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Course agenda

Deep Learning based Computer Vision for robotics
= Today : Deep Learning basics, classification
= David Filliat
= Semantic segmentation
= Antoine Manzanera
= (Object detection
= Philippe Xu
= QObject tracking

= Antoine Manzanera
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Course agenda

Deep Leaming based Computer Vision for robotics
= Pose estimation

= Thomas Rey
= Embedded deep learning
n Zh| Yan pcl:;lg ML libraries Edge devices
l I ﬁlarge dataset
iy
Grading

= Research paper oral presentation
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Computer vision

Vision tasks such as ...
= detection of objects

= recognition of places

= recognition of actions

= detection and recognition of persons

.. are very difficult

= Using low level pixel information
= When environment condition change
= Given variability of targets

Many solutions rely on image processing and machine learning
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Note : without machine learning —
Object recognition can be done without machine learning
= Ex: Recognition from CAD models in factory environment
= EX: CAD-Based Recognition of 3D Objects in Monocular Images. Ulrich,
Wiedemann, and Steger, 2009
) Eru:ﬁﬁ:%”’"‘.ll —" = |
Approach TF s | o[
" Sample relative object/camera pose |« <5%E, | | b4| “ 1
" Generate contour views from model ;'ﬁvg%ﬁ%f EBB
. . . . 9: ﬁ:g- Eg"” w \}.-"' -""-.&.' w ® \\:\
= Measure distance with image gradient % ——
\ H \ Multi-scale
Y P RN
] R N (Cs
\\\77// : \\\N//
o) o @
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Note : without machine learning

Good performances in practice

= | imited to known/solid objects
= \ery precise localization, robust to occlusions, light modifications
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Computer Vision Tasks

Classification Object Detection Instance

Classification

+ Localization

‘ rsn ridnga
CAT, DOG, DUCK CAT, DOG, DUCK motorcycle on a dirt road.

A R P
Y

Single object Multiple objects |

Requires Classification
L) Program for today
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Objectives

Todays program

= Machine learning / Neural networks basics
= Neural networks for computer vision

® Neural networks training

= Datasets

Practical work
= CIFAR10 image categorization in Pytorch with Google Colab
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Machine Learning basics
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Introduction to machine learning ENSTA
Learning is a very weakly defined term
= Better definition needed for mathematical formalization
= Here : function approximation
Suppose there is
= an unknown function f: R" --> R™ that may have a random component
= 3 set of training examples, consisting of:
data vectors { x; }, target values { y; } obeing y; = f( x,)
Machine learning

= {ry to determine the unknown function f from training examples { x., v, }
= Problem: how to determine a good approximation to f from data only?
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Introduction to machine learning

Generic approach

= Use a parameterized family of functions f,, (x) to approximate f

= Adapt parameter vector w by minimizing a loss function L({f,,(x:)},{y})
over training examples

® This is called training or learning !
= Example for L: L2 loss

Z,- (fw(fi)_yz')z

Getting data

= |n general, human can “apply” the function (e.g., recognize an object)
= But computing itis hard -> learning

CSC_5R013 - Deep Leamning based Computer Vision 1"



Choice of approximation function

Requirements

= Have “universal approximation capacity“ for a defined class of functions F
= Have an efficient way to update w for minimizing loss

Examples

= Single-layer perceptron: linear functions

= Multilayer perceptron: continuous non-linear functions

= Random forest : continuous non-linear functions

= Support vector machine: binary functions

= Boosting: binary functions

Choice depends on problem!
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Neural Networks oo

Artificial neuron ~1950
= Element performing sum of weighted input + non linear fct

1" /_
nputs weights / N

activation  g,g., sigmoid

functon
b (p E—

- @ activation
3 -
transfer [

function

threshold
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Neural Networks

Neural network (Perceptron, (Rosenblatt, 58))
= Assembly of neurons, often organized in layers
" Parameterized by all connection weights w;;

CSC_5R013 - Deep Leamning based Computer Vision 14



Neural Networks

Learning in neural networks

Find weights w; that minimize prediction error

Backpropagation of error with gradient descent (Werbos, 79)
Compute: error of output, gradient wrt. weights; update weight following gradient
Do the same thing for previous layers using ‘chain rule’

df,(e)

de
dhee)
de

Wioan = Weey + 776, N

Weean = Weay 1779,

Source : Mariusz Bernacki - http://home.agh.edu.pl/~visi/Al/backp_t_en/backprop.html

CSC_5R013 - Deep Leamning based Computer Vision 15
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Neural Networks

In practice, automatic gradient computation

= E.g.in pytorch : Define computation using ‘Variables’

# Create a variable and tell PyTorch that we want to compute the gradient
w = Variable(input_tensor, requires_grad=True)
b = Variable(input_tensor, requires_grad=True)

# Input value
X=2

# Define the transformation and store the result in new variables
y=w*X+b
loss = (y — 4)*(y - 4)

= Automatic gradient computation
loss.backward()

= Use gradient wrt. w to update weights
w=w-103*w.grad()

CSC_5R013 - Deep Learning based Computer Vision 16
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Deep Learning

Return of the neural networks

= Around 2010 ?

= Neural networks with “many” layers

= Theory similar to perceptron (for dense/cnn models)
Why “Deep” ?

= Approximate more complex functions

= Works well in practice (on many problems)
Why now ?

= More processing power

= Availability of large datasets (ImageNet)

® Found solutions to some learning problems

CSC_5R013 - Deep Leamning based Computer Vision
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Many architectures

Fullly connected Neural Networks (aka Dense NN)

Convolutional Neural Networks
= Specialized for image processing

Recurrent architecture (e.g. LSTM)

= Processing of temporal data

= Trained by unfolding + supervised learning

Transformer

= Processing sequential data with attention

= Can also be applied to images

CSC_5R013 - Deep Learning based Computer Vision

Deep Learning

forget gate

Y

memory cell
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self-recurrent

© connection

» memory cell

S

output

output gate LSTM cell




Neural Networks for computer vision
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Deep learning for vision —
Avoid manual feature construction
= Replace traditional architecture by deep network
L#¢ Prior Knowledge,
Experience SVM/Forest/Neural Network ...
Feature Extraction MacRilr;irli_tﬁ?nrning » “Cat™
More abstract representation

Low-level Mid-level High-level “Cat’?

Features Features Features

Deep Network
CSC_5R013 - Deep Leamning based Computer Vision 20
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Deep learning for vision adia
3rd Iayé"t:
Avoid manual feature construction “Objects”
= Process raw data directly
2nd layer

= | earn directly relevant feature from data ., =i I )
. . " Irg—,-smj Object parts
= Natural increase of feature abstraction . “'"‘ a

= ‘Semantic invariance’ of last layers 3;':;‘?,’
= Adapts to other modalities (depth, IR ...)
Pixels

Problems with ‘perceptron’

= | arge image size -> large networks
= Need lots of training data

= 5 reduce network parameters

ImageNet

nearest (‘\'

neighbors g
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Reducing number of network parameters
= Use only limited local support
= Exploiting image invariance to translation:
Use same local weights for all positions -> convolution

CSC_5R013 - Deep Learning based Computer Vision



Convoluton ... =

Convolutionin 1D
= Mathematical definition:

M
(Fxg)lnl = > _ fln— m]g[m]
m=—M

" |n deep leamning, we usually use cross-correlation which is very similar
(but still use the name convolution...)

M
(Fxg)ln)= > fln+mlg[m]
m=—M

CSC_5R013 - Deep Leamning based Computer Vision 23
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Convolution adia
M
Convolution (cross correlation) in 1D (f = g)ln] = ZMf n 4 m]g[m]
1 4 -1 0 2 -2 1 3 3 i F : Image
W
T
1 2 0 -1 | G:Kernel
Qutput
f*g
W-—-—w4i1l

2Credits: Francois Fleuret
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Convolution

Convolutionin 1D

Input
1 4 -1 0 2 -2 1 3 3 1 f
- = -
1 2 0 -1
€ = > g
Qutput
9 f* g
‘ W—w+1 '

3Credits: Francois Fleuret
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Convolution
Convolution in 1D
Input
1 4 -1 0 2 -2 1 3 1
< = >
1 2 0 -1
: . 9
Output
9 | 0 f* g
< —— >

4Credits: Francois Fleuret

CSC_5R013 - Deep Leamning based Computer Vision
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Convolution
Convolutionin 1D

Input

1 4 -1 0 2 =2 1 3 il

. vy, 2

1 0 -1
Output

9 0 1 3 -5 -3 f*g

&
N

W—-—w+1

9Credits: Francois Fleuret
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Convolution

Convolutionin 2D

= (ray scale images
M M
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(f * g)[n1, m] = Z Z flng — my, ny — my]g[my, my]

m1=—M m2=—M
= Colorimages (c = 3)

(

3D matrix = tensor

M

-~
=
Oq
£)
3
|
IIMw
IIMg

" (in fact cross-correlation)
3 M

M
Z fln — my, n2 — ma, klg[mi, ma, k]

(f * g)[ni, n2] = S: y: Z flni + my, no + ma, klg[mi, ma, k|

k=0 m1=—M m2=—M

CSC_5R013 - Deep Leamning based Computer Vision
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Convolution

Convolutionin 2D

Input
Output
w
il Kernel
W/
H h[
e—
e
—
G
10Credits: Francois Fleuret ¢
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Convolution

Convolutionin 2D

Input
Output

Kernel

e
C

1 Credits; Francois Fleuret
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Convolution

Convolutionin 2D

Input
Output
Kernel
w/
H h]
—
C
N
=
C
12Credits: Francois Fleuret 1

CSC_5R013 - Deep Learning based Computer Vision 31



€4

ENSTA

N8 1P PARIS

Convolution

Multiple convolutions in 2D

Input

tensor Output
tensor

w Kernels W —w+1
m/
D H—h+1
H ”I
>
c
s =2
D
>
&
16 Credits: Francois Fleuret '
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NB: Convolution in image processing ks

Ex : Sobel edge detector (1968)

= Convolution with ‘Hand made’ filters

1 2 1
G =0 0 0
-1 -2 -1

33
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Keeping constant image/feature map size

Padding 1

Padding 0

17Credits: https://arxiv.org/pdf/1603.07285.pdf
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Reducing image / feature map size

Stride 1

Stride 2

18Credits: https://arxiv.org/pdf/1603.07285.pdf
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Pooling

Reducing feature map size

= Because higher level are more ‘semantic’ and less fine grained
= Replace values by max / average of local neighborhood

= Computation similar to convolution

85

71

232

198

21

N2 1P PARIS

Max pooling

85

255

230

131

58

255

131
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Dilation
Reducing image / feature map size
= Expand receptive field with same number of params
Dilation 1
Kernel 3x3
Dilation 2
Kernel 3x3
-> 5Xd

19Credits: https://arxiv.org/pdf/1603.07285. pdf
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Convolutional Layers -
Convolution layer parameters
= Kernel size / padding / stride
= Number of Input/output feature maps
Output feature map size
Height H H, = lHl - kemel_:iifd: 2 X padding |+1
F convolution filters . .
- E—— Wy = | el P

Number of filt_e:r_s F

Input Layer (RGB pixels) Convolution Layer Output
[HxW x 3] [HXxWxF]
assuming stride=1 and zero padding

CSC_5R013 - Deep Learning based Computer Vision 38



Other Layers

Activation layers

= Simply apply function to each tensor element
= |n practice, often use ReLU (see later)

= Many variants (GeLU, leaky ReLU, ...)

Dense layers

= ‘linear’ layers with full connections

= (Cf. Perceptrons

= (Can be seen as a convolution with kerel size
equal to the input feature map size

Batch Normalization
= Normalize activations (see later)

CSC_5R013 - Deep Leamning based Computer Vision
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ReLU(z) = max{0, 2}
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1—

“Rectified Linear Unit”

\\ //e\\
\\' X W X
Neor 41’/ W :,,

' 0 ' /
0:.: ] :.e o 0 ,0
l» 0\ lf 0

6
0. A\x 4:( I\
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Convolutional Neural Networks e

Convolutions w/ Pooling:

. filter bank: 20xdxd
Stack of basic layers ATiTkemels  kemels
= Convolutions with a given step (stride) "
= Non linearity (ReLu)
= Pooling (Reduce resolution) 0 it
T : Normalized | ‘
= Batch Normalization (optional) s e
. : C1: 20x494x494
= Finish with fully connected layers
\ 23 — —
T
1ﬁ. 13 13 13
i Jm i - N _ X .
2;4 X 5&(‘ - - = H:E: I~ 13 BG: =l b 335: - = 13 dense’| [dense| ﬂ
55 384 384 256 1000
Max =5 Max Ld;;ing 4096 4096
)\ || Stride\| o | POCling pooling Krizhevksy et al., 2012

3

of 4

AlexNet -> Won ILSVRC 2012
CSC_5R013 - Deep Leamning based Computer Vision 40



Some common architectures o

VGG Net

= \ery Deep Convolutional Networks for Large-Scale Image Recognition,
Simonyan & Zisserman, 2015

= Often used as pre-trained network

224 =224 =3 224X DM = Gd

112 %112 x 128

56|x 56 % 256
28x28x512 rrzv-c'fxalz
e e 11 %4096 11 % 1000

@ convolution4+Rel.10
[{FH S |_a-|;,:|-:_|]i||1.|.
— fully connected+RelU

[* j softmax

CSC_5R013 - Deep Leamning based Computer Vision 41
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Some common architectures

Resnet
= Deep Residual Learning for Image Recognition, He & al., 2015
xX
= Added connections to encode ‘residuals’ (i.e. Ax) p———
= Much easier to train for deeper nets (-> 1000) " = x
_ weight layer identity
= Won several challenges in 2015 Fx) +x
model top-1 err. top-5 err.
VGG-16 [41] 28.07 9.33
GoogLeNet [44] - 9.15
N o | PReLU-net [13] 24.27 7.38
i f : plain-34 28.54 10.02
) S ResNet-34 A 25.03 7.76
I * ! ResNet-34 B 24.52 7.46
i | ResNet-34 C 24.19 7.40
L= ) ResNet-50 22.85 6.71
i 3x3 Conv i ResNet-101 21.75 6.05 lmageNet
R ! ResNet-152 21.43 5.71 Validation

X CSC_5R013 - Deep Leamning based Computer Vision 42



Some common architectures

DenseNet architecture

= (Generalize resnet by connecting to several forward layers

= Concatenate information instead of summation

= Qverall smaller networks because number of layers can le reduced

27.5 ; - T
Conv 1 input channel —&— ResNets

6

ResNet-34 —&— DenseNets—-BC

Conv 2 input channel 26.5}
6+4=10

o Conv 3 input channel
| ox  6+4+4=14

N
N
[3)

DenseNet-121

Conv 4 input channel

6+4+4+4=18 ResNet-50

validation error
N
13

ResNet-101

22.5 1
= !N ResNet-152
TN DenseNet-161(k=48)
21 .5 Il i I i I ! !
Figure 1: A 5-layer dense block with a growth rate of £ = 4. 0 1 2 3 4 5 6 g 8
Each layer takes all preceding feature-maps as input. #parameters X 1 07

Densely Connected Convolutional Networks, Gao Huang, Zhuang Liu, Laurens van der

Maaten, Kilian Q. Weinberger, 2017 .
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Neural Networks training
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Training Deep Networks

Training with back-propagation
= Dates back to Werbos (795)

ENSTA
]. @lp PARIS
1+ exp(—0Tz)
1 S

e

= But did not work on “deep” networks
= Many local minima in cost function

= Vanishing/exploding gradient in the deep layers
= Hard to debug/understand

What's new ?

= Choice on activation function (instead of sigmoid)
= Tanh, ReLU -> reduces gradient vanishing

= More effective gradient descent
= SGD, momentum, ...

CSC_5R013 - Deep Learning based Computer Vision

ReLU(z) = max{0, z}
A

1—

“Rectified Linear Unit”

[Nair & Hinton, 2010]
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Stochastic Gradient descent

Gradient descent o

weight

. Assumes computation with all data
F(w) = Z 1 (w, i) — ti]|? 9F

Wi41 = We — A—

€4
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i :
’:'/ Gradient
1

Global cost minimum
Jmin(w)

Ow w
= Converges to local minima if function is not convex

Stochastic Gradient descent

o Computation with random sample of data : batch B,

(9.7'_
S &u Z | (w,x;) — %”2 Wil = We — 3&) |

ieB;

= May help avoiding local minima
= But no convergence guarantee

CSC_5R013 - Deep Leamning based Computer Vision




Stochastic Gradient descent

SGD parameters
= | earning rate A : see later

= Batch size B : increasing B reduces the variance of the gradient
estimates and enables the speed-up of batch processing, but converges
to ‘standard’ gradient descent

SGD with momentum

2O
= Add a ‘history’ of gradient Uer1 = YU + A5~
= (Can go through local barriers W41 = Wr — Upt

= Accelerates if the gradient does not change much
® Reduces oscillations in narrow valleys
= 39 parameter y

CSC_5R013 - Deep Leamning based Computer Vision 47



SGD variants

Adaptive Learning Rate
= SGD rely a lot on learning rate

= Various strategies exist to adapt learning rate automatically

= AdaGrad, RMSProp, ADAM, ...

Ex: AdaGrad

= Extension of SGD with momentum
= Accumulates gradient magnitudes
= Use it to decay learning rate
= Used with fix A, usually 0.01

Mey1 =

rt:rt—1+(

A

OF;
M1 = Bime + (1 — ﬁl)a_r_:

me41

1- B
6]-})2

Ow

Wil = Wp — —= mii1
VIt + €

CSC_5R013 - Deep Learning based Computer Vision
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Learning rate
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Learning Rate influences learning a lot
= High learning rate good at the beginning
= | ow learning rate better at the end

Scheduling learning rates

= Various approaches exist
= E.g.:Exponential

At) = Ao x ek
= Eg.:1/x

A(t) = Xo/(1 + kt)

NB : Epoch = 1 pass of full dataset

CSC_5R013 - Deep Learning based Computer Vision

good learning rate

b Loss

Learning rate decay!

Epoch

49
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Initialization S
Initialize weights
= |nitialization should put weights in area where gradients are large
= |nitialize to fixed value will lead to symmetries
= Random initialization is better (usually Gaussian (0,c))
= \Weight should not be too big nor too small
= Various existing schemes ——— — ,
. Initialization Activation functions o0? (Normal)
= Xavier/Glorot
. He/Kaiming for Rel_u Glorot None, tanh, logistic, softmax 1/ fangy,
He ReLU and variants 2/ fan;,
fan = number of neurons
fan,,q = (fan;, + fan,)/2 ~ LeCun SELU 1 / fan;,

Xavier Glorot and Yoshua Bengio (2010): Understanding the difficulty of training deep feedforward neural networks.
International conference on artificial intelligence and statistics.
Kaiming He, etal (2015): Delving Deep into Rectifiers:Surpassing Human-Level Performance on ImageNet Classification

CSC_5R013 - Deep Learning based Computer Vision 90
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Loss function

Compute error of the prediction
= |1 loss: for regression, ~ constantgradient, robust to outliers

Z lyt 'yz

= | 2 loss: for regression, gradlent proportional to errors, sensitive to

outliers L2
Z(yz — §i)°

= Huber Loss: Mix L1 (>1) and L2 (<1)

Huber

—————————————

= Cross entropy : for categorization, transform network output to

probabilities . e . A
Softmax: %i = §~ 2 L(g,y) = — Y _y;logy;
j .

z;: network output; 1;: estimated prob of class i; y;: true prob of class #;

CSC_5R013 - Deep Leamning based Computer Vision o1



Training Deep Networks
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Avoid overfitting

® Training too much limits generalization

= |mportant to keep an eye on validation error :
= Stop learning if validation error increase | Overfiting

= Using regularization also helps epoch

Train

Val

Under-fitting Appropriate-fitting Over-fitting

(too simple to
explain the
variance)

(forcefitting — too
good to be true)

CSC_5R013 - Deep Leamning based Computer Vision 52



Training Deep Networks

Regularization

= \arious ways to stabilize training and avoid overfitting
= \Weight decay
= Dropout
= Batch normalization

= Weight decay
= Avoid overfitting / weigh explosion

A2

2w

E(w) = ‘Fdata (w) +

= Dropout
= Train while removing random connections
= Force robustness to noise / redundancy

(a) Standard Neural Net

CSC_5R013 - Deep Learning based Computer Vision
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Batch Normalization

Batch normalization for CNN

= Normalize data of a layer, for each batch, and output an affine transform
with learned parameters v,3

.
UB +— — Z T; // mini-batch mean Batch Norm
m im1

1
2 z 2 - - ) E
<_ — T — // ..b H
oR 0 1(.1‘l ;13) mini-batch vanance

Ti i // normalize °
\/O_'%TE D M et "
Y; +— "'f';’l‘\,' + 8= BN.},_B(I,') // scale and shift

= (Good empirical performances (no need for pretraining, dropout, ...), reasons
not completely clear

= Other normalization (layer, instance), for small batch size, transformers or RNN

CSC_5R013 - Deep Leamning based Computer Vision o4



Classification performance

= Accuracy :

correct predictions
acc =

number of predictions

= Confusion matrix

" Foraclass:
= Precision/Recall

relevant elements
f 1

fakke negatives true negatives

How many selected
items are réelevant?

true positives  false positives

Precision =

selected elements

€4

Reporting performances ENSTA

@ IP PARIS
plane 0.06
ar 010
bird 1 i
@t 0.03
E deer 0.00
[h)
E  dog 0.01
frog 0.01
horse 4 - 0.03
sip{ 008 010 002 002 001 001
tuck{ 001 017 00l 002 001 001 001 004

RIE A A N R
Predicted Iabel

How many relevant
items are selected?

F1 Score = Harmonic mean

of Precision and Recall
Recall = ——

Fl = 2 X Precision X Recall
o Precision + Recall

95




Data for Deep Learning
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Datasets

Data sets

= |f possible, make 3 sets : training, validation, test

= Use Training for training ...

= Use Validation to check training quality, tune algorithm params

= Use test only to report final performance (hidden in ML competitions)

K-fold Cross validation 2 s
= When little data : split dataset in k sets T Round 10

= Train on k-1, validate on remaning one
= Repeat k times

" Report mean performances

racy = Average(Round 1, Round 2, ...)

CSC_5R013 - Deep Leamning based Computer Vision o7
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Datasets

Popular image classification datasets

= MNIST : 28x28 gray level numbers, 60k images, variants : Fashion
MNIST... o
|

o 0
|

N - o
) SR )

J
|
2

L T )
NN O
PR

0
!
2

v =S
» -
MNO

=
{
>

ro — 0

O
| !
ol A
= CIFAR 10/100 : 32x32 color, 60k images

airplane &.'%V..=ﬁ
automobile E.HHHHH‘

bird

M

fmlE WES ¥ EEE

3 Imaquet21k 21k cateqories, hlerarchy, 14I\/I |maqes very unbalanced

B
Ll--_. i "*‘_'—

£

54 98 T3 0D B W A
1 EEE Yol

mammal — placental — carnivore —— canine — dog —working dog— husky

" |mageNet 1K : 1k categories, no hierarchy, 1.2M images
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Datasets

Number of categories vs. number of instances

Several large scale databases i

" For various tasks
= Ex: Microsoft COCO
Common Objects in Context

: E

Instances per category
g

person, sheep dog

}1\§?\;f

(a) Image classification (b) Object localization

(¢) Semantic segmentation (d) This work

CSC_5R013 — Deep Learning based Computer Vision
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PASCAL VOC N imagehet
. . Detection gmﬁc tion
. .m::h 256 -
Calttech 101 .
10 100 1000 10000 100000
Number of categories
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Summary
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Deep Learning

Training procedure (1/3)

= (Create training / validation / test sets, or use existing dataset

= Normalize data
= Substract mean (computed on training set)
= Divide by std. dev. (computed on training set)
= Create your neural network structure
= Manually by stacking layers (convolution, activation, pooling, Batch Norm, dense,...)
= Or download existing structures (VGG, ResNet50, ...)
= |nitialize weights or download pretrained weights
= E.g., Glorot initialization for personal NN
= Or download ImageNet pretrained weights for existing structures
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Training procedure (2/3)

= Choose a Loss function
= For example for classification, use softmax + cross entropy.

= Select one variant of gradient descent (with momentum, ADAM, ...)
= Will use gradient to reduce the loss

= Define learning rate schedule
= E.g. exponential decrease
= Define mini batch size

= Bigger will smooth gradient noise -> allow larger steps -> learn faster
= But too large mini-batches lead to problems (stuck in local min...)
= Linked to memory size of GPUs
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Training procedure (3/3)

= Qverfit on few images

= To check everything works: loss should go to 0 when trained on a few images
= Train

= Refine hyperparameters, idealy use automatic parameter tuning (e.g. optuna)
= Deploy

= Optimize network to fit on embedded platform
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Deep Learning: summary fadia

Deep learning works well

= (Can be applied to lots of different tasks
= \lery versatile approach

= Best performances in many vision tasks

But be aware of

= \ery computationally intensive (can be optimized though)

= Need a lots of training data

= Quite sensitive parameters and open architectural possibilities
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