Networks for the IoT (Internet of Things)

Hardware considerations

Dominique Barthel

dominique.barthel@orange.com

© 2022

The recipient's acceptance of this document implies his or her acknowledgment of his or her obligation not to reproduce, transmit to a third party, disclose or use for commercial purposes any of its contents whatsoever without the author's prior written agreement.

Agenda

- Introduction
- Some experimentation boards and platforms
- Energy source, energy consumption
- Microcontrollers, memory
- Spectrum, PHY layer and radio chips
- Conclusions

Introduction

IoT not only a « software » issue

IoT device « networking » architecture

IoT device « hardware » architecture

Agenda

- Introduction
- Some experimentation boards and platforms
- Energy source, energy consumption
- Microcontrollers, memory
- Spectrum, PHY layer and radio chips
- Conclusions

Experimentation boards and platforms

A range of boards

TI eZ430-RF2500

- TI starter kit
 - MSP430F2274, 16 MHz RISC
 - 32 KB flash, 1 KB RAM
 - CC2500 radio
 - IEEE 802.15.4 2.4 GHz compliant
 - Ceramic chip antenna
 - 50 m range LOS
 - Temp sensor, push button, 2 LEDs
 - Analogue and digital IOs
 - USB interface for programming and data exchange

OpenMote-B

- TI CC2538 SoC
 - ARM Cortex M3
 - 512 KiB Flash, 32 KiB RAM
 - 2.4 GHz radio, IEEE 802.15.4 compliant
- Atmel RF86RF215 radio
 - 868/915 MHz and 2.4 GHz
 - supports all IEEE 802.15.4g modulations
- Temp/humidity sensor
- User button, 4 LEDs
- Current monitoring jumpers
- Contiki, RiOT, OpenWSN support

www.openmote.com

Pycom board

- ESP32 processor
- Native MicroPython interpreter
- File system, USB
- Interactive execution over serial port
- File synchronisation and detached execution
- Proprietary form factor and connector
- FiPy
 - Dual-core LX6 processor, ULP co-processor
 - 520 KB RAM, serial 8 MB Flash + 4 MB RAM
 - LTE-m/NB1 + Sigfox + LoRaWAN
 - + BT4.2 + WiFi b/g/n

Large experimentation platforms

FIT/IoT-Lab platform

- opened Nov 2014
- 2700 nodes over 6 sites
- 4 diff. architectures
 - MSP430, Cortex M3, A8 processors
 - 868 MHz, 802.15.4 2.4 GHz radios
- some mobile nodes
 - trains, robots
- www.iot-lab.info

D14 - 14/04/22

Agenda

- Introduction
- Some experimentation boards and platforms
- Energy source, energy consumption
- Microcontrollers, memory
- Spectrum, PHY layer and radio chips
- Conclusions

Energy source, energy consumption

Energy source for sensor node

Rechargeable batteries performance

A. Patil, et al., "Issue and challenges facing rechargeable thin film lithium batteries", D18-14/04/22 Materials Research Bulletin, vol. 43, 2008, 1913-1942

Solar energy harvesting

- Solar radiance
 - 1 kW/m² = 100 mW/cm²
- Solar cell efficiency
 - Organic : 8-10%
 - perovskites: 20%
 - Silicon : 12-18%
 - Research: 40%
- Harvesting
 - 1 10 mW/cm² sunlight
 - 10 100 µW/cm² indoors
- Maximum Power Point ?

By ZyMOS - ZyMOS, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1352608

Vibration energy harvestings

Table 5. Electret-free electrostatic vibration energy harvesters from the state of the art

Author	Ref	Output power	Surface	Volume	Polarization voltage	Vibrations
Tashiro	[19]	36 µW		15000 mm ³	45V	1,2G@6Hz
Roundy	[24]	11 µW	100 mm ²	100 mm ³		0.23G@100Hz
Mitcheson	[25]	24 µW	784 mm ²	1568 mm ³	2300 V	0.4G@10Hz
Yen	[26]	1,8 μW	4356 mm ²	21780 mm ³	6 V	1560Hz
Despesse	[21]	1050 μW	1800 mm ²	18000 mm ³	3 V	0.3G@50Hz
Hoffmann	[23]	3.5 μW	30 mm ²		50 V	13G@1300-1500Hz
Basset	[22]	$61 nW^1$	66 mm ²	61.49mm ³	8 V	0.25G@250Hz

S. Boisseau, G. Despesse and B. Ahmed Seddik, Electrostatic Conversion for Vibration Energy Harvesting, Small-Scale Energy Harvesting, Intech, 2012

$$C = \varepsilon.S /d;$$
 $Q = CV;$ $dE = V.dQ$

Energy storage for sensor node

- Primary battery
 - Shelf life
 - Limited current
 - voltage drop, aging
 - requires parallel capacitor
 - Temperature
- Temporary storage
 - Rechargeable battery
 - Yield ~ 90%, limited current
 - A few A.h under 3.7 V
 - Supercap
 - high current, 95% yield,
 - a few F capacity

Scavenging electronics

- Goals
 - Deal with variable source voltage, power
 - Control storage charge/discharge
 - Deliver regulated voltages to loads
- Example : AEM10940
 - Cold start at 0.38 V and 11 uW source
 - Sustained operation at 0.1 V source

D22 - 14/04/22

MPTT operation

Thin Film Lithium batteries on Silicon

https://www.cymbet.com/wp-content/uploads/2019/02/Sensors-Expo-2013-Engineering-Ultra-low-power-SoC-sensors.pdf

Battery chips used as any other chip

Stev Grady, Cymbet Coorporation, "Powering Wearable Technology and Internet of Everything Devices", https://www.cymbet.com/wp-content/uploads/2019/02/Powering-Wearable-Technology-and-the-Internet-of-Everything-WP-72-10.1.pdf

Multiple chips in package

- 0.2 J, 1 kohm Rint
- 3.3 V, 10 uA typ output
- 2.5 5.5 V input
- •9*9mm
- \$3 (2018)

Energy consumption

- Mostly dissipated into heat
 - Except actuation energy, radiation energy
- Static dissipation
 - Analogue (linear) electronics
 - Radio
 - Sensors
 - Energy management
 - Digital electronics (CMOS)
 - Leakage
- Dynamic dissipation
 - Digital electronics (CMOS)
 - Voltage changes on digital signals : $E = \frac{1}{2} C V^2$

Dynamic power consumption

CMOS logic

- Voltage-based logic
 - "1" = 3.3V, "0" = 0V
- Current only needed to fill or drain output capacitance

Vdd

Energy stored in capacitor

Energy supplied by system

$$dQ = C \cdot dv = i \cdot dt$$

$$Q = \int_{0}^{\infty} i \cdot dt = \int_{0}^{\infty} C \cdot \frac{dv}{dt} \cdot dt$$

$$= C \cdot \int_{0}^{Vdd} dv = C \cdot Vdd$$

$$p_{s} = Vdd \cdot i$$

$$E_{s} = \int_{0}^{\infty} p_{s}(t) \cdot dt = \int_{0}^{\infty} Vdd \cdot i \cdot dt$$

$$= Vdd \cdot \int_{0}^{\infty} i \cdot dt$$

0

 $= C \cdot V dd^2$

D31 - 14/04/22

Summary

• 1/2 C . V²

Integration, energy benefit

• Dynamic power consumption

- E // C V²
- C from 100 fF to 10 pF
- Standard input-output voltages
- Lower core voltages

Static power consumption

Steady current flow

- Analogue electronics
 - Current is constant by design
- Digital electronics
 Leaks at junctions, channels

• Only cure is to turn power off

Typical supply current measurement

2020_04_11_07h08* - otii 0													
File Project Device Tools Window Account Help													
]K ⊂ +	Arc2 ADC Current 🔸 ≑ 🔳 😣 🕪				MIN: AVG:	MAX: EI	NERGY: 🔻						
Power switches	14 s	16 s		20 s	22 s		24 s						
▶ Arc2 2.00 V ●		16 s 647.078 ms		18 s 907.836 ms	1.30 μA 77.1 μ	Α 483 μΑ 88	36 pWh						
Recordings +	ح	Δ 2 s 260.758 ms											
▶ 11/04 09:42:16 ×	450 μ		·										
▶ 11/04 09:09:57 ×			· · · · · · · · · · · · · · · · · · ·										
▶ 11/04 09:07:27 ×													
▶ 11/04 08:57:42 ×	A												
	40												
▶ 11/04 07:00:15 ×													
	14 85												
	m												
	4												
	1008												
	A												
	250												
	141 00												
	5												
	A												
	150 μ												
	А												
	8												
	4												
	<u>b</u>		a hitera di serie de la serie de la malerie de la serie de la s										
Visualizations						للتلاصير بين عم و							
Arc2 ADC Cur.	Mar					الاتا اللا إلى ع							
Arc2 ADC Vol.		Al towards a particular sector for a control of a sector of and		an an an Ion an Anna a Anna an Anna an	de wit with a the standard the second of the deside of the day the day that the standard second and the standard	and an and a second	antiperied holicolice had have and						
Agenda

- Introduction
- Some experimentation boards and platforms
- Energy source, energy consumption
- Microcontrollers, memory
- Spectrum, PHY layer and radio chips
- Conclusions

Microcontrollers

Microcontroller typical block diagram

Microcontroller low-power features

- Instruction word size
 - Compact instruction set
 - Native 8 bit (x86, AVR)
 - Compact 16 bit (ARM Thumb, MSP430)
- Selective disabling of functions
 - Clock gating, power gating
 - Low-power vs startup time tradeoff
- Several oscillators
 - Ext. crystal, 32 kHz, internal RC
- Several voltage regulators

Microcontroller energy consumption

I. Tsekoura et al., "An evaluation of energy efficient microcontrollers," 2014 9th International Symposium on Reconfigurable and Communication-Centric Systems-on-Chip (ReCoSoC), Montpellier, 2014, pp. 1-5. doi: 10.1109/ReCoSoC. 2014.6861368

Low power operation

- Dynamic power consumed
 P // V².f
- Fixed approach
 - Pick required frequency
 - Pick required voltage
 - Pick voltage regulator
 - Design for worst case
- Variable frequency, fixed voltage
 - On-Off clock?
 - Continuously variable frequency?

Min energy operation

- Dynamic power consumed
 P // V².f
- Task Duration = n. 1/f
- Energy = P * Duration
 // n V²

Min energy operation

- Dynamic power consumed
 P // V².f
- Task Duration = n. 1/f
- Energy = P * Duration // n V²
- Operate as slowly as possible
- Control voltage accordingly

 Leakage/steady current not accounted for

Microcontroller leakage current

- In standby mode, just a giant diode
- Don't buy more memory than you really need

Agenda

- Introduction
- Some experimentation boards and platforms
- Energy source, energy consumption
- Microcontrollers, memory
- Spectrum, PHY layer and radio chips
- Conclusions

Spectrum, PHY layer and radio chips

Licensed-exempt spectrum

Licensed-exempt spectrum

License-exempt, but still regulated

- Maximum power, power density
- Duty cycle
- Usage
- E.g. DECT 1.9 GHz band, only to be used for DECT
- E.g., 862-870 MHz unlicensed band (CEPT ERC Rec 70-03)

Unlicensed frequency bands (1/2)

• 2.4 GHz ISM band

- 2.400-2.4835 GHz world-wide, 4W EIRP maximum
- Microwave owens, 802.11 (WiFi), 802.15.4, Bluetooth, prop. radios
- fairly polluted
- line of sight propagation
- short antennas
- UHF 900 MHz band
 - continent specific : 868 MHz Europe, 902-928 MHz USA, 915 Japan
 - W-MBus, Zwave, LoRa, SigFox, prop. radios
- UHF 400 MHz band
 - continent specific, 433 MHz in Europe
- VHF 169 MHz band
 - better indoor penetration, long antennas

Unlicensed frequency bands (2/2)

- 5 GHz UNII band
 - IEEE 802.11a
 - silicon-only transceiver less efficient
- 60 GHz
 - Very short transmission range
 - Silicon transceiver still to be designed
- Ultra-Wide Band
 - legal since 2003 in the USA
 - 3.1 10.6 GHz
 - -41,3 dBm/MHz max avg
 - 0 dBm/50 MHz max peak
 - good opportunity for positioning
 - opportunity for new radio design

D52 - 14/04/22

Licensed spectrum

Telecom operator cellular IoT systems

- 3GPP Release-13 (June 2016)
 - 10-20 dB coverage extension, reduced UE complexity/cost
 - 10 years on 5 W.h battery (Power Saving Modes, extended DRX)
- EC-GSM (2G improvement)
 - Extended-coverage through blind repetition
 - Base station and UE software upgrade
 - 350 bps 240 kbps, 200 kHz bandwidth
- LTE-M (4G improvement)
 - 10 kbps 1 Mbps, 1.08 MHz bandwidth
- NB-IoT (new radio for 4G)
 - Narrowband (180 kHz bandwidth), 20 kbps 250 kbps
 - 3 modes of operation : LTE in-band, LTE guard band or standalone
- 5G
 - Will use LTE-M and NB-IoT, NR-Lite radio for Rel 17 (2022)

Telecom operator bands (3GPP)

- 2G (EC-GSM)
 - 900 MHz, 1800 MHz
- 4G (NB-IoT, LTE-M)
 - 850 MHz, 2.6 GHz
- 5G
 - 700 MHz, 3.6 GHz, 26 GHz

PHY layer

PHY layer block diagram

WPAN: IEEE 802.15.4 -2003 PHY

- 900 MHz and 2.4 GHz bands
 - 16 channels in 2.4 2.4835 GHz, 5 MHz spacing, 250 kbps
 - O-QPSK 2Mcps DSSS
- sensitivity
 - 2.4 GHz : better than -85 dBm at 1% PER
- at least -3 dBm output power
 - about 30 m range
- turn around-time
 - 12 symbol periods
- used in Zigbee, W-HART, ISA100

c = 11 c = 12 c = 25 c = 262,475 2,48 GHz 2.405 2.41 2 MHz 5 MHz IEEE 802.11g Channels c = 11 c = 13 GHz 2.412 2.437 2.462

A survey of wireless technologies coexistence in WBAN: Analysis and open research issues - Scientific Figure on ResearchGate. Available from: htps://www.researchgate.net/figure/Frequency-channels-of-IEEE-80211g-and-802154-in-the-24-GHz-band fig4 271741147

IEEE 802.15.4 Channels

Long Range Wide Area Low Power PHY

Sigfox

- 868 MHz band, 100 Hz channel, 100 bps, BPSK, 25 mW
- All-proprietary system, originally unidirectional
- https://build.sigfox.com/sigfox-device-radio-specifications
- Single world-wide network
- Simple IoT device, complexity in the network
- •
- LoRa
 - 868 MHz, 125 kHz channel, chirps, 300bps-5kbps, dynamic adaptation
 - LoRa Alliance www.lora-alliance.org
 - LoRaWAN 1.1 spec public, does not describe PHY layer
 - Semtech still sole chip vendor

Figure on ResearchGate.

https://www.researchgate.net/figure/A-snapshot-of-LoRa-transmission-that-shows-up-down-and-data-chirps-as-seen-on_fig1_331294324

Practical implementation

Typical radio transceiver architecture

Figure 2. CC1020 simplified block diagram

Radio transceiver in analogue world

- 5€ radio chip
- Minimal external electronic components
- Antenna implementation
 - PCB tracks : free, fair perf
 - Discrete : 0.5€, good perf
- Resonnator
 - Quartz crystal : 0.5€
 - Temperature compensation

Energy optimizations at PHY layer

- Semiconducteur technology
 - well-known Moore's law does not really apply to analogue or RF electronics
 - bias current pretty much constant
 - voltage can't go below a few Vt
- Frequency band
 - Higher operating frequencies require more bias current in linear circuits
- Receive sensitivity
 - lower gain can do with lower bias current in linear circuits
 - bypass some filtering stages
 - low-performance wake-up receiver (totally passive?)
- Short wake-up, carrier sensing, sync and turn-around time
 - spend less time in un-productive states

Other ideas for PHY layer

- Transmit power control
 - transmit at minimal power required for correct decoding
 - reduces interference to other nodes
 - power saving is marginal below 0dBm
- Transmit speed
 - Shannon's law C = B log2 (1+S/N) suggests that less energy is required for slow transmission
 - just in time transmission^[1]
 - but (real) receivers will have to stay on longer
- Brand new architectures
 - Non-standard electronics (weak inversion CMOS)
 - MEMS/NEMS passive receivers
 - Impulse-based UWB radios (cf. infra)

[1]. B. Prabhakar, E. Uysal, A. El Gamal, "Energy-efficient transmission over a wireless link via lazy packet scheduling," Proc. of the IEEE INFOCOM, Anchorage, 2001

Radio chips

Transceivers gallery

- IEEE 802.11 (WiFi)
- Sub-GHz narrowband
 - TI/ChipCon CC1020
 - TI CC1200
- IEEE 802.15.4-2003
 - Freescale MC13192
 - TI CC2538 (SoC)
- Research directions

IEEE 802.11 (WiFi) radios

- 802.11b
 - 2.4 GHz, DSSS, 1-11 Mbps
- 802.11a,g
 - 5 GHz, 2.4 GHz, OFDM, 54 Mbps
- typical power consumption^[1]

Chipset	Sleep (mW)	Idle (mW)	Receive (mW)	Transmit (mW)	
ORiNOCO PC Gold	60	805	950	1400	a 11 Mbps
Cisco AIR-PCM350	45	1080	1300	1875	

• i.e. 150 nJ/bit transmitted, 90 nJ/bit received

- Microchip RN1723 802.11b,g (2016)
 - 40 mA Rx, 120 mA Tx @ 0dBm (190mA @+12dBm), 3.3V
 - 2-10 nJ/bit received

[1] Shih et al, "Reducing Energy Consumption of Wireless, Mobile Devices Using a Secondary Low-Power Channel". MIT RR March 03

CC 1020

• Monolithic narrowband UHF transceiver

- dual-band 400 and 900 MHz
- FSK/GSK and ASK/OOK
- -20 +10 dBm output power
- 0.45 -153 kbps
- 12.5 500 kHz channels

- Digital RSSI
 - Received Signal Strengh Indicator
 - Carrier Sense threshold and status bit

CC1020

				<u> </u>
Current Consumption				
Power Down mode	0.2	1.8	μA	Oscillator core off 350nJ/bit rec.
Current Consumption, receive mode 434/868 MHz	17.3/17.9		mA	
Current Consumption, transmit mode 434/868 MHz:				
P = -20 dBm	10.3/13.7		mA	The output power is delivered to
P = −5 dBm	12.1/18.1		mA	also page52.
P = 0 dBm	13.7/21.9		mA	
P = 5 dBm	16.8/33		mA	
P = 10 dBm (434 MHz only)	23.7		mA	
Current Consumption, crystal oscillator	77		μA	14.7456 MHz, 16 pF load crystal
Current Consumption, crystal oscillator and bias	500		μA	14.7456 MHz, 16 pF load crystal
Current Consumption, crystal oscillator, bias and synthesizer	11.5		mA	14.7456 MHz, 16 pF load crystal

CC 1200 (2013)

- Monolithic narrowband VHF/UHF transceiver
 - 169, 400 and 868/900 MHz
 - FSK/GSK/MSK/OOK
 - +16 dBm output power
 - Tx 46mA @+14dBm
 - Rx 19-23 mA
 - 2.0 3.6 V supply
- 40 kHz RC int. oscillator
- WakeOnRadio
- AES128 accelerator
- Auto-ACK

Freescale MC13192

- IEEE 802.15.4 2003 compliant
 - -30 dBm (min) to 0 dBm (typ) output power, (+3.6 dBm) max
 - transmit 34 mA @ 0dBm (under 2.7 V)
 - receive 37 mA (under 2.7V)
 - several power-down modes 1-500 µA
- 7 external components
- On-chip voltage regulator
- Some MAC support on-chip
 - timers
 - automatic ACKnowledge hardware generator

4 bytes	1 byte	1 byte	125 bytes Max	2 bytes		
Preamble	Start of Frame Delimiter	Frame Length	Payload	FCS		

400nJ/bit rec.

D71 - 14/04/22

MC13192 states and power consumption

Characteristic	Symbol	Min	Тур	Мах	Unit
Power Supply Current (V _{BATT} + V _{DDINT}) Off Hibernate Doze (No CLKO) Idle Transmit Mode Receive Mode	I _{leakage} I _{CCH} I _{CCD} I _{CCI} I _{CCT} I _{CCR}	- - - -	<1.0 3.0 40 500 34 37	- - - - -	μΑ μΑ μΑ mA mA

(V_{CC} = 2.7 V, T_A = 25°C, unless otherwise noted)

Mode	Definition	Transition Time To or From Idle	
Off	All IC functions Off, Leakage only. RST asserted.	23.332 ms to Idle	
Hibernate	Crystal Reference Oscillator Off. (SPI not functional.) IC Responds to ATTN.	18.332 ms to Idle	
Doze	Crystal Reference Oscillator On but CLKO output available only if Register 7, Bit 9 = 1 for frequencies of 1 MHz or less. (SPI not functional.) Responds to ATTN and can be programmed to enter Idle State through an internal timer comparator.	332 μs to Idle	
ldle	Crystal Reference Oscillator On with CLKO output available. SPI active.		
Receive	Crystal Reference Oscillator On. Receiver On. SPI should not be accessed.	144 µs from Idle	
Transmit	Crystal Reference Oscillator On. Transmitter On. SPI should not be accessed.	144 µs from Idle	
CC2538 System-on-Chip

- 2012
- IEEE 802.15.4 2003 radio
 - +7 dBm output power
 - transmit 24 mA @ 0dBm (2.0 3.6 V)
 - receive 20 mA
 - several power-down modes 1-500 μA
- ARM Cortex-M3 32 MHz processor
 - 128 512 KB Flash
 - 16+16 KB RAM
- 32 MHz xtal / 16 MHz RC / 32 kHz xtal / 32 kHz RC
- \$5 in 1k quantities

Summary table

	Band	Std	Rx current	Sensitivity	Tx current @ 0dBm
CC1021 (2003)	868 MHz	FSK, GSK. OOK	18 mA	~ -110 dBm	22 mA
CC1201 (2013)	868 MHz	FSK, GSK, MSK, OOK	19 – 23 mA	~ -115 dBm	28 mA
MC13192 (2003)	2.4 GHz	IEEE 802.15.4	37 mA	-92 dBm	34 mA
CC2538 (2012)	2.4 GHz	IEEE 802.15.4	20 mA	- 96 dBm	24 mA
LTC5800 (2013)	2.4 GHz	IEEE 802.15.4	4.5 mA	- 93 dBm	5.5 mA
SX1276	868 MHz	LoRa, FSK	11 mA	-136/-118 dBm @ 125kHz BW	20 mA @ +7dBm

- Active power 10 100 mW
 - Duty cycling needed to meet long lifetime
- Long range = slow = high energy per bit (up to 1 mJ/bit)

Radio research

Research directions

- Wake-up radios
 - Lower sensitivity: non-detection
 - Interference: false positives
 - Separate frequency: different propagation
 - Same frequency: collision avoidance
 - IEEE 802.11ba, 5G wake-up sequence
- Ultra-low voltage design
 - Weak inversion mode
 - Use of switches for mixers
- Passive electronics
 - Micro-electromechanical resonator
- Passive transmitter
- UWB impulses, short times

Passive radios (1/2)

• Passive receivers

- Galena (lead-sulfite) receivers (1894, J.C. Bose)
- Single Carbon Nanotube receivers
- NEMS/MEMS-based receivers
- Passive mixers

By Hihiman - Own work, CC BY-SA 3.0 https://commons.wikimedia.org/w/index.php?curid=5228955

Rutherglen C., Burke P., 2007, "Carbon Nanotube Radio". Nano Lett., 7 11 (November 2007), 32963299, 0028-0836

Passive radios (2/2)

• Passive transmitters

- Passive RFIDs
- Illumination source can also be unknowing third party.

LoRaWAN passive transmitter 2.8 km range reported

V. Talla, M. Hessar, B. Kellogg, A. Naja, J. R. Smith, S. Gollakota. LoRa Backscatter: Enabling The Vision of Ubiquitous Connectivity. IMWUT, 2017

Ultra Wide Band

- Benefits
 - Robust to narrow-band interference
 - Robust to multipath
 - Licence-free

- IEEE 802.15.4a Task Group, went into Revision 2007
 - 100 kbps 6.8 Mbps, 100 m
 - Focus on low power radio, ranging
- A few chips available
 - BeSpoon.com (CEA-Leti spin-off), Decawave

Ultra Wide Band impulse radio

- Transmission
 - 1 ns pulses, wideband
 - Pulse shaping, filtering
 - Time-dithering
 - On-Off, Polarity or Position modulation
- Reception
 - Expected pulse time windows
 - Coherent or non-coherent detection
 - Several pulses per bit of information
- Ranging
 - RF time of flight

Ultra Wide Band impulse radio

- Amenable to ultra low power consumption
 - very few linear circuits
 - idle most of the time
- Wideband electronics settles quickly
- Receiver circuits can be turned off between expected pulses
 - Including between multipath replicas

Ouvry, L.; Masson, G.; Pezzin, M.; Piaget, B.; Caillat, B.; Bourdel, S.; Dehaese, N.; Fourquin, O.; Gaubert, J.; Meillere, S.; Vauche, R., "A 4GHz CMOS 130 nm IR-UWB dual front-end transceiver for IEEE802.15 standards," Proceedings of the 21st IEEE International Conference on Electronics, Circuits and Systems (ICECS), pp.798,801, Marseille, France, Dec. 2014.

Cheaper radios (1/2)

- In-package Bulk Acoustic Wave (BAW) resonator
- TI CC2652RB (Feb 2019)
 - BT, 15.4 radio, Zigbee stack
 - 48 MHz BAW, 40 ppm accuracy

Cheaper radios (2/2)

- Crystal-less radio
 - Network-based synchonization
- On-chip antenna
 - Deemed viable above > 10 GHz

Fig. 1. System level block diagram of the transceiver.

Fig. 2. Die photo of the 1.83 mm * 1.83 mm flip-chip IC, of which the radio occupies 1.2 mm^2 .

B. Wheeler et al., "Crystal-free narrow-band radios for low-cost IoT," 2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Honolulu, HI, 2017, pp. 228-231.doi: 10.1109/RFIC.2017.7969059

M. Pons et al., "Study of on-chip integrated antennas using standard silicon technology for short distance communications," 2005 European Microwave Conference, Paris, 2005, pp. 4 pp.-1714.

Agenda

- Introduction
- Some experimentation boards and platforms
- Energy source, energy consumption
- Microcontrollers, memory
- Spectrum, PHY layer and radio chips
- Conclusions

Conclusions

Sensor Node energy balance

- Energy
 - monitoring/conversion/control
 - battery
 - from environment
 - solar cell
 - vibrations
 - heat
- Radio
 - low power
 - highly efficient
 - unlicensed
- Computation
 - hard-wired
 - microprocessor/controller
- Sensing/Actuation

Transmission vs. Computation

- Wireless transmission $= 0.1 \mu J 1 m J per bit$
- Microcontroller computation = 0.1 10 nJ per instruction
- Saving 1 bit on the air is worth 100 computation instructions
- Trend to reducing communication cost
 - by using more computation
 - smart protocols, compression
- The opposite in wired (fiber) networks !

End of Session