

Deep learning for computer vision

Cours ENSTA Paris

5RO13 - 01 - 2024/2025

David Filliat

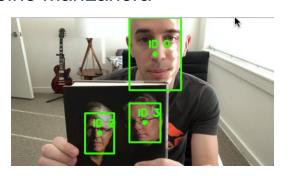
david.filliat@ensta-paris.fr

École Nationale Supérieure
de **Techniques Avancées**

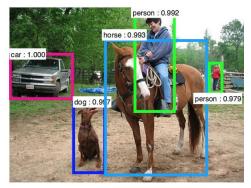
Course agenda

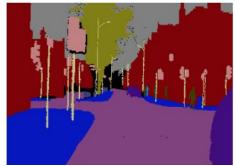
Deep Learning based Computer Vision for robotics

- Today : Deep Learning basics, classification
 - David Filliat
- Semantic segmentation
 - Antoine Manzanera
- Object detection
 - Philippe Xu
- Object tracking
 - Antoine Manzanera



CAT

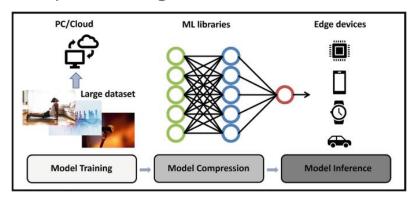




Course agenda

Deep Learning based Computer Vision for robotics

- Pose estimation
 - Thomas Rey
- Embedded deep learning
 - Zhi Yan



Grading

Research paper oral presentation

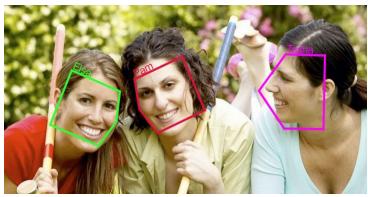
Computer vision

Vision tasks such as ...

- detection of objects
- recognition of places
- recognition of actions
- detection and recognition of persons

... are very difficult

- Using low level pixel information
- When environment condition change
- Given variability of targets



Many solutions rely on image processing and machine learning

IP PARIS

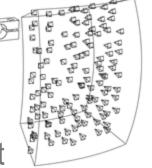
Note: without machine learning

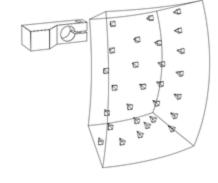
Object recognition can be done without machine learning

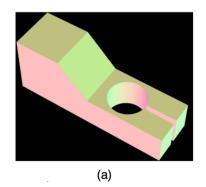
- Ex: Recognition from CAD models in factory environment
- Ex: CAD-Based Recognition of 3D Objects in Monocular Images. Ulrich, Wiedemann, and Steger, 2009

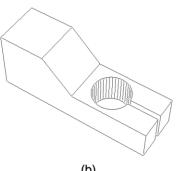
Approach

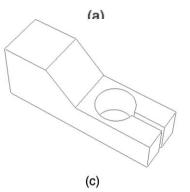
- Sample relative object/camera pose
- Generate contour views from model
- Measure distance with image gradient

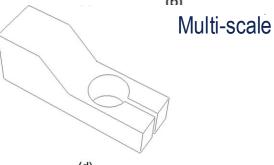






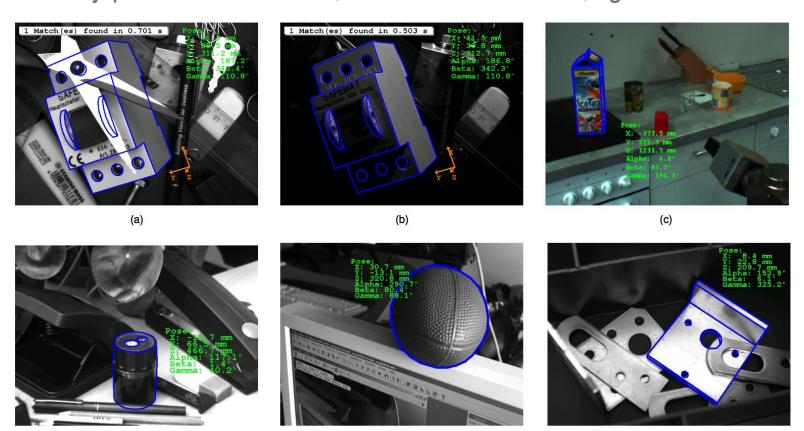






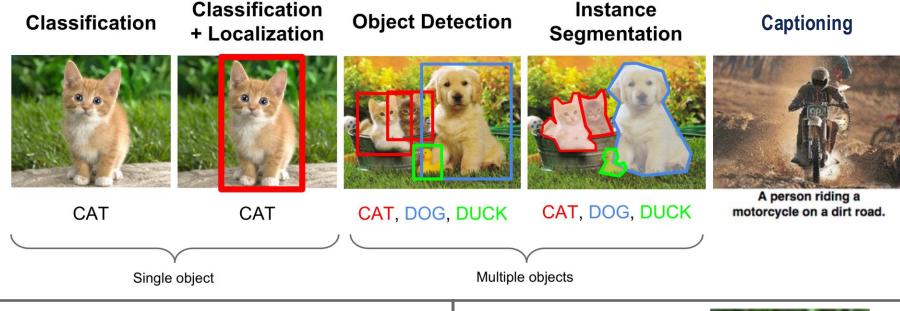
Good performances in practice

- Limited to known/solid objects
- Very precise localization, robust to occlusions, light modifications



(e)

Computer Vision Tasks



Requires Classification

Program for today

Objectives

Todays program

- Machine learning / Neural networks basics
- Neural networks for computer vision
- Neural networks training
- Datasets

Practical work

CIFAR10 image categorization in Pytorch with Google Colab

Machine Learning basics

Introduction to machine learning

Learning is a very weakly defined term

- Better definition needed for mathematical formalization
- Here : function approximation

Suppose there is

- an unknown function f: Rⁿ --> R^m that may have a random component
- a set of training examples, consisting of:

```
data vectors \{x_i\}, target values \{y_i\} obeing y_i = f(x_i)
```

Machine learning

- try to determine the unknown function f from training examples { x_i , y_i }
- Problem: how to determine a good approximation to f from data only?

Introduction to machine learning

Generic approach

- Use a parameterized family of functions f_w (x) to approximate f
- Adapt parameter vector w by minimizing a loss function $L(\{f_w(x_i)\},\{y_i\})$ over training examples
- This is called training or learning!
- Example for L: L2 loss

$$\sum_{i} (f_{w}(\bar{x}_{i}) - y_{i})^{2}$$

Getting data

- In general, human can "apply" the function (e.g., recognize an object)
- But computing it is hard -> learning

Choice of approximation function

Requirements

- Have "universal approximation capacity" for a defined class of functions F
- Have an efficient way to update w for minimizing loss

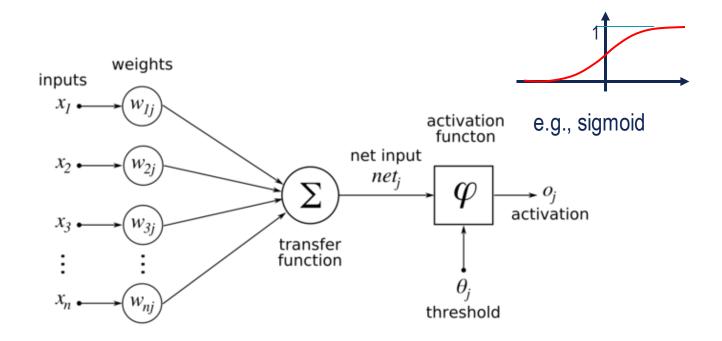
Examples

- Single-layer perceptron: linear functions
- Multilayer perceptron: continuous non-linear functions
- Random forest : continuous non-linear functions
- Support vector machine: binary functions
- Boosting: binary functions
- **....**

Choice depends on problem!

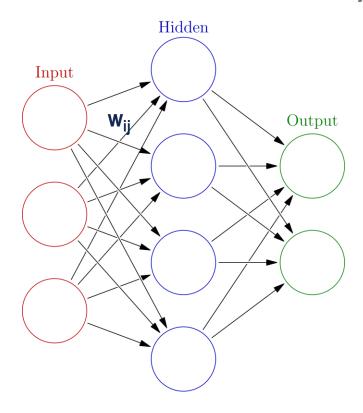
Artificial neuron ~1950

Element performing sum of weighted input + non linear fct



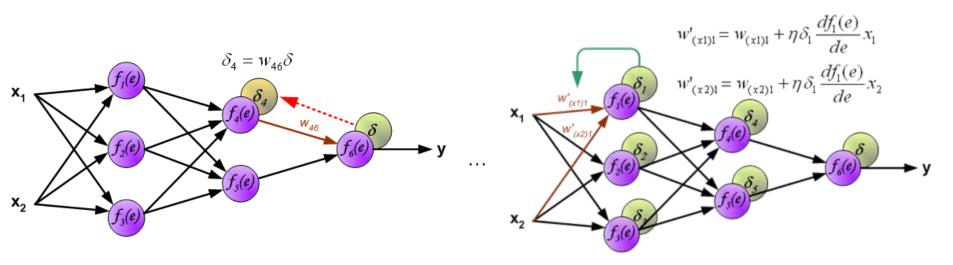
Neural network (Perceptron, (Rosenblatt, 58))

- Assembly of neurons, often organized in layers
- Parameterized by all connection weights w_{ij}



Learning in neural networks

- Find weights w_{ii} that minimize prediction error
- Backpropagation of error with gradient descent (Werbos, 75)
- Compute: error of output, gradient wrt. weights; update weight following gradient
- Do the same thing for previous layers using 'chain rule'



Source: Mariusz Bernacki - http://home.agh.edu.pl/~vlsi/Al/backp_t_en/backprop.html

In practice, automatic gradient computation

E.g. in pytorch : Define computation using 'Variables'

```
# Create a variable and tell PyTorch that we want to compute the gradient w = Variable(input\_tensor, requires\_grad=True)

b = Variable(input\_tensor, requires\_grad=True)

# Input value X = 2

# Define the transformation and store the result in new variables y = w * X + b

loss = (y - 4)*(y - 4)
```

- Automatic gradient computation loss.backward()
- Use gradient wrt. w to update weights

$$w = w - 10^{-3} * w.grad()$$

Deep Learning

Return of the neural networks

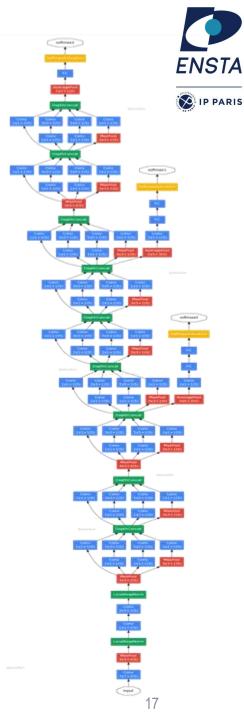
- Around 2010 ?
- Neural networks with "many" layers
- Theory similar to perceptron (for dense/cnn models)

Why "Deep"?

- Approximate more complex functions
- Works well in practice (on many problems)

Why now?

- More processing power
- Availability of large datasets (ImageNet)
- Found solutions to some learning problems

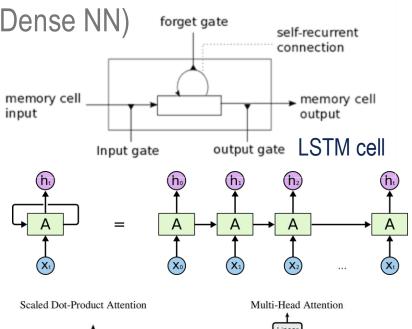


Deep Learning

Many architectures

- Fully connected Neural Networks (aka Dense NN)
- Convolutional Neural Networks
 - Specialized for image processing
- Recurrent architecture (e.g. LSTM)
 - Processing of temporal data
 - Trained by unfolding + supervised learning
- Transformer
 - Processing sequential data with attention
 - Can also be applied to images

-



Mask (opt.)

Scale

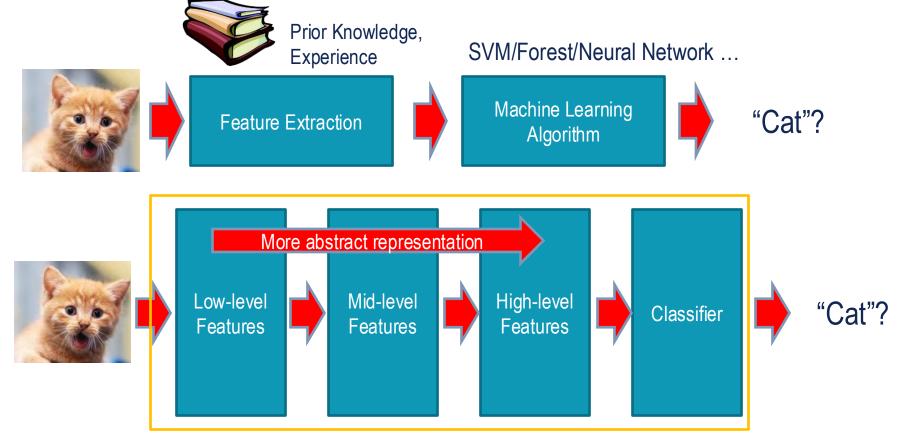
Scaled Dot-Product

Neural Networks for computer vision

Deep learning for vision

Avoid manual feature construction

Replace traditional architecture by deep network



Deep Network

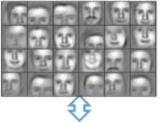
Deep learning for vision

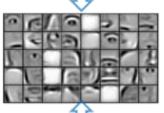
Avoid manual feature construction

- Process raw data directly
- Learn directly relevant feature from data
- Natural increase of feature abstraction
- 'Semantic invariance' of last layers
- Adapts to other modalities (depth, IR ...)

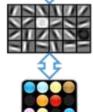
Problems with 'perceptron'

- Large image size -> large networks
- Need lots of training data
- → reduce network parameters





2nd layer "Object parts"

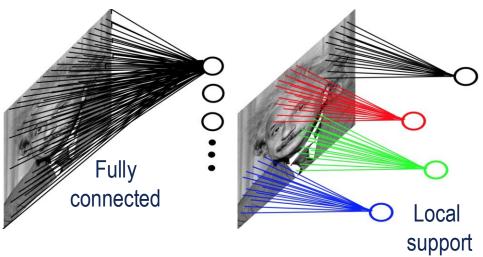


1st layer "Edges"

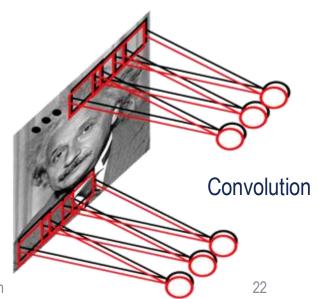
Convolutional Neural Networks

Reducing number of network parameters

- Use only limited local support
- Exploiting image invariance to translation:
 Use same local weights for all positions -> convolution



 Use several convolutions at each position -> multiple features layers



Convolution in 1D

Mathematical definition:

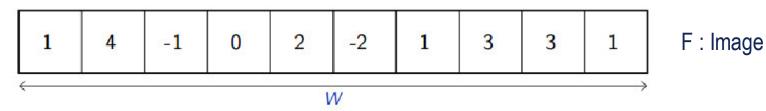
$$(f*g)[n] = \sum_{m=-M}^{M} f[n-m]g[m]$$

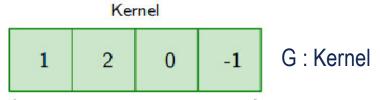
 In deep learning, we usually use cross-correlation which is very similar (but still use the name convolution...)

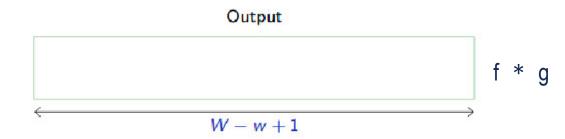
$$(f * g)[n] = \sum_{m=-M}^{M} f[n + m]g[m]$$

Convolution (cross correlation) in 1D $(f * g)[n] = \sum_{i=1}^{n} f[n + m]g[m]$

$$(f*g)[n] = \sum_{m=-M}^{M} f[n + m]g[m]$$



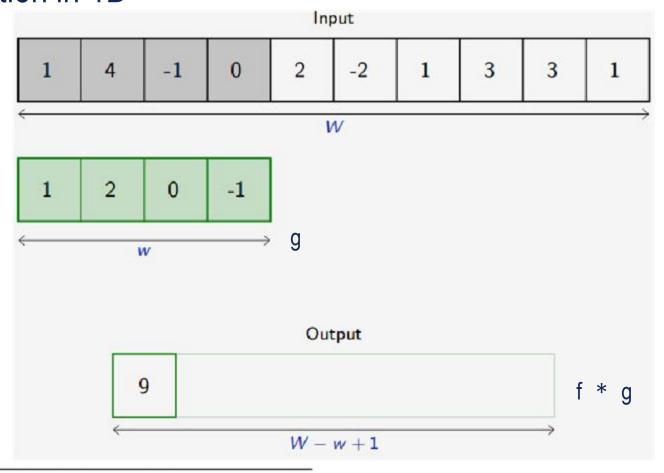




W

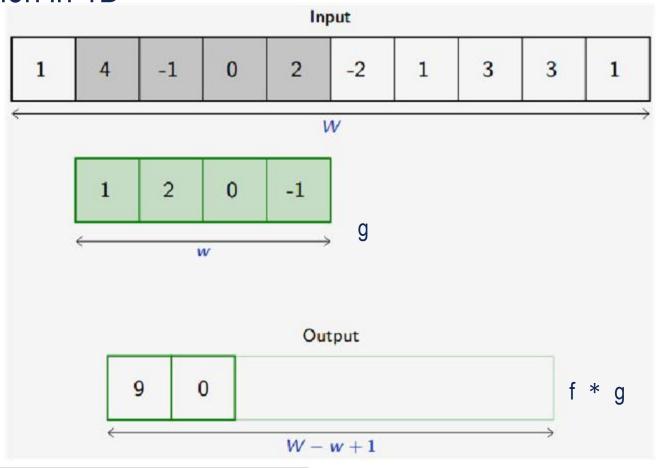
²Credits: François Fleuret

Convolution in 1D



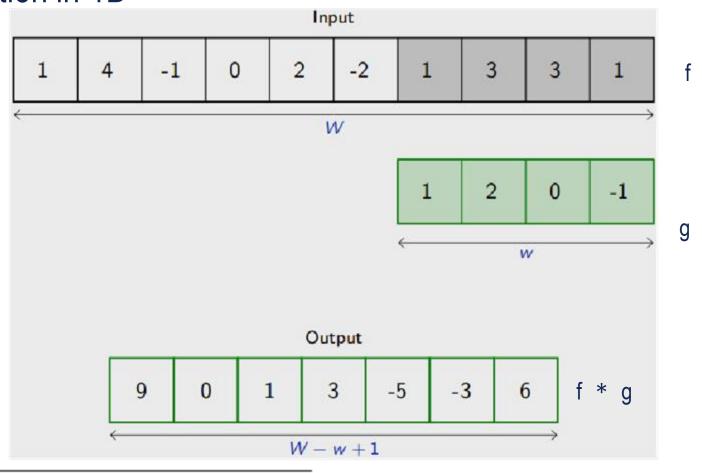
³Credits: François Fleuret

Convolution in 1D



⁴Credits: François Fleuret

Convolution in 1D



⁹Credits: François Fleuret

Convolution in 2D

Gray scale images

$$(f*g)[n_1,n_2] = \sum_{m_1=-M}^{M} \sum_{m_2=-M}^{M} f[n_1-m_1,n_2-m_2]g[m_1,m_2]$$

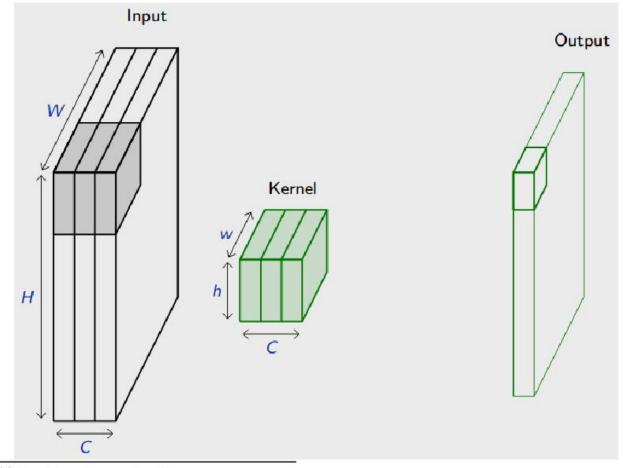
Color images (c = 3)

$$(f * g)[n_1, n_2] = \sum_{k=0}^{3} \sum_{m_1 = -M}^{M} \sum_{m_2 = -M}^{M} f[n_1 - m_1, n_2 - m_2, k]g[m_1, m_2, k]$$

(in fact cross-correlation)

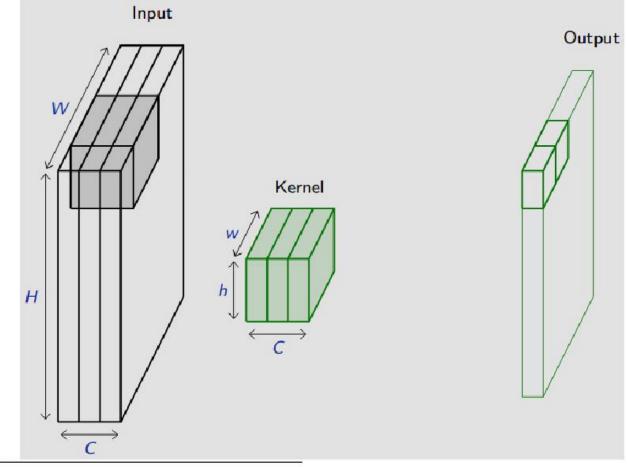
$$(f*g)[n_1,n_2] = \sum_{k=0}^{3} \sum_{m_1=-M}^{M} \sum_{m_2=-M}^{M} f[n_1+m_1,n_2+m_2,k]g[m_1,m_2,k]$$

Convolution in 2D



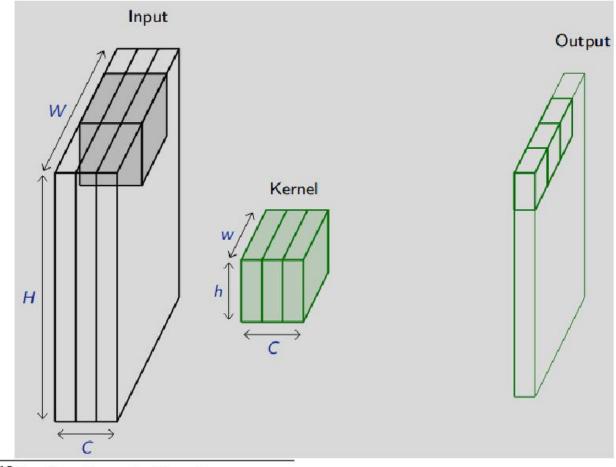
¹⁰Credits: François Fleuret

Convolution in 2D



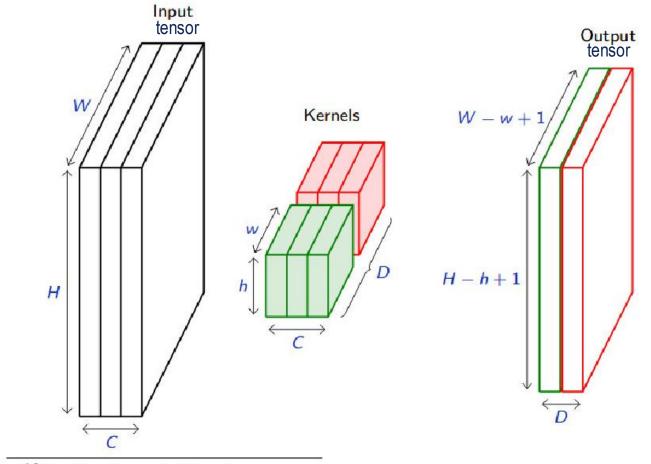
¹¹Credits: François Fleuret

Convolution in 2D



¹²Credits: François Fleuret

Multiple convolutions in 2D

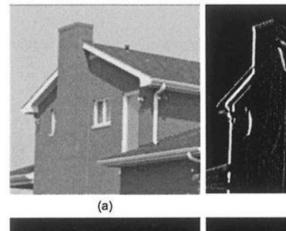


¹⁶Credits: François Fleuret

E

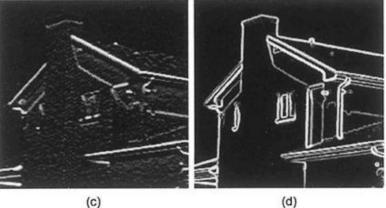
Ex : Sobel edge detector (1968)

Convolution with 'Hand made' filters



$$G_x = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{bmatrix}$$

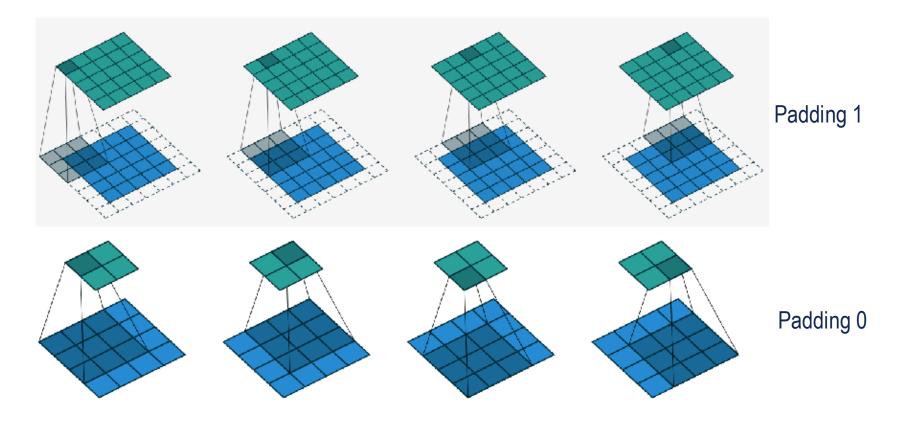
$$G_{y} = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$$



$$\sqrt{G_x^2 + G_y^2}$$

Padding

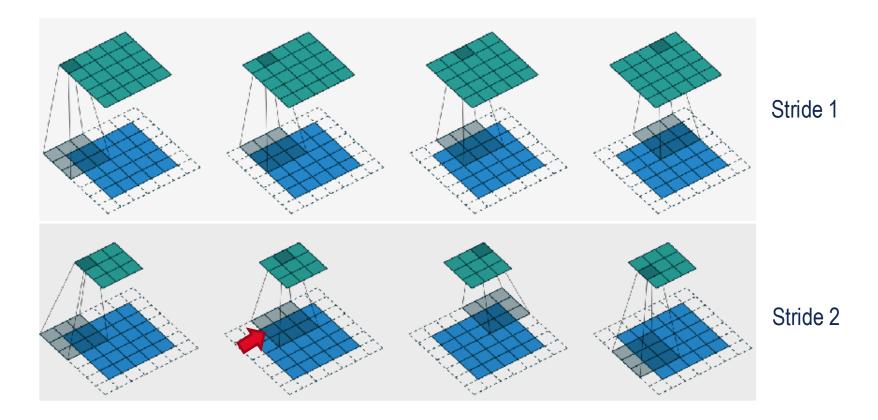
Keeping constant image/feature map size



¹⁷Credits: https://arxiv.org/pdf/1603.07285.pdf

Stride

Reducing image / feature map size



¹⁸Credits: https://arxiv.org/pdf/1603.07285.pdf

Pooling

Reducing feature map size

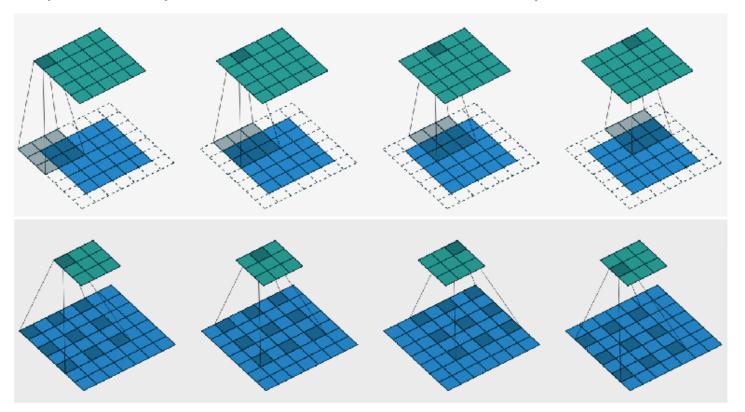
- Because higher level are more 'semantic' and less fine grained
- Replace values by max / average of local neighborhood
- Computation similar to convolution

5	3	1	0	Max pooling		
85	71	5	1		85	5
232	198	21	2		255	131
255	230	131	58			

Dilation

Reducing image / feature map size

Expand receptive field with same number of params



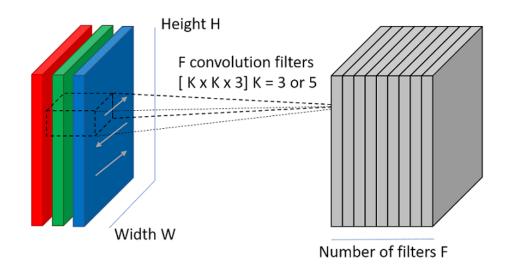
Dilation 1 Kernel 3x3

Dilation 2 Kernel 3x3 -> 5x5

¹⁹Credits: https://arxiv.org/pdf/1603.07285.pdf

Convolution layer parameters

- Kernel size / padding / stride
- Number of Input/output feature maps



Output feature map size

$$H_{2} = \lfloor \frac{H_{1} - kernel_size + 2 \times padding}{stride} \rfloor + 1$$

$$W_{2} = \lfloor \frac{W_{1} - kernel_size + 2 \times padding}{stride} \rfloor + 1$$

Input Layer (RGB pixels)
[H x W x 3]

Convolution Layer Output
[H x W x F]
assuming stride=1 and zero padding

Other Layers

Activation layers

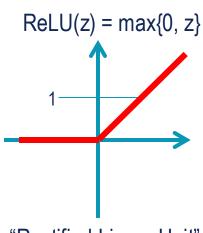
- Simply apply function to each tensor element
- In practice, often use ReLU (see later)
- Many variants (GeLU, leaky ReLU, ...)

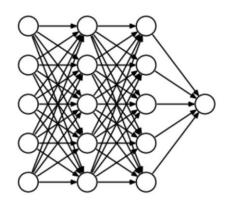
Dense layers

- 'linear' layers with full connections
- Cf. Perceptrons
- Can be seen as a convolution with kernel size equal to the input feature map size

Batch Normalization

Normalize activations (see later)



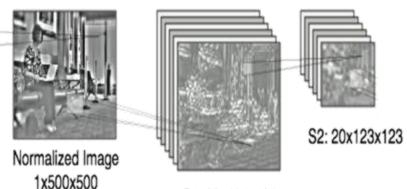


Convolutional Neural Networks

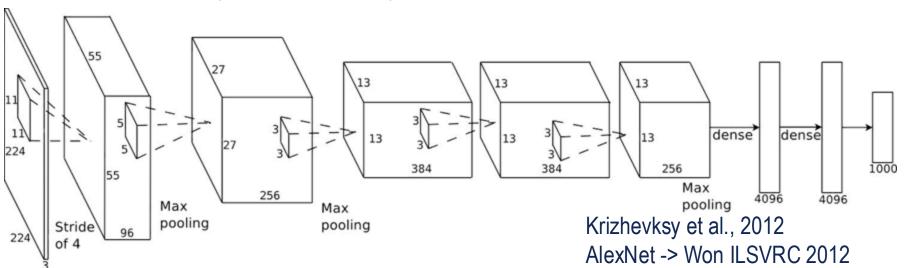
Convolutions w/ filter bank: 20x7x7 kernels

Pooling: 20x4x4 kernels

- Convolutions with a given step (stride)
- Non linearity (ReLu)
- Pooling (Reduce resolution)
- Batch Normalization (optional)
- Finish with fully connected layers



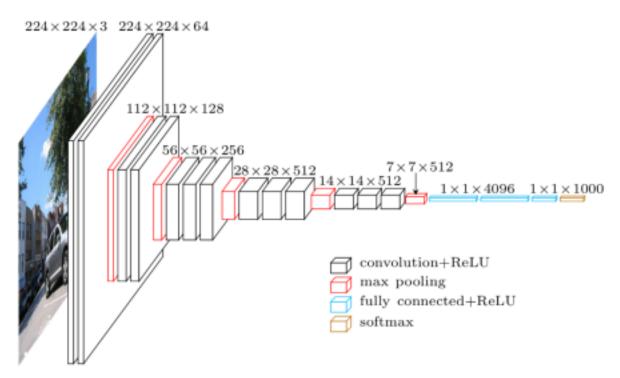
C1: 20x494x494



Some common architectures

VGG Net

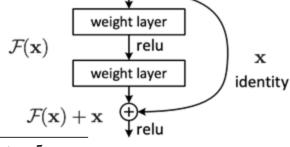
- Very Deep Convolutional Networks for Large-Scale Image Recognition, Simonyan & Zisserman, 2015
- Often used as pre-trained network

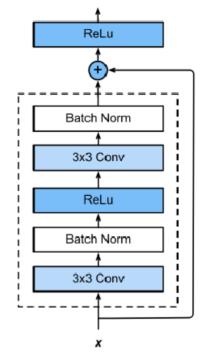


Some common architectures

Resnet

- Deep Residual Learning for Image Recognition, He & al., 2015
- Added connections to encode 'residuals' (i.e. Δx)
- Much easier to train for deeper nets (-> 1000)
- Won several challenges in 2015





model	top-1 err.	top-5 err.
	<u> </u>	
VGG-16 [41]	28.07	9.33
GoogLeNet [44]	-	9.15
PReLU-net [13]	24.27	7.38
plain-34	28.54	10.02
ResNet-34 A	25.03	7.76
ResNet-34 B	24.52	7.46
ResNet-34 C	24.19	7.40
ResNet-50	22.85	6.71
ResNet-101	21.75	6.05
ResNet-152	21.43	5.71

ImageNet Validation

Some common architectures

DenseNet architecture

- Generalize resnet by connecting to several forward layers
- Concatenate information instead of summation
- Overall smaller networks because number of layers can le reduced

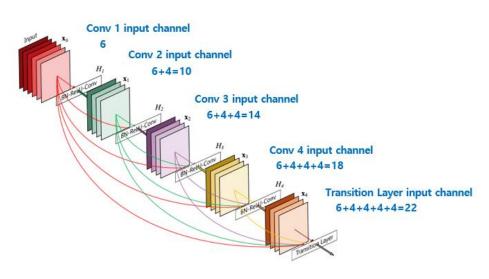
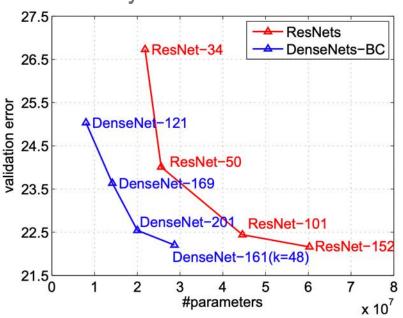


Figure 1: A 5-layer dense block with a growth rate of k=4. Each layer takes all preceding feature-maps as input.



Densely Connected Convolutional Networks, Gao Huang, Zhuang Liu, Laurens van der Maaten, Kilian Q. Weinberger, 2017

Neural Networks training

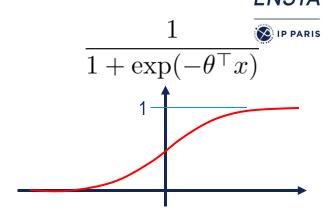
Training Deep Networks

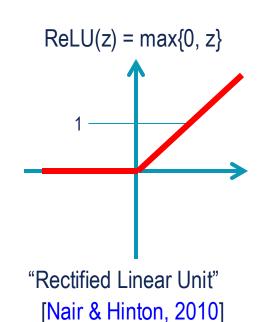
Training with back-propagation

- Dates back to Werbos (75)
- But did not work on "deep" networks
 - Many local minima in cost function
 - Vanishing/exploding gradient in the deep layers
 - Hard to debug/understand

What's new?

- Choice on activation function (instead of sigmoid)
 - Tanh, ReLU -> reduces gradient vanishing
- More effective gradient descent
 - SGD, momentum, ...



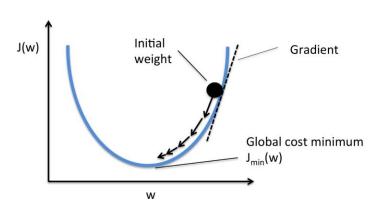


Stochastic Gradient descent

Gradient descent

Assumes computation with all data

$$\mathcal{F}(\omega) = \sum_{i=1}^{N_1} \|f(\omega, x_i) - t_i\|^2 \ \omega_{t+1} = \omega_t - \lambda \frac{\partial \mathcal{F}}{\partial \omega}$$



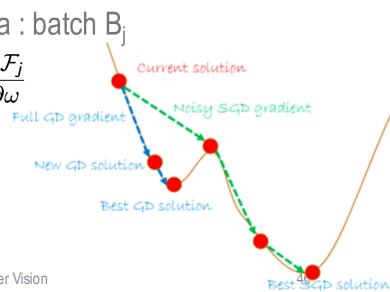
Converges to local minima if function is not convex

Stochastic Gradient descent

Computation with random sample of data : batch B_i

$$\frac{\partial \mathcal{F}_j}{\partial \omega} = \frac{\partial}{\partial \omega} \sum_{i \in B_j} \| f(\omega, x_i) - y_i \|^2 \quad \omega_{t+1} = \omega_t - \lambda \frac{\partial \mathcal{F}_j}{\partial \omega}$$

- May help avoiding local minima
- But no convergence guarantee



Stochastic Gradient descent

SGD parameters

- Learning rate λ : see later
- Batch size B: increasing B reduces the variance of the gradient estimates and enables the speed-up of batch processing, but converges to 'standard' gradient descent

SGD with momentum

- Add a 'history' of gradient
- Can go through local barriers

$$u_{t+1} = \gamma u_t + \lambda \frac{\partial \mathcal{F}_j}{\partial \omega}$$

$$\omega_{t+1} = \omega_t - u_{t+1}$$

- Accelerates if the gradient does not change much
- Reduces oscillations in narrow valleys
- 3rd parameter γ

SGD variants

Adaptive Learning Rate

- SGD rely a lot on learning rate
- Various strategies exist to adapt learning rate automatically
- AdaGrad, RMSProp, ADAM, ...

Ex: AdaGrad

- Extension of SGD with momentum
- Accumulates gradient magnitudes
- Use it to decay learning rate
- Used with fix λ, usually 0.01

$$egin{aligned} m_{t+1} &= eta_1 m_t + (1-eta_1) rac{\partial \mathcal{F}_j}{\partial \omega} \ m_{t+1}^2 &= rac{m_{t+1}}{1-eta_1} \ r_t &= r_{t-1} + \left(rac{\partial \mathcal{F}_j}{\partial \omega}
ight)^2 \ \omega_{t+1} &= \omega_t - rac{\lambda}{\sqrt{\hat{r}_t} + \epsilon} m_{t+1}^2 \end{aligned}$$

Learning rate

Learning Rate influences learning a lot

- High learning rate good at the beginning
- Low learning rate better at the end

Scheduling learning rates

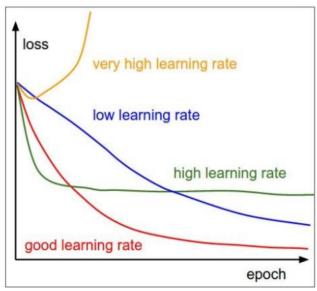
- Various approaches exist
- E.g.: Exponential

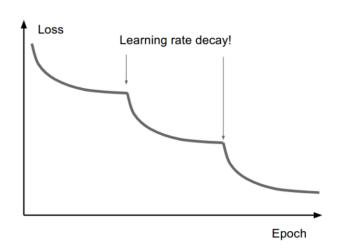
$$\lambda(t) = \lambda_0 \times e^{-kt}$$

■ E.g.: 1/x

$$\lambda(t) = \lambda_0/(1+kt)$$

NB : Epoch = 1 pass of full dataset





Initialization

Initialize weights

- Initialization should put weights in area where gradients are large
 - Initialize to fixed value will lead to symmetries
 - Random initialization is better (usually Gaussian (0,σ))
 - Weight should not be too big nor too small
- Various existing schemes
 - Xavier/Glorot
 - He/Kaiming for ReLu

fan = number of neurons
fan_{avg} =
$$(fan_{in} + fan_{out})/2$$

Initialization	Activation functions	σ² (Normal)
Glorot	None, tanh, logistic, softmax	1 / fanavg
Не	ReLU and variants	2 / fan _{in}
LeCun	SELU	1 / fan _{in}

Xavier Glorot and Yoshua Bengio (2010): Understanding the difficulty of training deep feedforward neural networks. International conference on artificial intelligence and statistics.

Kaiming He, etal (2015): Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification

Loss function

Compute error of the prediction

L1 loss: for regression, ~ constant gradient, robust to outliers

$$L1 = rac{1}{n}\sum_{i=1}^n |y_i - \hat{y}_i|$$

■ L2 loss: for regression, gradient proportional to errors, sensitive to

outliers

 $L2=rac{1}{n}\sum_{i=1}^n(y_i-\hat{y}_i)^2$

Huber

Cross entropy: for categorization, transform network output to probabilities Softmax: $\hat{y_i} = \frac{e^{z_i}}{\sum_j e^{z_j}}$ $L(\hat{y}, y) = -\sum_j y_j \log \hat{y_j}$

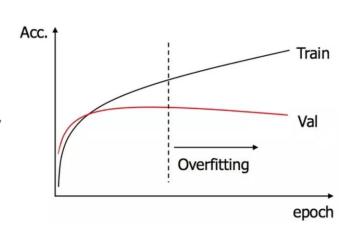
$$L(\hat{y},y) = -\sum_{j} y_{j} \log \hat{y_{j}}$$

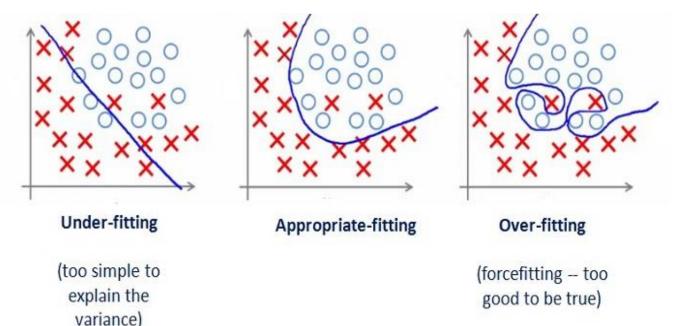
 z_i : network output; $\hat{y_i}$: estimated prob of class i; y_i : true prob of class i;

Training Deep Networks

Avoid overfitting

- Training too much limits generalization
- Important to keep an eye on validation error
- Stop learning if validation error increase
- Using regularization also helps





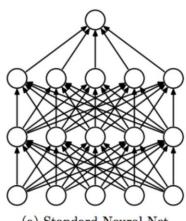
Training Deep Networks

Regularization

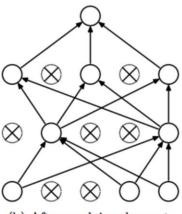
- Various ways to stabilize training and avoid overfitting
 - Weight decay
 - Dropout
 - Batch normalization
- Weight decay
 - Avoid overfitting / weigh explosion

$$\mathcal{L}(\omega) = \mathcal{F}_{\mathsf{data}}(\omega) + \frac{\lambda_2}{2} \|\omega\|^2$$

- Dropout
 - Train while removing random connections
 - Force robustness to noise / redundancy



(a) Standard Neural Net



(b) After applying dropout.

Batch Normalization

Batch normalization for CNN

• Normalize data of a layer, for each batch, and output an affine transform with learned parameters γ , β

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_{i} \qquad \text{// mini-batch mean}$$

$$\sigma_{\mathcal{B}}^{2} \leftarrow \frac{1}{m} \sum_{i=1}^{m} (x_{i} - \mu_{\mathcal{B}})^{2} \qquad \text{// mini-batch variance} \qquad \text{// normalize}$$

$$\widehat{x}_{i} \leftarrow \frac{x_{i} - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^{2} + \epsilon}} \qquad \text{// normalize}$$

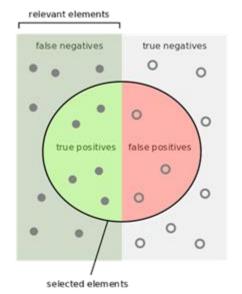
$$y_{i} \leftarrow \gamma \widehat{x}_{i} + \beta \equiv \text{BN}_{\gamma,\beta}(x_{i}) \qquad \text{// scale and shift}$$

- Good empirical performances (no need for pretraining, dropout, ...), reasons not completely clear
- Other normalization (layer, instance), for small batch size, transformers or RNN

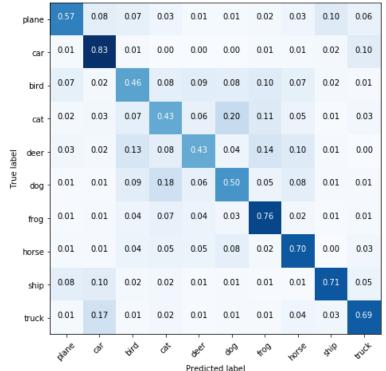
Reporting performances

Classification performance

- Accuracy: $acc = \frac{correct\ predictions}{number\ of\ predictions}$
- Confusion matrix
- For a class:
 - Precision/Recall



How many selected items are relevant?



How many relevant items are selected?

F1 Score = Harmonic mean of Precision and Recall

$$F1 = \frac{2 \times Precision \times Recall}{Precision + Recall}$$

Data for Deep Learning

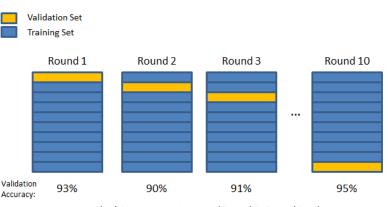
Datasets

Data sets

- If possible, make 3 sets: training, validation, test
- Use Training for training ...
- Use Validation to check training quality, tune algorithm params
- Use test only to report final performance (hidden in ML competitions)

K-fold Cross validation

- When little data : split dataset in k sets
- Train on k-1, validate on remaning one
- Repeat k times
- Report mean performances



Final Accuracy = Average(Round 1, Round 2, ...)

Datasets

Popular image classification datasets

MNIST: 28x28 gray level numbers, 60k images, variants: Fashion

CIFAR 10/100 : 32x32 color, 60k images

ImageNet 21k: 21k categories, hierarchy, 14M images, very unbalanced

ImageNet 1K : 1k categories, no hierarchy, 1.2M images

Datasets

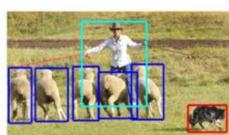
Several large scale databases

For various tasks

person, sheep, dog

(a) Image classification

Ex : Microsoft COCOCommon Objects in Context

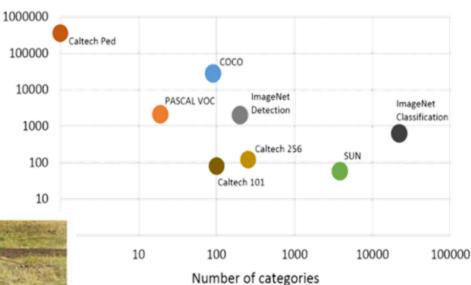


Instances per category

(b) Object localization

(c) Semantic segmentation

(d) This work



Summary

Deep Learning

Training procedure (1/3)

- Create training / validation / test sets, or use existing dataset
- Normalize data
 - Substract mean (computed on training set)
 - Divide by std. dev. (computed on training set)
- Create your neural network structure
 - Manually by stacking layers (convolution, activation, pooling, Batch Norm, dense,...)
 - Or download existing structures (VGG, ResNet50, ...)
- Initialize weights or download pretrained weights
 - E.g., Glorot initialization for personal NN
 - Or download ImageNet pretrained weights for existing structures

Deep Learning

Training procedure (2/3)

- Choose a Loss function
 - For example for classification, use softmax + cross entropy.
- Select one variant of gradient descent (with momentum, ADAM, ...)
 - Will use gradient to reduce the loss
- Define learning rate schedule
 - E.g. exponential decrease
- Define mini batch size
 - Bigger will smooth gradient noise -> allow larger steps -> learn faster
 - But too large mini-batches lead to problems (stuck in local min...)
 - Linked to memory size of GPUs

Deep Learning

Training procedure (3/3)

- Overfit on few images
 - To check everything works: loss should go to 0 when trained on a few images
- Train
 - Refine hyperparameters, idealy use automatic parameter tuning (e.g. optuna)
- Deploy
 - Optimize network to fit on embedded platform

Deep learning works well

- Can be applied to lots of different tasks
- Very versatile approach
- Best performances in many vision tasks

But be aware of

- Very computationally intensive (can be optimized though)
- Need a lots of training data
- Quite sensitive parameters and open architectural possibilities

Fin