimation

Let {B", Vi, Wi},_; n represent the N modes

For every pixel I, for every mode i:

if |l — Bi| < ny/ V{:

Update the corresponding {B{, V{, W/} (B, V' updated as in the monomodal case,
W/ is incremented then normalized)

Rank the different modes according to their “importance” Wf/v Vi, and choose the

first ones as background.
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Recursive averages

Density estimation

3-A estimation
Multi-modal estimation
Sample-Consensus methods

Multi-modal background estimation

Static background estimation

@ The multi-modal distribution is represented by 3N scalar
values {B', VI, Wi},_1. n per pixel.

@ N the number of modes, is typically between 3 and 7.

o B’ and V' represent the average (mode) and variance of each
sub-distribution.

o W' represent the relative weights of the different modes.

Probability of
occurrence

H Gray level
0 Mode / Mean
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Recursive averages

Density estimation

3-A estimation
Multi-modal estimation
Sample-Consensus methods

Static background estimation

Sample-Consensus methods

@ Some methods represent the background without calculating
explicitly statistics, but by keeping in memory some values
{lyy, ..., Iy} (sampling).

e Foreground/Background classification is performed by deciding
whether the current value is close to the sample or not
(consensus). Example ViBe:
Ee=1<|{ie{l,....,K};d(lt,l) > 7} > T.

@ The sample is then updated, possibly by considering the value
of E;.
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Recursive averages

Density estimation

3-A estimation
Multi-modal estimation
Sample-Consensus methods

Static background estimation

Sample-Consensus methods

(1) Classification

The Sample-Consensus — . o
methods can be applied on the f o *
gray level, on multidimensional

colour spaces, or even on local

feature spaces (e.g. filter @ pceel e

banks, or deep features...). .t
° [ N
L]
- 1
B o *
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Static background estimation

Example: Feature-ViBe

Média

00:00

>

Lecture

Audio

Vidéo

sol

Recursive averages

Density estimation

3-A estimation
Multi-modal estimation
Sample-Consensus methods

Pg - Lecteur m:

RICIES

o3
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Markov fields
Space-time regularization Spatiotemporal Morphology

Markovian regularization

Temporal change detection is not sufficient to perform mobile
object segmentation. Spatiotemporal regularization based on
Markov fields has been used for mobile objects detection:

e Modelling: the Fixed/Mobile binary label is assumed to be a
Markov field in the discrete space-time.

e Hammersley-Clifford theorem: the density can be
calculated from a function (energy) defined on the cliques of
the discrete mesh.

@ Simulation: some samples of this random field can be
obtained (e.g. Gibbs sampler).

o Optimisation: to find the most likely realisation of this field
(e.g. ICM, Simulated annealing).
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Markov fields
Space-time regularization Spatiotemporal Morphology

Markovian regularization: Modelling the Gibbs Energy

Model energy term (Potts Model)

)= Vils,r)

SES reV(s)

with VX(57 r) = _/Bsr if X(S) = X(r),
+ s otherwise, and S5, > 0.

U(x) = Un(x) + Ua(x, y)

N N —r 22Zy _ax

Energy Model Data U X y

seS
x: binary (B/F) label image (E:).

y: absolute difference image (| D¢|).

with o > 0.
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Space-time regularization

Markov fields
Spatiotemporal Morphology

Markovian regularization: Modelling the Gibbs Energy

Model Energy Term Data Energy Term

= D b«

s€S reV(s)
The B/F label image X is
assumed to be a Markov field:
e—Um(x)

P(X =x) = 2

The Model energy expresses a
regularity hypothesis.

Us(x,y) = 22Zy — ax(s
seS

The observation (difference) image Y

is assumed to be related to X by:

P(Y=y/X =x) = 2

Where o and o are the mean and
standard deviation of Y.

e_Ua(Xv}/)
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g Markov fields
Space-time regularization Spatiotemporal Morphology

Markovian regularization: Bayesian labelling

Model Energy Term Data Energy Term
NEDD ™ Ua(x,y) = 22Zy e
seS rEV(s) ses
PX =x) = =7 P(Y = y/X = x) = 4

argmin U(x) = argmaxP(X =x)P(Y =y/X = x)
= argmaxP(X =x/Y =y)

[Bouthémy93]
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g Markov fields
Space-time regularization Spatiotemporal Morphology

Regularization by Spatiotemporal Morphology

Space-time regularization is often performed on binary images of
Foreground using the operators from Mathematical Morphology:

@ Alternated Sequential Filters (ASF):
Fn(E:) = 08,(¢8,(98,-,(¢8,-,(- - - 9B, (B, (Et)) - - ))))-

Fa(E)
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g Markov fields
Space-time regularization Spatiotemporal Morphology

Regularization by Spatiotemporal Morphology

Connected Morphological operatosrs:
o ASF by reconstruction: E] = Rg,(Fn(Et)).
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g Markov fields
Space-time regularization Spatiotemporal Morphology

Regularisation by Spatiotemporal Morphology

Spatiotemporal connected operators:

@ Spatiotemporal connected filter:
E{' = Re, (Fo(Ex) N 0,(E{_4))-

Antoine Manzanera Motion Detection
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Conclusion

Takeaway key notions

@ Change detection <> Looking for singularities in time series.
@ Background representations:
o Parameters of a single or multi-modal distribution.
o Histogram of any distribution.
e Sample of any distribution.
@ Trade-off between computational cost (time, memory) /
Representation complexity (number and length of statistics /
value bins / modes / samples / ...)

@ Space-time regularization: Markov fields, Mathematical
Morphology,...
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