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Motion Detection and Video Analysis

Three kinds of image processing primitives in Video analysis:

Detection
Separate mobile

pixels from the

static background

Estimation
Calculate the

apparent velocity of

each pixel

Tracking
Match spatial

structures from

frame to frame
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Content and Goals of the lecture

Present the characteristics, challenges and di�culties of mobile
objects detection in image sequences.

Explain the di�erent techniques of background modelling used
in temporal change detection.

Brie�y expose some spatiotemporal regularisation methods
related to motion detection.
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Application �elds

Smart videosurveillance

Geofencing / Abnormal activity

Aggression / distress detection / crowd surveillance

Dynamic (e.g. gait) biometry

Human-Machine Interfaces

Visual command

Avatar control

Language sign

Bio-medical applications

Gait analysis

Elderly monitoring

Sport analysis
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Motion segmentation

Context

Stationary camera Uncontrolled acquisition

Background segmentation

Objective: Separate the moving object (foreground) from the static
scene (background).

Robust estimation problem

Temporal statistics
representation

Computational cost: Space and
Time complexities
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Detection: global view

1 Temporal change estimation:
Temporal statistics are calculated on

every pixel, from which outlier values

can be deduced.

2 Spatiotemporal regularisation:
The results are aggregated to form

regular shapes.

3 Objects selection: The obtained

regions are selected according to

morphological or kinematic criteria.
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Which observations?

What kind of temporal variation shall we consider?

Temporal gradient

Dt = |It − It−1|.

⊕ Very simple!
⊕ Very adaptive!
	 Aperture problem!

Marginal values

Dt = |It − Bt |.

⊕ Aperture problem
⊕ Complex background
management
	 Adaptation is trickier
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Temporal gradient

It (256 gray levels) Dt = |It − It−1|

Threshold Dt to 3 Threshold Dt to 9
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Setting the threshold

The global level of threshold may be dynamically adjusted by:
1 Assuming that isolated points are only due to noise.
2 Setting a target rate rtarget of isolated points.

Let r the rate of isolated points in the binary image.

If r < rtarget then τt ← τt−1 − 1, else τt ← τt−1 + 1.

τt = 2 τt = 4 τt = 8 τt = 15 τt = 25
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Static background estimation

Video Background (static) Foreground (mobile objects)

Temporal series processing

Non stationary estimation

Foreground/Background classi�cation
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A robust estimation problem...
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Temporal average?

Naive recursive average

Bt = 1
t It + t−1

t Bt−1

Recursive computation of the arithmetic average

Not computable for large values of t!
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Temporal average

Exponential �lter

Bt = αIt + (1− α)Bt−1 ; α ∈]0, 1[

α is the learning rate ; α ≈ 1
t

If α = 2−N : very e�cient computation

Incremental formulation: Bt = Bt−1 + α(It − Bt−1)
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General incremental formulation

Recursive estimation of the background (1st order)

Bt = Bt−1 + δt(It ,Bt−1)

For the exponential �lter:
δt(It ,Bt−1) = α(It − Bt−1)
The increment function is
linear...
Figure: 2 examples of increment

functions for the exponential

�lter.
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Bi-level exponential �lter

Bi-level temporal average

Bt = Bt−1 + α1(It − Bt−1); if It ∈ Background
Bt = Bt−1 + α2(It − Bt−1); if It ∈ Foreground (α2 << α1)

A classi�cation criterion is then
necessary.
E.g., a threshold:
|It − Bt−1| > τt
Figure: 1 example of increment

function for the bi-level

exponential �lter.
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Recursive estimation of the average and variance

The same recursive scheme can be used to estimate the temporal
variance, which allows to locally adjust the classi�cation
Foreground/Background threshold:

Recursive Average and Variance

Dt = It − Bt−1
If |Dt | > n

√
Vt−1, Et = 1 (Foreground), else Et = 0 (Background).

Bt = Bt−1 + αtDt

Vt = Vt−1 + αtD
2
t

Bt is the average, Vt the variance.

n is an integer, typically 2 or 3.

αt = α1 if Et = 0, and αt = α2 otherwise (α2 << α1).
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Recursive estimation of the average and variance

Recursive Average and Variance

Dt = It − Bt−1
If |Dt | > n

√
Vt−1, Et = 1 (Foreground), else Et = 0 (Background).

Bt = Bt−1 + αtDt

Vt = Vt−1 + αtD
2
t

Estimating the variance allows to locally adapt the threshold,
however the increment function remains linear (α) and/or
discontinuous (α2 < α1).

Antoine Manzanera Motion Detection 18 / 48



Introduction
Static background estimation

Space-time regularization
Conclusion

Recursive averages
Density estimation
Σ-∆ estimation
Multi-modal estimation
Sample-Consensus methods

Estimation weighted by the density

In fact, considering the incremental expression
Bt = Bt−1 + δt(It ,Bt−1), the increment function δt should also
depend on the probability to observe the value It :

Weighted estimation (general case)

δt(It ,Bt−1) = αmax ft(It)
ft(Bt−1) × (It − Bt−1)

with:

ft(x) = P(Bt = x) probability density of the background.

αmax maximal learning rate.

Bt−1 corresponds to the current mode of the distribution.
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Temporal density estimation

The temporal density can be estimated using the recursive
histogram update method:

Temporal density estimation

Let {1, . . . ,N} be the histogram bins.

Initialization: f0(i) = 1/N for every i ∈ {1, . . . ,N}
For t > 0:

ft(It) = ft−1(It) + ε
Renormalize ft

The reference value of the background Bt can (if necessary) be
de�ned as the mode of the histogram arg maxi∈{1,...,N} ft(i), or as

the median value, using F−1t (1/2), where Ft(i) =
∑
j<i

ft(i).
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Temporal density estimation

Temporal density estimation

Let {1, . . . ,N} be the histogram bins.

Initialization: f0(i) = 1/N for every i ∈ {1, . . . ,N}
For t > 0:

ft(It) = ft−1(It) + ε
Renormalize ft

The classi�cation can also be made directly (i.e. without estimating
the reference background Bt), from the density, for example: if
ft(It) < τ , then Et = 1.
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Estimation of Gaussian density

If the density corresponds to a known model, the estimation can be
simpli�ed, for example in the case of a single Gaussian (1
mode/average, 1 variance) :

Gaussian distribution

ft(x) = 1
σt
√
2π

exp
(
− (x−µt)2

2σ2t

)
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Estimation of Gaussian density

Gaussian increment function

δt(It ,Bt−1) = αmax × exp(−(It−Bt−1)2

2Vt−1
)× (It − Bt−1)

Variance estimation:
Vt = Vt−1+αV ((It−Bt)

2−Vt−1)
Classi�cation:
Et = 1⇔ |It − Bt | > k ×

√
Vt

Figure: 2 examples of increment

functions for a Gaussian density.
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The Zipf-Mandelbrot distribution

Centred Zip�an Distribution

Z(µ,k,s)(x) = (s−1)ks−1

2(|x−µ|+k)s

µ is the average (mode)
of the distribution

k determines the
dispersion (' variance)

s ' 1; s > 1
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The Zipf-Mandelbrot distribution

Centred Zip�an Distribution

Z(µ,k,s)(x) = (s−1)ks−1

2(|x−µ|+k)s

Origin: linguistics (frequence of words in most languages).

Has been used in spatial image processing (coding,
segmentation).

Used here as a temporal distribution model.
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Zip�an background estimation

Zip�an increment function

The Zip�an increment function can be approximated by a Heaviside
function:
δt ' H(µ,κ)(x) = −κ if x < µ, +κ if x > µ (with κ = αmaxk

s)

Thus, the Zip�an estimation can
be approximated by the Σ-∆
modulation:

Bt = Bt−1 + ε if It > Bt−1

Bt = Bt−1 − ε if It < Bt−1

But the elementary increment ε
should depend on the variance of
the background.

Figure: 2 examples of increment

functions for a Zip�an density.
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Σ-∆ estimation algorithm (1)

The elementary increment corresponds to
the Least Signi�cant Bit (LSB), i.e. ±1.
The average increment is temporally
adjusted by changing the update frequence:
This corresponds to the condition C (t)
(typically C (t) ≡ (t%n) == 0)
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Σ-∆ estimation algorithm (2)

As the average increment
should depend on the variance
of the background, the update
condition should also depend
on the dispersion estimator Vt .
(The larger Vt , the more
frequent the update).
The dispersion estimator Vt is
also calculated by Σ-∆
estimation, based on the
absolute di�erence sequences
|It − Bt |.
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Σ-∆ estimation algorithm (3)

Finally, the classi�cation
Foreground/Background
is simply obtained by
comparing the absolute
di�erence to the current
dispersion estimate.
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Example: Sequence with radial motion
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Quantitative evaluation

Figure: Comparison of several background subtraction algorithms based on Σ-∆ or Gaussian
estimation, using di�erent temporal parameters.
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Computational advantages

The computational cost of Σ-∆ is extremely low:
Memory: 2 integers per pixel.
Instruction set: reduced to di�erence, comparison, and
increment/decrement.
Data size: No approximation, adapted to Fixed-Point
Arithmetic of any size.

It was implemented on various embedded platforms, like:
Cellular parallelism: Programmable retina PVLSAR 34.
Vector parallelism: Multimedia extensions SSE2, Altivec.
Programmable Components: FPGA Xilinx XSA3S1000.
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Multi-modal background estimation

The use of mono-modal distributions as probabilistic model can be
irrelevant in the case of complex background (e.g. sea waves,
moving �ags,...). However, the previous methods can be extended
to multi-modal (mixture) models, as follows:

Multi-modal background estimation

Let {B i ,V i ,W i}i=1..N represent the N modes
For every pixel It , for every mode i :

if |It − B i
t | < n

√
V i
t :

Update the corresponding {B i
t ,V

i
t ,W

i
t } (B i ,V i updated as in the monomodal case,

W i
t is incremented then normalized)

Rank the di�erent modes according to their �importance� W i/
√
V i , and choose the

�rst ones as background.
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Multi-modal background estimation

The multi-modal distribution is represented by 3N scalar
values {B i ,V i ,W i}i=1..N per pixel.
N the number of modes, is typically between 3 and 7.
B i and V i represent the average (mode) and variance of each
sub-distribution.
W i represent the relative weights of the di�erent modes.
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Sample-Consensus methods

Some methods represent the background without calculating
explicitly statistics, but by keeping in memory some values
{It1 , . . . , ItK } (sampling).

Foreground/Background classi�cation is performed by deciding
whether the current value is close to the sample or not
(consensus). Example ViBe:
Et = 1⇔ |{i ∈ {1, . . . ,K}; d(It , Iti ) > τ}| > T .

The sample is then updated, possibly by considering the value
of Et .
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Sample-Consensus methods

The Sample-Consensus
methods can be applied on the
gray level, on multidimensional
colour spaces, or even on local
feature spaces (e.g. �lter
banks, or deep features...).
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Example: Feature-ViBe
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Markovian regularization

Temporal change detection is not su�cient to perform mobile
object segmentation. Spatiotemporal regularization based on
Markov �elds has been used for mobile objects detection:

Modelling: the Fixed/Mobile binary label is assumed to be a
Markov �eld in the discrete space-time.

Hammersley-Cli�ord theorem: the density can be
calculated from a function (energy) de�ned on the cliques of
the discrete mesh.

Simulation: some samples of this random �eld can be
obtained (e.g. Gibbs sampler).

Optimisation: to �nd the most likely realisation of this �eld
(e.g. ICM, Simulated annealing).
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Markovian regularization: Modelling the Gibbs Energy

U(x)︸ ︷︷ ︸
Energy

= Um(x)︸ ︷︷ ︸
Model

+Ua(x , y)︸ ︷︷ ︸
Data

x : binary (B/F) label image (Et).
y : absolute di�erence image (|Dt |).

Model energy term (Potts Model)

Um(x) =
∑
s∈S

∑
r∈V(s)

Vx(s, r)

with Vx(s, r) = −βsr if x(s) = x(r),
+βsr otherwise, and βsr > 0.

Data energy term

Ua(x , y) =
1

2σ2
∑
s∈S

y(s)− αx(s)

with α > 0.
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Markovian regularization: Modelling the Gibbs Energy

Model Energy Term

Um(x) =
∑
s∈S

∑
r∈V(s)

±βsr

The B/F label image X is
assumed to be a Markov �eld:

P(X = x) =
e−Um(x)

Z1

The Model energy expresses a
regularity hypothesis.

Data Energy Term

Ua(x , y) =
1

2σ2
∑
s∈S

y(s)− αx(s)

The observation (di�erence) image Y
is assumed to be related to X by:

P(Y = y/X = x) =
e−Ua(x ,y)

Z2

Where α and σ are the mean and
standard deviation of Y .
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Markovian regularization: Bayesian labelling

Model Energy Term

Um(x) =
∑
s∈S

∑
r∈V(s)

±βsr

P(X = x) = e−Um(x)

Z1

Data Energy Term

Ua(x , y) =
1

2σ2
∑
s∈S

y(s)− αx(s)

P(Y = y/X = x) = e−Ua(x,y)

Z2

Bayesian labelling: Maximum A Posteriori criterion

arg min
x

U(x) = arg max
x

P(X = x)P(Y = y/X = x)

= arg max
x

P(X = x/Y = y)

[Bouthémy93]
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Regularization by Spatiotemporal Morphology

Space-time regularization is often performed on binary images of
Foreground using the operators from Mathematical Morphology:

Alternated Sequential Filters (ASF):
Fn(Et) = δBn(εBn(δBn−1(εBn−1(. . . δB1(εB1(Et)) . . .)))).

Et F2(Et)
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Regularization by Spatiotemporal Morphology

Connected Morphological operatosrs:

ASF by reconstruction: E ′t = REt (Fn(Et)).

Et F2(Et) E ′t
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Regularisation by Spatiotemporal Morphology

Spatiotemporal connected operators:

Spatiotemporal connected �lter:
E ′′t = REt

(
Fn(Et) ∩ δBm(E ′t−1)

)
.

E ′t−1 δBm(E ′t−1) E ′t E ′′t
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Takeaway key notions

Change detection ↔ Looking for singularities in time series.
Background representations:

Parameters of a single or multi-modal distribution.
Histogram of any distribution.
Sample of any distribution.

Trade-o� between computational cost (time, memory) /
Representation complexity (number and length of statistics /
value bins / modes / samples / ...)

Space-time regularization: Markov �elds, Mathematical
Morphology,...
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