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Learning to predict optical flow and 3d?

Limitations of analytical methods

Optical flow and 3d reconstruction are strongly ill-posed problems:

Sensitive to untextured areas.

Sensitive to displacement / distance ranges.

Subject to numerical problems (FoE / epipole, Matched points precision, Noise,
Outliers, . . . ).

Learning-based methods

Learning based methods have the potential to exploit all motion / 3d cues, by jointly
modelling different related concepts: geometric, photometric, dynamic, and semantic!
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Formal Neuron Model
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Neural Networks

A formal Neural Network is an oriented
graph, where:

The source nodes form the input
vector X , that represents the data, or
is the data itself (end-to-end learning).

The sink nodes form the output vector
Y , which is interpreted as the result of
the classification or regression.
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Neural Networks

The architecture (i.e. the graph), and
the activation functions are generally
defined a priori and static.

The weights of the connexions W
(and the bias values b) are adaptive
and modelled by the learning process.
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Convolutional Neural Networks

In a Convolutional Neural Networks (CNN),
a same neuron (i.e. same weight vector and
activation function) is used for all the parts
of the input vector associated to each layer.
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Convolutional Neural Networks

The operation performed between two
layers I and J is then a translation invariant
linear mapping, i.e. a convolution...
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Convolutional Neural Networks

In fact, there are generally several neurons
that are applied this way to each layer,
which corresponds to a convolution filter
bank...
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Fully Connected Layers

An important special case: when the size
of the weight vectors is the same as the
size of the input vector, this corresponds to
a Fully Connected (FC) Layer.
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Supervised Training of a NN

A NN is trained from a learning set {Xi ,Vi} where Xi are the training data and Vi the
expected outputs (Ground Truth).

A loss function L(Y ,V ) ≥ 0 is designed, that measures the difference (error) between
the predicted output Y and the expected output V .

The objective of the training is to minimise the global error over the training set:∑
i

L(O(Xi ),Vi ), where O(X ) is the output predicted by the network on the input X .
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Supervised Training of a NN (forward)

In the forward pass, the data X is
submitted to the network, and its predicted
output Y is compared to the expected
output V using the loss function L(Y ,V ).
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Forward Propagation

To simplify the notation, all activation functions are assumed equal to g . wkj denotes the
weight of the connection from neuron k to neuron j . The forward pass is then written:

Forward Propagation Y ← ForwardProp(W ,X )

For all neuron i from the input layer: si = xi .

For all following layer l :

I For all neuron j from layer l : sj = g

(∑
k

wkjsk + bj

)
.

For all neuron j from the output layer: yj = sj .

Remark: In the following we denote aj =

(∑
k

wkjsk + bj

)
the activation value of neuron j ,

i.e. such that sj = g(aj).
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Training a NN (backward)

In the backward pass, the computed error L(Y ,V )
is back-propagated to all the neurons, and the
connexion weights are adjusted, depending on their
contribution to the error:

wij ← wij − ε
∂L
∂wij

where ε is the learning rate.
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Gradient Backpropagation Algorithm

The backward pass algorithm is written (for a quadratic loss function L):

Gradient Backpropagation W ← BackProp(W ,Y ,V )

For all neuron j from the output layer:
I compute the error ∆j = (sj − vj)× g ′(aj)

For all previous layer l :
I For all neuron i from layer l :

F compute the error ∆i =

(∑
k

∆kwik

)
× g ′(ai )

For all connection (i , j) of the network:
I update the weight wij ← wij − ε× si ×∆j

I update the bias bj ← bj − ε×∆j
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Learning-based Optical Flow prediction

Since 2015, end-to-end Deep Learning based methods are progressively outperforming the
optical flow algorithms, providing results in fast and constant progression, both in terms of
accuracy and computational efficiency:

Figure from [Ilg 17]
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Learning-based Optical Flow prediction

FlowNetSimple CNN [Fischer 15]

Decoder sub-network (refinement) [Fischer 15]

The DNN performs a dense estimation
of the OF by exploiting all possible
cues of motion.

With dense ground truth annotations,
the loss function may be simply the
L2 norm:

L = ||vGT − v̂||2
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Learning-based Optical Flow prediction

FlowNetCorr CNN [Fischer 15]

Unlike FlowNetSimple, FlowNetCorr learns the spatial features of fixed images, that are
explicitly correlated in the 4d block ”corr” (not learned!), which is then used as the
input of an encoder sub-network.

The distinction FlowNetSimple / FlowNetCorr related to the pre-processing or spatial
selection of analytical methods.
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Which training dataset?

The FlyingChairs synthetic dataset [Fischer 2015] provides dense annotations on scenes
integrating different level of typical optical flow difficulties: homogeneous areas, thin objects,
holes, occlusions, large speed range, etc. Furthermore the data can be easily augmented (on
the right).
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Learning based methods: FlowNet 2.0

The complementary performances of FlowNetSimple and FlowNetCorr, and their limitations,
e.g. their difficulty to address a wide range of displacements, have led to a modular trend in
many DNN architectures.

FlowNet 2.0 Network [Ilg 17]
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Learning based methods: RAFT

The RAFT (Recurrent All-Pairs Field Transforms) network imitates more directly the
analytical methods, not only by reusing the principle of integral correlation of features
through the 4d correlation volume, but also by mimicking the iterative mechanism of the
optimisation methods, through the use of recursive blocks (GRUs):

RAFT Network [Teed & Deng 20]

A. Manzanera (ENSTA Paris) Learning OF & 3d 23 / 70



Learning based methods: RAFT
The first step of RAFT consists in computing – like FlowNetCorr – a collection of feature
maps for each image of the pair, then to correlate the two resulting maps within a 4d volume:

C (x , y , x ′, y ′) = F1(x , y).F2(x ′, y ′) =
∑
i

F i
1(x , y)F i

2(x ′, y ′)

RAFT then forms a pyramid of 4d correlation {C0,C1,C2,C3} where only the two last
dimensions are quantized (The dimension of volume Ck is W × H ×W /2k × H/2k).

RAFT Network [Teed & Deng 20]
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Learning based methods: RAFT

The second step of RAFT consists in the iterated application of a GRU (Gated Recurrent
Unit) convolutional cell, that iteratively estimates the residual flow ∆f and sums it to the
current estimate: f tk = f tk−1 + ∆f , as a function of the ”memory” state mk , the ”input”
state ik , and the ”hidden” state hk , from which ∆f is computed. Wm, Wi and Wh are the
learned weights of convolutions.

RAFT Network [Teed & Deng 20]
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Learning based methods: RAFT

the input vector x tk is formed, for each pixel
p, by the concatenation of its estimated flow
f tk , and its associated Correlation C t and
Context K t features, i.e. around p + f tk
(Lookup L).

mk = σ
(
Wm ? [hk−1, x

t
k ]
)

ik = σ
(
Wi ? [hk−1, x

t
k ]
)

ĥk = tanh
(
Wh ? [ik � hk−1, x

t
k ]
)

hk = (1−mk)� hk−1 + mk � ĥk

RAFT Network [Teed & Deng 20]
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Learning based methods: RAFT

σ and tanh are the activation functions, [, ]
stands for the concatenation, and � for the
Hadamard product.

mk = σ
(
Wm ? [hk−1, x

t
k ]
)

ik = σ
(
Wi ? [hk−1, x

t
k ]
)

ĥk = tanh
(
Wh ? [ik � hk−1, x

t
k ]
)

hk = (1−mk)� hk−1 + mk � ĥk

RAFT Network [Teed & Deng 20]
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Self-supervised Learning the Optical Flow

Self-supervised learning (or fine tuning) can be
made on real images by using a photometric loss
function, that quantifies the difference between
an image and its prediction based on the optical
flow:

Lph = ||It−1 − It→t−1||,

with:
It→t−1(x) = It (x + ft(x)) .
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Self-supervised Learning the Optical Flow

However, additional difficulties occur:

Homogeneous areas

Occlusion areas

This implies - among other - a finer modelling of
the loss function, for example:

Lzh = || (It−1 − It→t−1) ||∇It−1||||

Locc = min (||It−1 − It→t−1||, ||It − It−1→t ||)
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3d reconstruction: Limitations of analytical methods

Estimation strongly relies on local structure (texture), then depth estimation on
textureless areas depends on complicated regularization methods.

Depth calculation depends on the apparent displacement (speed) of a point with respect
to the epipole (i.e. the Focus of Expansion FoE, that indicates the translation direction
of the camera). Such calculation turns undetermined when the point gets close to the
FoE.
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DNN for 3d reconstruction

Like Optical Flow, Depth can benefit from Deep Networks dense prediction capabilities.

Training can be easily done on synthetic or real RGB-d data, and loss function is also
relatively straightforward.

One determining benefit of DNN is their ability to exploit potentially all the depth
indices: parallax, perspective, size and texture gradients, shading,...
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Monocular Depth Cues? Occlusions!

Giotto - Pentecoste
(circa 1305)
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Monocular Depth Cues? Object sizes!

Georges Seurat -
Un après-midi à
l’̂ıle de la Grande
Jatte (1884-1886)
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Monocular Depth Cues? Object sizes, Perspective, and Texture Gradients!

Gustave Caillebotte -
Rue de Paris, temps de
pluie (1877)
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Monocular Depth Cues? Perspective, Horizon and Vanishing Points!

Gustave Caillebotte -
Rue de Paris, temps de
pluie (1877)
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Monocular Depth Cues? Horizon and Camera Pose!

A. Manzanera (ENSTA Paris) Learning OF & 3d 37 / 70



Depth inference from single view!

CNN based Depth estimation from single view [Eigen 14] works well on a particular context!
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One very particular context...

Colonoscopy images [Ruano 22]
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Monocular Depth Cues? Shading!

Self shadowing is a strong but ambiguous depth
cue (light source position vs concavity).
Without shape prior, the concavity is determined
by a prior of top lighting (right image).

When the shape prior is strong (face then
convex), the concavity prior dominates the
lighting prior (top-down effect, animation
on the left).
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Learning Shape from Shading for Automated Colonoscopy

Images from synthetic videos are used to train a CNN using a loss function based on the
ground truth depthmap [Ruano 22]

A. Manzanera (ENSTA Paris) Learning OF & 3d 41 / 70



Curriculum Learning Shape from Shading for Automated Colonoscopy

Synthetic exploration videos are created from a hierarchy of synthetic colons of increasing
complexity [Ruano 22]
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Curriculum Learning Shape from Shading for Automated Colonoscopy

The training is performed with progressive complexity [Ruano 22]
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SfSNet on Synthetic Videos

ShapeFromShadingNet on Synthetic Test Videos [Ruano 22]
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SfSNet on Real Videos

ShapeFromShadingNet on Real Videos [Ruano 22]. Single images seem to be sufficient in such particular context!
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3d reconstruction from depth maps

Back-projection from
the depth map Z :

M = Z (m)K−1m
[Ruano 23]
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What about UAV’s context?
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Non photorealistic synthesis for learning SfM

Supervised learning of depth from synthetic sequences

[Pinard 17a]

Network is based on FlowNet S

Unrealistic scenes ↔
Abstraction of the context

Focus on geometry / motion,
not on appearance /context

Trained on rotationless
movement, at a constant speed
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Baseline adaptation using multiple image pairs

At the inference time, the depth which is relative to the trained speed, is scaled with
respect to the actual velocity.

Adaptable precision is achieved by dynamically adapting the image pairs (baselines) to
the depth distribution.

Adaptation of the baselines to the depth distribution [Pinard 17b]
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Supervised DepthNet

Supervised DepthNet results [Pinard 17a]: See

https://perso.ensta-paris.fr/~manzaner/Download/ECMR2017/DepthNetResults.mp4
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Unsupervised depth estimation CNN

Re-training on real/operative context is still
essential.

But data are rarely annotated.

Self-supervised learning is then necessary.

Photometric loss function can be used, that
compares a pair of registered images,
knowing the depth and the camera pose.

Camera pose then needs to be known, or
predicted!

[Zhou 17]
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Photometric Loss (1): Back-projection from first image
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Photometric Loss (2): Re-projection onto second image
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Photometric Loss (3): Interpolation within second image
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Photometric Loss: Summary and formula

The photometric loss provides a self-supervision signal by comparing the observed image with
the reconstructed image from the previous view, based on predicted depth map and
odometry:

Ldepth,odometry
photo = ‖I1 − IRec

1 ‖

=
∑
m′

(
I1(m′)− I0(m)

)2
, with m′ '

(
[K|O4] [R|t]D0(m)×K−1m

)
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Photometric Loss: Occlusion issue
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Photometric Loss: Un-occlusion issue

A. Manzanera (ENSTA Paris) Learning OF & 3d 57 / 70



Examples of reprojected images

[PhD Marwane Hariat]
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Unsupervised depth estimation CNN

[Zhou 17]

A. Manzanera (ENSTA Paris) Learning OF & 3d 59 / 70



Unsupervised DepthNet

Unsupervised re-learning of Structure from Motion with adaptive baseline [Pinard 18]
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Unsupervised DepthNet

Unsupervised DepthNet real fly demo [Pinard 18]: See https://www.youtube.com/watch?v=ZDgWAWTwU7U
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Photometric Loss: Moving objects issue
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CoopNet: Joint training of Optical Flow, Odometry and Depth

CoopNet [Hariat 23]

By estimating (or predicting) the optical flow, moving objects can also be predicted by
comparing the optical flow with the rigid flow, which is the apparent velocity field under rigid
assumption scene (i.e. only due to camera motion), defined as:

[K|O4] [R|t]D0(m)×K−1m−m
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CoopNet: Joint training of Optical Flow, Odometry and Depth

CoopNet [Hariat 23]

The CoopNet network is trained based on the difference between the photometric losses from
the optical flow and from the depth networks:

∆(m) = Ldepth,odometry
photo − Lflow

photo
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Conclusion on Learning-based methods

Learning optical flow and depth from videos has many advantages:
I Globally addressing the context
I Multi-cues depth inference
I Natural regularization of ill-posed problem

The main issues to adress are the hard dependence to the learned context, and the
difficulties inherent to online learning. The current work perspectives are:

I Domain adaptation: ground robotics, medical robotics,...
I Incremental and online learning...
I Explainability and Reliability...
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