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Course agenda

Deep Learning based Computer Vision for robotics

▪ Today : Deep Learning basics, classification

▪ David Filliat

▪ Semantic segmentation

▪ Antoine Manzanera

▪ Object detection

▪ Philippe Xu

▪ Object tracking

▪ Antoine Manzanera
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Course agenda

Deep Learning based Computer Vision for robotics

▪ Pose estimation

▪ Thomas Rey

▪ Embedded deep learning

▪ Zhi Yan

Grading

▪ Research paper oral presentation
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Computer vision

Vision tasks such as …

▪ detection of objects

▪ recognition of places

▪ recognition of actions

▪ detection and recognition of persons 

… are very difficult

▪ Using low level pixel information

▪ When environment condition change

▪ Given variability of targets

Many solutions rely on image processing and machine learning
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Note : without machine learning

Object recognition can be done without machine learning

▪ Ex : Recognition from CAD models in factory environment

▪ Ex : CAD-Based Recognition of 3D Objects in Monocular Images. Ulrich, 

Wiedemann, and Steger, 2009

Approach

▪ Sample relative object/camera pose

▪ Generate contour views from model

▪ Measure distance with image gradient
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Multi-scale
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Note : without machine learning

Good performances in practice

▪ Limited to known/solid objects

▪ Very precise localization, robust to occlusions, light modifications

ROB313 – Perception pour les systèmes autonomes 6



Computer Vision Tasks

Captioning

Requires Classification
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Objectives

Todays program

▪ Machine learning / Neural networks basics

▪ Neural networks for computer vision

▪ Neural networks training

▪ Datasets

Practical work

▪ CIFAR10 image categorization in Pytorch with Google Colab
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Machine Learning basics

CSC_5RO13 – Deep Learning based Computer Vision 9



Introduction to machine learning 

Learning is a very weakly defined term

▪ Better definition needed for mathematical formalization

▪ Here : function approximation

Suppose there is 

▪ an unknown function f: Rn --> Rm that may have a random component

▪ a set of training examples, consisting of:

data vectors { xi }, target values { yi } obeing yi = f( xi )

Machine learning 

▪ try to determine the unknown function f from training examples { xi , yi }

▪ Problem: how to determine a good approximation to f from data only?
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Introduction to machine learning

Generic approach

▪ Use a parameterized family of functions fw (x) to approximate f

▪ Adapt parameter vector w by minimizing a loss function L({fw(xi)},{yi}) 

over training examples

▪ This is called training or learning !

▪ Example for L: L2 loss 

Getting data

▪ In general, human can “apply” the function (e.g., recognize an object)

▪ But computing it is hard -> learning
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Choice of approximation function

Requirements

▪ Have “universal approximation capacity“ for a defined class of functions F

▪ Have an efficient way to update w for minimizing loss

Examples

▪ Single-layer perceptron: linear functions

▪ Multilayer perceptron: continuous non-linear functions

▪ Random forest : continuous non-linear functions

▪ Support vector machine: binary functions

▪ Boosting: binary functions

▪ ….

Choice depends on problem!
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Neural Networks

Artificial neuron ~1950

▪ Element performing sum of weighted input + non linear fct
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1
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Neural Networks

Neural network (Perceptron, (Rosenblatt, 58))

▪ Assembly of neurons, often organized in layers

▪ Parameterized by all connection weights wij
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Neural Networks

Learning in neural networks

▪ Find weights wij that minimize prediction error 

▪ Backpropagation of error with gradient descent (Werbos, 75)

▪ Compute: error of output, gradient wrt. weights; update weight following gradient

▪ Do the same thing for previous layers using ‘chain rule’

15

…

Source : Mariusz Bernacki - http://home.agh.edu.pl/~vlsi/AI/backp_t_en/backprop.html
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Neural Networks

In practice, automatic gradient computation

▪ E.g. in pytorch : Define computation using ‘Variables’

▪ Automatic gradient computation

▪ Use gradient wrt. w to update weights

16

# Create a variable and tell PyTorch that we want to compute the gradient

w = Variable(input_tensor, requires_grad=True)

b = Variable(input_tensor, requires_grad=True)

# Input value
X = 2

# Define the transformation and store the result in new variables

y = w * X + b

loss = (y – 4)*(y – 4) 

loss.backward()

w = w - 10-3 * w.grad()
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Deep Learning

Return of the neural networks

▪ Around 2010 ?

▪ Neural networks with “many” layers

▪ Theory similar to perceptron (for dense/cnn models)

Why “Deep” ?

▪ Approximate more complex functions

▪ Works well in practice (on many problems)

Why now ?

▪ More processing power

▪ Availability of large datasets (ImageNet)

▪ Found solutions to some learning problems
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Deep Learning

Many architectures

▪ Fullly connected Neural Networks (aka Dense NN)

▪ Convolutional Neural Networks 

▪ Specialized for image processing

▪ Recurrent architecture (e.g. LSTM)

▪ Processing of temporal data

▪ Trained by unfolding + supervised learning

▪ Transformer

▪ Processing sequential data with attention

▪ Can also be applied to images

▪ …

LSTM cell
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Neural Networks for computer vision
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Deep learning for vision

Avoid manual feature construction

▪ Replace traditional architecture by deep network

Feature Extraction
Machine Learning

Algorithm “Cat”?

Prior Knowledge,

Experience

Low-level

Features

Mid-level

Features

High-level

Features
Classifier “Cat”?

More abstract representation

Deep Network
20CSC_5RO13 – Deep Learning based Computer Vision
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Deep learning for vision

Avoid manual feature construction

▪ Process raw data directly

▪ Learn directly relevant feature from data

▪ Natural increase of feature abstraction

▪ ‘Semantic invariance’ of last layers

▪ Adapts to other modalities (depth, IR …)

Problems with ‘perceptron’

▪ Large image size -> large networks

▪ Need lots of training data

▪ → reduce network parameters
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Convolutional Neural Networks

Reducing number of network parameters
▪ Use only limited local support

▪ Exploiting image invariance to translation:

Use same local weights for all positions -> convolution

▪ Use several convolutions 

at each position -> multiple features layers
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Convolution

Convolution in 1D

▪ Mathematical definition:

▪ In deep learning, we usually use cross-correlation which is very similar 

(but still use the name convolution…)
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Convolution

Convolution (cross correlation) in 1D
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F : Image

G : Kernel

f * g

+



Convolution

Convolution in 1D
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Convolution

Convolution in 1D
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Convolution

Convolution in 1D
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Convolution

Convolution in 2D

▪ Gray scale images

▪ Color images (c = 3)

▪ (in fact cross-correlation)

28CSC_5RO13 – Deep Learning based Computer Vision

3D matrix = tensor



Convolution

Convolution in 2D
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Convolution

Convolution in 2D
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Convolution

Convolution in 2D
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Convolution

Multiple convolutions in 2D

32CSC_5RO13 – Deep Learning based Computer Vision

tensor

tensor



NB: Convolution in image processing

Ex : Sobel edge detector (1968)

▪ Convolution with ‘Hand made’ filters
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Padding

Keeping constant image/feature map size 
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Padding 1
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Stride

Reducing image / feature map size
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Stride 1

Stride 2



Pooling

Reducing feature map size

▪ Because higher level are more ‘semantic’ and less fine grained

▪ Replace values by max / average of local neighborhood

▪ Computation similar to convolution
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Max pooling



Dilation

Reducing image / feature map size

▪ Expand receptive field with same number of params
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Dilation 1

Kernel 3x3

Dilation 2

Kernel 3x3

        -> 5x5



Convolutional Layers

Convolution layer parameters

▪ Kernel size / padding / stride

▪ Number of Input/output feature maps
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Other Layers

Activation layers

▪ Simply apply function to each tensor element

▪ In practice, often use ReLU (see later)

▪ Many variants (GeLU, leaky ReLU, …)

Dense layers

▪ ‘linear’ layers with full connections

▪ Cf. Perceptrons

▪ Can be seen as a convolution with kernel size

equal to the input feature map size

Batch Normalization

▪ Normalize activations (see later)
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“Rectified Linear Unit”



Convolutional Neural Networks

Stack of basic layers

▪ Convolutions with a given step (stride)

▪ Non linearity (ReLu)

▪ Pooling (Reduce resolution)

▪ Batch Normalization (optional)

▪ Finish with fully connected layers

Krizhevksy et al., 2012

AlexNet -> Won ILSVRC 2012
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Some common architectures

VGG Net

▪ Very Deep Convolutional Networks for Large-Scale Image Recognition, 

Simonyan & Zisserman, 2015

▪ Often used as pre-trained network
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Some common architectures

Resnet

▪ Deep Residual Learning for Image Recognition, He & al., 2015

▪ Added connections to encode ‘residuals’ (i.e. x)

▪ Much easier to train for deeper nets (-> 1000)

▪ Won several challenges in 2015

CSC_5RO13 – Deep Learning based Computer Vision 42

ImageNet

Validation



Some common architectures

DenseNet architecture 

▪ Generalize resnet by connecting to several forward layers

▪ Concatenate information instead of summation

▪ Overall smaller networks because number of layers can le reduced

43

Densely Connected Convolutional Networks, Gao Huang, Zhuang Liu, Laurens van der 

Maaten, Kilian Q. Weinberger, 2017



Neural Networks training
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Training Deep Networks

Training with back-propagation

▪ Dates back to Werbos (75)

▪ But did not work on “deep” networks

▪ Many local minima in cost function

▪ Vanishing/exploding gradient in the deep layers

▪ Hard to debug/understand

What’s new ?

▪ Choice on activation function (instead of sigmoid)

▪ Tanh, ReLU -> reduces gradient vanishing

▪ More effective gradient descent

▪ SGD, momentum, …

1

ReLU(z) = max{0, z}

“Rectified Linear Unit”

[Nair & Hinton, 2010]

1
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Stochastic Gradient descent

Gradient descent

▪ Assumes computation with all data

▪ Converges to local minima if function is not convex

Stochastic Gradient descent

▪ Computation with random sample of data : batch Bj

▪ May help avoiding local minima

▪ But no convergence guarantee
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Stochastic Gradient descent

SGD parameters

▪ Learning rate  : see later

▪ Batch size B : increasing B reduces the variance of the gradient 

estimates and enables the speed-up of batch processing, but converges 

to ‘standard’ gradient descent

SGD with momentum

▪ Add a ‘history’ of gradient

▪ Can go through local barriers

▪ Accelerates if the gradient does not change much

▪ Reduces oscillations in narrow valleys

▪ 3rd parameter 
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SGD variants

Adaptive Learning Rate

▪ SGD rely a lot on learning rate

▪ Various strategies exist to adapt learning rate automatically

▪ AdaGrad, RMSProp, ADAM, …

Ex: AdaGrad

▪ Extension of SGD with momentum

▪ Accumulates gradient magnitudes

▪ Use it to decay learning rate

▪ Used with fix , usually 0.01
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Learning rate

Learning Rate influences learning a lot

▪ High learning rate good at the beginning

▪ Low learning rate better at the end

Scheduling learning rates

▪ Various approaches exist

▪ E.g. : Exponential

▪ E.g. : 1/x
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Initialization

Initialize weights

▪ Initialization should put weights in area where gradients are large

▪ Initialize to fixed value will lead to symmetries

▪ Random initialization is better (usually Gaussian (0,))

▪ Weight should not be too big nor too small

▪ Various existing schemes

▪ Xavier/Glorot

▪ He/Kaiming for ReLu
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fan = number of neurons

fanavg = (fanin + fanout)/2

Xavier Glorot and Yoshua Bengio (2010): Understanding the difficulty of training deep feedforward neural networks. 
International conference on artificial intelligence and statistics. 
Kaiming He, etal (2015): Delving Deep into Rectifiers:Surpassing Human-Level Performance on ImageNet Classification 



Loss function

Compute error of the prediction

▪ L1 loss: for regression, ~ constant gradient, robust to outliers

▪ L2 loss: for regression, gradient proportional to errors, sensitive to 

outliers

▪ Huber Loss: Mix L1 (>1) and L2 (<1)

▪ Cross entropy : for categorization, transform network output to 

probabilities
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Softmax:



Training Deep Networks

Avoid overfitting

▪ Training too much limits generalization

▪ Important to keep an eye on validation error

▪ Stop learning if validation error increase

▪ Using regularization also helps
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Training Deep Networks

Regularization

▪ Various ways to stabilize training and avoid overfitting

▪ Weight decay

▪ Dropout

▪ Batch normalization

▪ Weight decay

▪ Avoid overfitting / weigh explosion

▪ Dropout

▪ Train while removing random connections

▪ Force robustness to noise / redundancy

53CSC_5RO13 – Deep Learning based Computer Vision



Batch Normalization

Batch normalization for CNN

▪ Normalize data of a layer, for each batch, and output an affine transform 

with learned parameters 

▪ Good empirical performances (no need for pretraining, dropout, …), reasons 

not completely clear

▪ Other normalization (layer, instance), for small batch size, transformers or RNN

54CSC_5RO13 – Deep Learning based Computer Vision



Reporting performances

Classification performance

▪ Accuracy :

𝑎𝑐𝑐 =
𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

▪ Confusion matrix

▪ For a class:

▪ Precision/Recall

55

F1 Score = Harmonic mean 

of Precision and Recall



Data for Deep Learning
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Datasets

Data sets

▪ If possible, make 3 sets : training, validation, test

▪ Use Training for training …

▪ Use Validation to check training quality, tune algorithm params

▪ Use test only to report final performance (hidden in ML competitions)

K-fold Cross validation

▪ When little data : split dataset in k sets

▪ Train on k-1, validate on remaning one

▪ Repeat k times

▪ Report mean performances
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Datasets

Popular image classification datasets

▪ MNIST : 28x28 gray level numbers, 60k images, variants : Fashion 

MNIST…

▪ CIFAR 10/100 : 32x32 color, 60k images

▪ ImageNet 21k : 21k categories, hierarchy, 14M images, very unbalanced

▪ ImageNet 1K : 1k categories, no hierarchy, 1.2M images
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Datasets

Several large scale databases

▪ For various tasks

▪ Ex : Microsoft COCO

Common Objects in Context
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Summary
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Deep Learning

Training procedure (1/3)

▪ Create training / validation / test sets, or use existing dataset

▪ Normalize data

▪ Substract mean (computed on training set)

▪ Divide by std. dev. (computed on training set)

▪ Create your neural network structure

▪ Manually by stacking layers (convolution, activation, pooling, Batch Norm, dense,…)

▪ Or download existing structures (VGG, ResNet50, …)

▪ Initialize weights or download pretrained weights

▪ E.g., Glorot initialization for personal NN

▪ Or download ImageNet pretrained weights for existing structures
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Deep Learning

Training procedure (2/3)

▪ Choose a Loss function

▪ For example for classification, use softmax + cross entropy.

▪ Select one variant of gradient descent (with momentum, ADAM, …)

▪ Will use gradient to reduce the loss 

▪ Define learning rate schedule

▪ E.g. exponential decrease

▪ Define mini batch size

▪ Bigger will smooth gradient noise -> allow larger steps -> learn faster

▪ But too large mini-batches lead to problems (stuck in local min…)

▪ Linked to memory size of GPUs
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Deep Learning

Training procedure (3/3)

▪ Overfit on few images 

▪ To check everything works: loss should go to 0 when trained on a few images

▪ Train

▪ Refine hyperparameters, idealy use automatic parameter tuning (e.g. optuna)

▪ Deploy

▪ Optimize network to fit on embedded platform

63CSC_5RO13 – Deep Learning based Computer Vision



Deep Learning: summary

Deep learning works well

▪ Can be applied to lots of different tasks

▪ Very versatile approach

▪ Best performances in many vision tasks

But be aware of

▪ Very computationally intensive (can be optimized though)

▪ Need a lots of training data

▪ Quite sensitive parameters and open architectural possibilities
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Fin
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