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Introduction

Segmentation: What? Why?

@ Segmentation: Partition an image into consistent segments /
regions in terms of:

colour

texture

objects

foreground vs background

things and stuff

@ Fundamental Computer Vision task for:

Object detection, Pose estimation, Action recognition,...
Obstacle avoidance, Navigable surface detection, ...
Virtual background, Augmented Reality,...

Remote sensing, Medical images,...
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Before Deep Learning

Segmentation did not start with SegNet!

Segmentation has been a cardinal task of Computer Vision since
the very beginning! Thousands of papers were published on the
subject before 2010, with a huge variety of approaches. Those
methods did not pretend to address semantic segmentation, but
aimed to reduce the content of the image to a partition in
significant regions, by grouping pixels according to two criteria:

@ Appearance consistency: Pixels in a same region should have
close colours or textures.

@ Geometric consistency: The region should be regular and not
too large.
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Before Deep Learning

Morphological Watersheds

The morphological watershed is a
well founded segmentation
algorithm, based on a topographic

il i
model of the image gradient, filled “ b"%u‘
by water immersion. \ VD’

Shape and size of regions
(catchment basins) can be
controlled by:

e Morphological filtering
e Marking of relevant regions.
[Vincent91]
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Before Deep Learning

Divide-and-Conquer methods

Divide-and-Conquer methods first split the image into atomic
regions (e.g. pixels), then recursively merge the regions (e.g.
following a dyadic pyramid process) based on similarity criteria.

[image from jrtechs.net]
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Before Deep Learning

Markovian image segmentation

Markov Random Fields are a well founded framework for
image segmentation, based on miminising the energy of a
Gibbs field defined over the cliques (fully connected
subgraphs) of the regular graph formed by the image:

w

[Katol2]
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Before Deep Learning

Combining with clustering

Image Segmentation can be combined with clustering algorithms
calculated in the tonal (gray level, colour) space, or in some
transformed (latent) space:

@ K-means clustering
@ Histogram segmentation
@ Meanshift mode tracking

o Bayesian classification

° ../
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Before Deep Learning

Superpixels and RAGs

Superpixel algorithms are popular
non-semantic segmentation
methods that allow to reduce in a
flexible way the volume of data
while keeping a - relatively -
regular graph topology.
Superpixel graphs can then be
used as inputs of convolutional or
transformer based neural
networks. [Achantal2]
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Convolutional Neural Networks
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Convolutional Neural Networks

It starts from Autoencoders...

Since a segmentation algorithm is expected to provide a label
(class) for each pixel of the input image, the architecture of a
neural network trained for image segmentation follows the structure
of an autoencoder:
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Convolutional Neural Networks

How does the decoder increase the resolution? (1/2)

ENCODER DECODER ENCODER DECODER

Transposed Convolution Interpolation
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Convolutional Neural Networks

How does the decoder increase the resolution? (2/2)

ENCODER DECODER ENCODER DECODER

Unpooling Skip connections
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Convolutional Neural Networks

FCNSeg [Shelhamer15]

FCNSeg is a Fully Convolutional Network (FCN) that ends with a
large transposed convolution layer which produces a coarse
segmentation map, which is then upsampled using different
methods:

forward /inference

_ backward/learning
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Convolutional Neural Networks

SegNet [Badrinarayanan15]

) Convolutional Encoder-Decoder Output

Pooling Indices "

RGB Image

I Conv + Batch Normalisation + ReLU Segmentation

Il rooling [ Upsampling Softmax

Convolution with trainable decoder filters

SegNet is a symmetrical FCN based on an
encoder-decoder structure without skip
connections but with particular
max-unpooling layers:
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Convolutional Neural Networks

U-Net [Ronnebergerl5]
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Convolutional Neural Networks

Output encoding and loss functions?

In the case of semantic segmentation, the last
layer is a softmax function that encodes, for each
pixel p € P, a probability distribution among
classes i € C: y(p)i = g0

Z NP

jec

Akin to classification, the typical loss function for segmentation is
the sum over pixels of the cross entropy:

['seg y y Z Zwly |Og (P) )

peP ieC

(the weights w; can be adjusted to account for disbalanced classes
in the training set).
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Convolutional Neural Networks

Output encoding and loss functions?

In the case of instance segmentation, in addition
to softmax, an instance label kK € K has to be
predicted by the network for each pixel.

The instance-level loss function is then typically summed over the
different predicted instances:

Linst(9,y) == > D> wiy(p)Flog(9(p)f)

pEP kekK ieC

(the weights w; can be adjusted to account for disbalanced classes
in the training set).
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Convolutional Neural Networks

Training Segmentation Networks

@ Segmentation CNN are Fully Convolutional, then applicable on
any size images, but take care of the receptor fields, that
determine the scale and then the semantic level of the
representation.

@ Like auto-encoders and their variations (denoising or restoring
networks), the loss functions are relatively straightforward.

@ But unlike auto-encoders and their variations, self-supervision
is hard to design, and ground truth annotations hard to obtain.

@ For supervised approaches, ground truth annotations are
typically obtained by:

e Manual annotations using e.g. CVAT or LabelMe (Pascal
VOC, Cityscapes,...)
e Image synthesis tools (SynthlA, GTAS,...)
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Convolutional Neural Networks

Using pre-trained encoders [from medium.com/@VK]
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Convolutional Neural Networks

Using data augmentation [from mxnet.apache.org]

Positional Color

Original Augmentation Augmentation
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Transformer based models
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Transformer based models

Back to the principle: From NL-Means to Self-Attention

e Self-attention layers (Transformers) overcome the limitation of
local computation (temporal causality / spatial dependence),
by allowing the interaction - in one single layer - of very
distant elements in the input data.

@ In the same way as Neural Networks adopted convolution as a
fundamental primitive in CNN to generalise local operations
through learned kernels, self-attention layers generalise
Non-Local operations by learning both similarity functions
(which pixels will most interact), and the associated weights.
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Transformer based models

From NL-Means to Self-Attention

Self-attention (transformer) :
wlij)~ A=k =(WOX).(W" X))

i

Q / Learned weights

=
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Transformer based models

From NL-Means to Self-Attention

NL-Means : 1

yi= W“;J')Xj

oo

Self-attention (transformer) :
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Transformer based models

..as an end-to-end version

In end-to-end version, X and Y are 2 images of size N (= number
of pixels!), Wy, Wi and W, are learned weight matrices of sizes
N x N, M x N, and M x N respectively, and the attention matrix
A has size N x M.

IQ—W“.

Self-Artention Module
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Transformer based models

‘ Example of Attention maps for Denoising
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Transformer based models

..as a module version

For images, self-attention modules are generaly applied on smaller
images (patches), on smaller feature maps, on patch or region
(superpixels!) embeddings...
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Transformer based models

Vision Transformer ViT [Dosovitskiy21]

ViT is used as a module in most modern (including foundation)
models, in particular for segmentation. It is based on applying the
transformer to a (learned) linear projection of image patches:

Vision Transformer (ViT) Transformer Encoder

Transformer Encoder

\ :
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Embedded
Patches
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Transformer based models

Properties of ViT [Dosovitskiy21]

@ Since the self-attention module is composed of three fully
connected layers, the transformer originally ignores the order
between the components of its input, and then the spatia/
relations, that play a vital role for images.

@ To overcome this weakness, ViT joins to each patch
embedding, a vector encoding its relative position in the image
(positional encoding).

@ Similar to multiple channels in CNN, a Transformer layer
generally has several self-attention modules (multi-head
attention), that allow to encode different concepts that are
useful and complementary for a given task.
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Transformer based models

SEgmentation TRansformer [Zheng21]
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Conclusion
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Conclusion

How to get rid of supervision?

e Foundation models leverage semi supervised learning based on
prompt engineering, either visual (points, bounding boxes, free
curves,...) or textual (using multimodal models).

@ Trained under such framework, Segment Anything Model
[Kirillov23] shows impressive zero-shot performance that in
turn, allows to build a huge densely annotated image
segmentation dataset, likely to improve supervised models, and
SO on...

@ Self supervised segmentation is only emerging; it is based on
auxiliary tasks that can be learned autonomously, and that
provide objective semantic clues.
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Conclusion

Towards fully self supervised segmentation [Hariat24]

As examples, depth (distance to the focal plane) and motion
(optical flow) can both be learned in a self supervised way, and
provide physical clues to separate objects or surfaces:
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Conclusion

Conclusion and take-away messages

@ State-of-the-Art Semantic (and Instance) Segmentation
models exploit the most powerful encoders, trained for
Classification task on the largest existing datasets.

@ Decoders are mostly trained in a fully supervised manner for
Segmentation, using a variety of strategies combining
interpolation, learned upsampling kernels, skip connection,
multi-layer aggregation,...

@ Foundation models provide Zero-shot Segmentation, based on
large pre-trained encoders and prompt based weak supervision.

@ Fully self supervised segmentation is emerging, by leveraging
physics based auxiliary tasks.
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Conclusion
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Conclusion
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Conclusion
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