Control of Discrete-time System

Elena VANNEAUX

elena.vanneaux@ensta-paris.fr

Course grade breakdowns Labs - 50% Final project - 50 %

Space model of discrete-time system

Continuous-time systems

$$\dot{x} = Ax + Bu$$

 $y = Cx + Du$

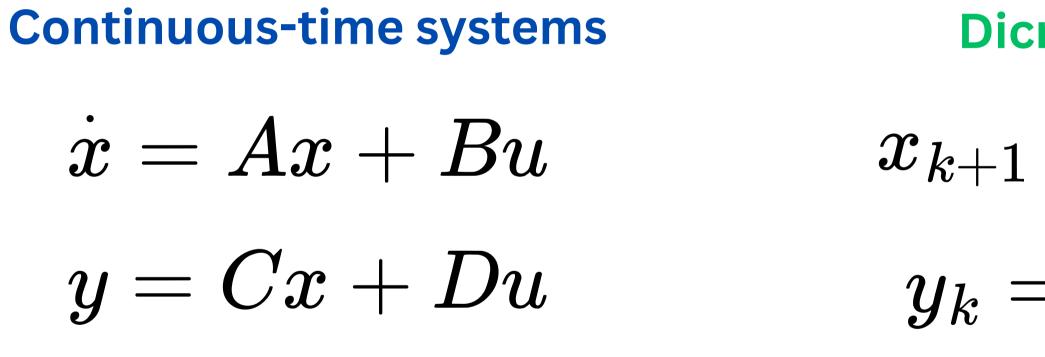
Space model of discrete-time system

Continuous-time systems	Dicr	
$\dot{x} = Ax + Bu$	$x_k = 1$	
y = Cx + Du	$y_k =$	

crite-time systems

 $Ax_{k-1} + Bu_{k-1}$ $= Cx_k + Du_k$

Space model of discrete-time system

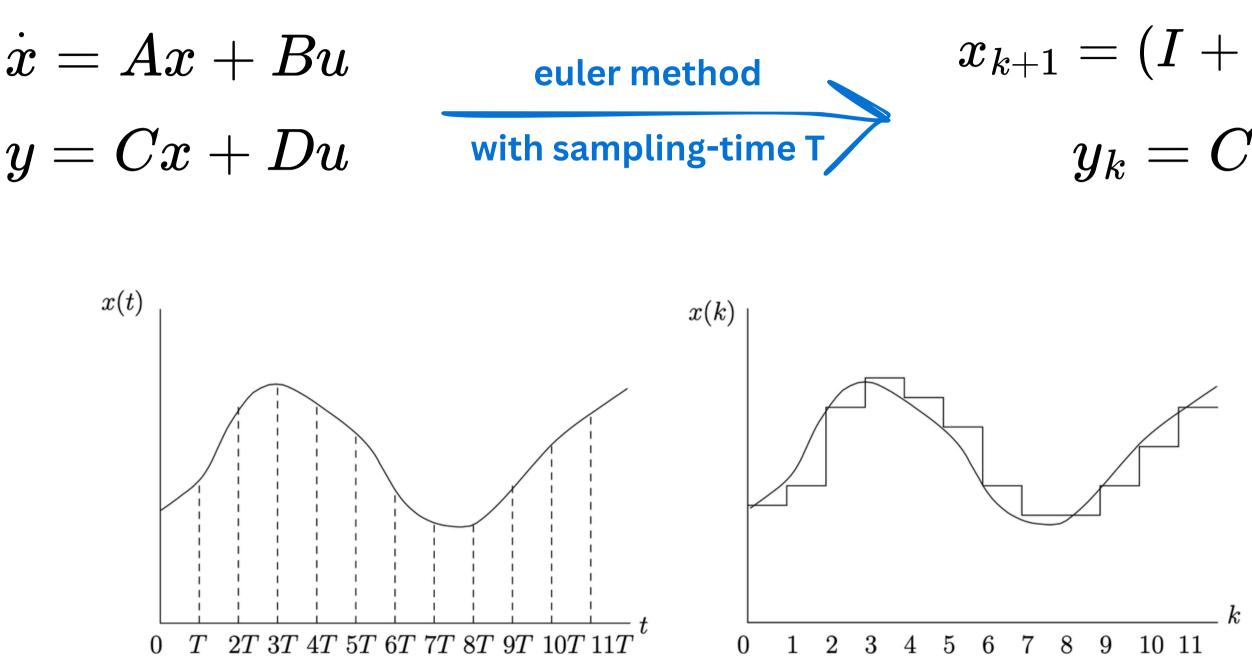


Discrete-time systems are either inherently discrete (e.g. models of bank accounts, national economy growth models, population growth models, digital words)

Dicrite-time systems

$$= Ax_k + Bu_k$$
$$= Cx_k + Du_k$$

Disretization of continuous-time system $x_{k+1} = (I + AT)x_k + BTu_k$ $\dot{x} = Ax + Bu$ euler method $y_k = Cx_k + Du_k$ y = Cx + Duwith sampling-time



or they are obtained as a result of sampling (discretization) of continuous-time systems.

Controllability of discrete-time system

$$x_{k+1} = Ax_k + Bu_k$$

$$y_k = Cx_k + Du_k$$

Definition of Controllability

A discrete-time linear system $x_{k+1} = Ax_k + Bu_k$ is called controllable at k = 0 if there exists a finite time k_N such that for any initial state x_0 and target state x_t , there exists a control sequence $\{u_k; k = 0, 1, k_N\}$ that will transfer the system from x_0 at k = 0 to x_t at $k = k_N$

Observability of discrete-time system

$$x_{k+1} = Ax_k + Bu_k$$

$$y_k = Cx_k + Du_k$$

Definition of Observability

A discrete-time linear system is called observable at k = 0 if there exists a finite time k_N such that for any initial state x_0 , the knowledge of input $\{u_k; k = 0, 1, ..., k_N\}$ and $\{y_k; k = 0, 1, ..., k_N\}$ suffice to determine the state x₀.

Internal stability of discrete-time system

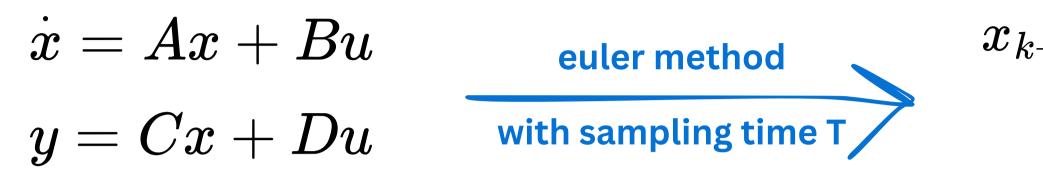
 $x_{k+1} = Ax_k + Bu_k$

$$y_k = Cx_k + Du_k$$

Definition of internal stability

A discrete-time system is stable if and only if when the input $u_k = 0$ for all $k \geq 0$, the state x_k is bounded for all $k \geq 0$ for any initial state $x_0 \in \mathbb{R}^n$

A discrete-time system is asymptotically stable if and only if it is stable and $\lim_{k\to+\infty} ||x_k|| = 0$ for any initial state $x_0 \in \mathbb{R}^n$ n.



Continuous-time system

$x_{k+1} = (I + AT)x_k + BTu_k$

$y_k = Cx_k + Du_k$

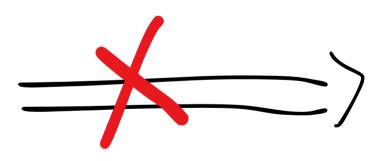
It's sampled version

 $\dot{x} = Ax + Bu$ y = Cx + Du

Attention!

Continuous-time system

Controllable



 $x_{k+1} = (I + AT)x_k + BTu_k$

$y_k = Cx_k + Du_k$

It's sampled version Controllable

 $\dot{x} = Ax + Bu$ y = Cx + Du

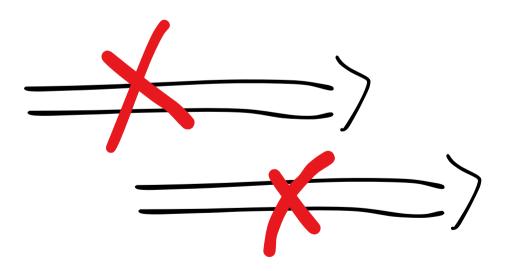
euler method with sampling time T

Attention!

Continuous-time system

Controllable

Observable



 $x_{k+1} = (I + AT)x_k + BTu_k$

$y_k = Cx_k + Du_k$

It's sampled version Controllable Observable

 $\dot{x} = Ax + Bu$ y = Cx + Du

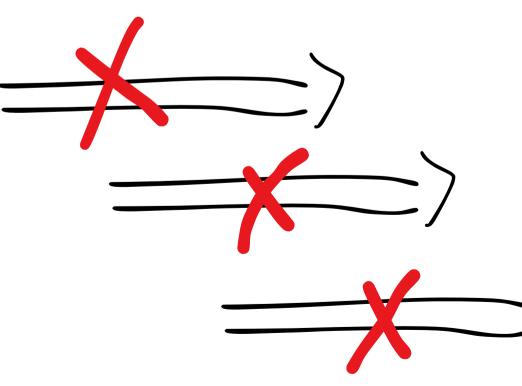
Attention!

Continuous-time system

Controllable

Observable

Stable



 $x_{k+1} = (I + AT)x_k + BTu_k$

$y_k = Cx_k + Du_k$

It's sampled version Controllable Observable

Stable

 $\dot{x} = Ax + Bu$ y = Cx + Du

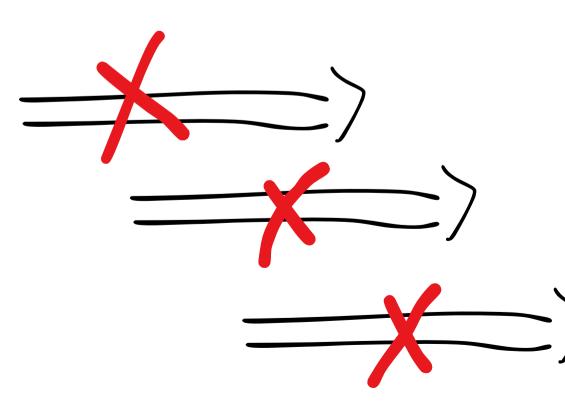
Attention!

Continuous-time system

Controllable

Observable

Stable



 $x_{k+1} = (I + AT)x_k + BTu_k$

$y_k = Cx_k + Du_k$

It's sampled version Controllable ? Observable ? Stable ?

Criterion of controllability for discrete-time system

$$egin{aligned} x_{k+1} &= A x_k + B u_k & ext{(1)} & ext{Controllar} \ y_k &= C x_k + D u_k & ext{[}B, ext{,} \end{aligned}$$

Kalman's Criterion

The linear discrete-time system (1) is controllable if and only if the controllability matrix has rank equal to n, where n is a number of state variables.

ability matrix

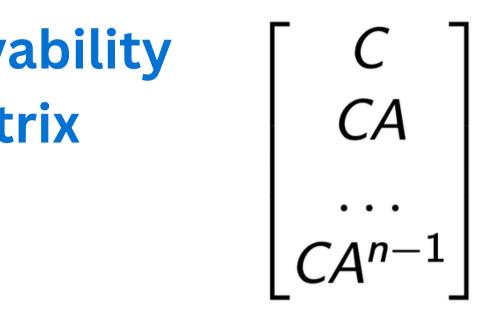
$AB,\ldots,A^{n-1}B$]

Criterion of observability for discrete-time system

$$x_{k+1} = A x_k + B u_k$$
 (1) Observal matrix $y_k = C x_k + D u_k$ (2)

Kalman's Criterion

The linear discrete-time system (1) with measurements (2) is observable if and only if the observability matrix has rank equal to n, where n is a number of state variables.



Criterion of Stability for discrete-time system

$$x_{k+1} = Ax_k + Bu_k$$

$$y_k = Cx_k + Du_k$$

Criterion of stability

A discrete-time LTI system is asymptotically (internally) stable if and only if $|\lambda_j| < 1$ for all $j \in 1, ..., s$ where $\lambda_1, ..., \lambda_s$ is the set of distinct eigenvalues of A.

Control system

$$\dot{x} = Ax + Bu$$

$$y = Cx$$

SISO Control system

$$\dot{x} = Ax + Bu$$
$$y = Cx$$
$$\forall \in \mathbb{R}, \forall \in \mathbb{R}$$

SISO Control system

 $\dot{x} = Ax + Bu$ y = CxYER, YER

- - $\lim_{t\to+\infty}(y$

Specification

output of closed-loop system

should track the given reference trajectory:

$$y_{ref}(t) - y(t)) = 0$$

SISO Control system

- $\dot{x} = Ax + Bu$ y = Cx
- - $\lim_{t\to+\infty} (y)$

PID controller

$$u(t) = K_p e(t) + K_i \int_0^t e(\tau) \mathrm{d} au$$

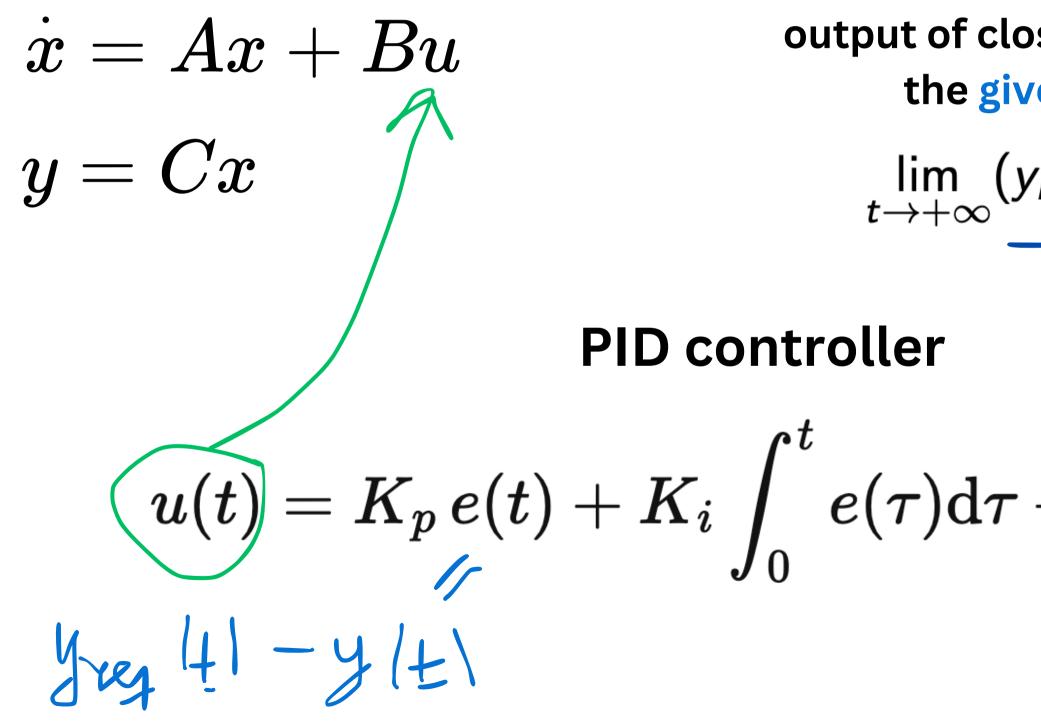
 $y_{reg} | \underline{t} | - \underline{y} | \underline{t} |$

Specification

$$y_{ref}(t) - y(t)) = 0$$

$$+ K_d \, rac{\mathrm{d}}{\mathrm{d}t} e(t).$$

SISO Control system



Specification

$$y_{ref}(t) - y(t)) = 0$$

$$+ K_d \, rac{\mathrm{d}}{\mathrm{d}t} e(t).$$

Digital PID controller

SISO Control system

 $x_{k+1} = A x_k + B u_k$ output of the $y_k = C x_k$

PID controller

$$u_k = K_p e_k + K_i \sum_{n=1}^k e_n + K_d [e_k - e_{k-1}]$$

Specification

$$\lim_{k \to +\infty} (y_{ref,k} - y_k) = 0$$

Digital PID controller

SISO Control system

 $x_{k+1} = Ax_k + Bu_k$ $y_k = C x_k$ k **PID controller** $\overline{u_k} = K_{\rm p}e_k + K_{\rm i}\sum_{n=1}^k e_n + K_{\rm d}\left[\epsilon\right]$

Specification

$$\lim_{k \to +\infty} (y_{ref,k} - y_k) = 0$$

$$e_k - e_{k-1}]$$

Digital PID controller

SISO Control system

$$egin{aligned} & x_{k+1} = A x_k + B u_k & ext{output of} \ & y_k = C x_k & ext{k} \end{aligned}$$

PID controller

The digital PID-controller is usually implemented using the so-called velocity form

$$u_{k} = u_{k-1} + K_{p} \left[e_{k} - e_{k-1} \right] + K_{i} e_{k} + K_{d} \left[e_{k} - 2e_{k-1} + e_{k-2} \right]$$

to avoid keep track of the sum

Specification

$$\lim_{\to +\infty} (y_{ref,k} - y_k) = 0$$

PID: Summary

$u_{k} = u_{k-1} + K_{p} [e_{k} - e_{k-1}] + K_{i} e_{k} + K_{d} [e_{k} - 2e_{k-1} + e_{k-2}]$

PID: Pros

•	Real-Time Control	•	
•	Simple Implementation	•	Wrong
•	Tuning flexibilty	•	Not Id

lacksquare

PID: Cons

Requires Tuning

ly tuned might be unstable

deal for Complex Processes

Don't take into account state and input

constraints

MIMO Control system

$$\dot{x} = Ax + Bu$$

$$y = x$$

MIMO Control system

$$\dot{x} = Ax + Bu$$

$$y = x$$

Specification

The closed-loop system should be asymptotically stable

$\lim_{t\to+\infty}\|x(t)\|=0$

MIMO Control system

$$\dot{x} = Ax + Bu$$

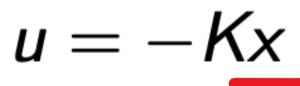
$$y = x$$

Linear Full-State Feedback Controller: U

Specification

The closed-loop system should be asymptotically stable

$\lim_{t\to+\infty}\|x(t)\|=0$



MIMO Control system

Closed-loop system

$$\dot{x} = (A - BK)x$$

Specification

The closed-loop system should be asymptotically stable

$\lim_{t \to +\infty} \|x(t)\| = 0$

-Kx

MIMO Control system

Closed-loop system

$$\dot{x} = (A - BK)x$$

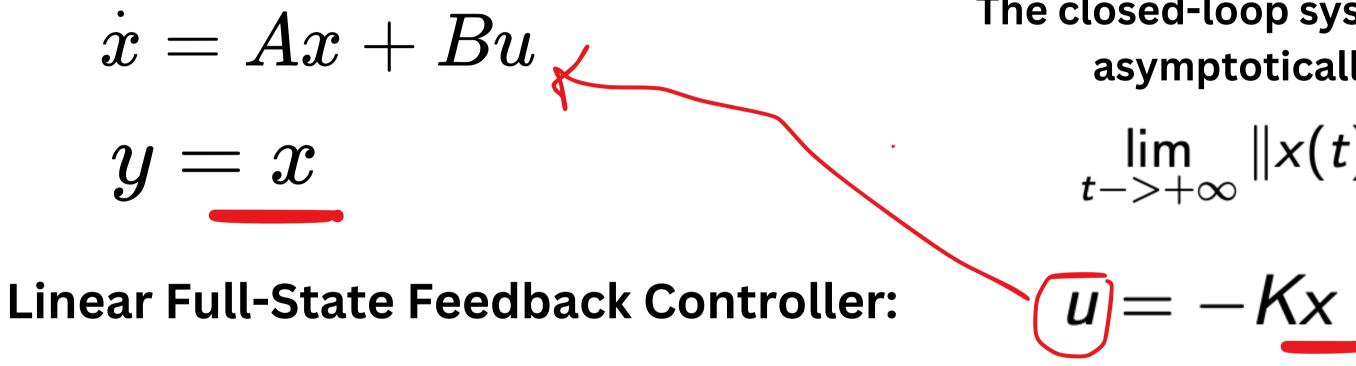
Specification

The closed-loop system should be asymptotically stable

$\lim_{t \to +\infty} \|x(t)\| = 0$

-Kx

MIMO Control system



Closed-loop system

$$\dot{x} = (A - BK)x$$

Theorem (Eigenvalue assignment — MIMO). All eigenvalues of (A-BK) can be assigned arbitrarily (provided complex eigenvalues are assigned in conjugated pairs) by selecting a real constant K if and only if (A, B) is controllable.

To make closed-loop system stable assign eigenvalues with negative real part

Specification

- The closed-loop system should be asymptotically stable
 - $\lim_{t\to+\infty}\|x(t)\|=0$

Digital full feedback regulator

MIMO Control system

$$x_{k+1} = A x_k + B u_k$$
 asymptotically stab $y_k = C x_k$ ine closed-loop system shows a symptotically stab

$u_k = -K x_k$ Linear Full-State Feedback Controller:

Closed-loop system $x_{k+1} = (A - BK)x_k$

K if and only if (A, B) is controllable.

To make closed-loop system stable assign eigenvalues, s.t

Specification

The closed-loop system should be le

Theorem (Eigenvalue assignment — MIMO). All eigenvalues of (A - BK) can be assigned arbitrarily (provided complex eigenvalues are assigned in conjugated pairs) by selecting a real constant

t.
$$|\lambda_i| \leq 1, i = 1, \dots n$$

Stabilisation by dynamic feedback

MIMO Control system

 $\dot{x} = Ax + Bu$ y = Cx

- The closed-loop system should be asymptotically stable
 - $\lim_{t\to+\infty}\|x(t)\|=0$

Stabilisation by dynamic feedback

MIMO Control system

 $\dot{x} = Ax + Bu$ y = Cx

- The closed-loop system should be asymptotically stable
- - $\lim_{t \to +\infty} \|x(t)\| = 0$

Luenberger Observer: $u = K\hat{x}$ Feedback controller:

$\hat{x} = (A - LC)\hat{x} + Ly + Bu$

Stabilisation by dynamic feedback

MIMO Control system

 $\dot{x} = Ax + Bu$ y = Cx

 $\hat{x} = (A - LC)$ **Luenberger Observer:** $u = K\hat{x}$ Feedback controller:

> If pair (A, B) is controllable we can choose K, such that for all $\lambda_i \in eig(A - BK)$ we have $Re(\lambda_i) < 0$.

If pair (A,C) is observable we can choose L, such that for all $\lambda_i \in eig(A - LC)$ we have $Re(\lambda_i) < 0$.

- The closed-loop system should be asymptotically stable
 - $\lim_{t\to+\infty}\|x(t)\|=0$

$$(\hat{x})\hat{x} + Ly + Bu$$

Stabilisation by dynamic feedback

MIMO Control system

The closed-loop system should be asymptotically stable

 $x_{k+1} = Ax_k + Bu_k$

 $y_k = C x_k$

Luenberger Observer:

 $\hat{x}_{k+1} = (A - LC)\hat{x}$

Feedback controller: $u_k = K \hat{x}_k$

If pair (A, B) is controllable we can choose K, such that for all $\lambda_i \in eig(A - BK)$ we have $|\lambda_i| < 1$.

If pair (A,C) is observable we can choose L, such that for all $\lambda_i \in eig(A - LC)$ we have $|\lambda_i| < 1$.

$$\lim_{k \to +\infty} \|x_k\| = 0$$

$$\hat{x}_k + Ly_k + Bu_k$$

LQR: continuous system

For a continuous-time linear system described by:

 $\dot{x} = Ax + Bu$

with a cost function defined as:

$$J = \int_0^\infty \left(x^T Q x + u^T R u + 2 x^T N u
ight)$$

the feedback control law that minimizes the value of the cost is:

$$u = -Kx$$

where K is given by:

$$K = R^{-1}(B^T P + N^T)$$

and P is found by solving the continuous time algebraic Riccati equation:

$$A^TP + PA - (PB + N)R^{-1}(B^TP -$$

dt

 $(+ N^T) + Q = 0$

LQR: discrete system

For a discrete-time linear system described by:

 $x_{k+1} = Ax_k + Bu_k$

with a performance index defined as:

$$J = \sum_{k=0}^\infty \left(x_k^T Q x_k + u_k^T R u_k + 2 x_k^T N u_k
ight)$$

the optimal control sequence minimizing the performance index is given by:

$$u_k = -Fx_k$$

where:

$$F = (R + B^T P B)^{-1} (B^T P A + N^T)$$

and P is the unique positive definite solution to the discrete time algebraic Riccati equation (DARE):

$$P = A^T P A - (A^T P B + N) ig(R + B^T P Big)^{-1} (B^T P A +$$

 $(N^T) + Q$.

Why LQR is "better" than PID?

- It can handle multiple-input multiple-output (MIMO) systems.
- It is an optimal control, taking into account the system
 - dynamics and control effort. This can lead to better
 - performance and efficiency compared to PID, which focuses
 - on reducing error but doesn't optimize a specific criterion.
- LQR more robust than PID in uncertain environments.

Ideally, we want

MIMO Control system $\dot{x} = Ax + Bu$ y = Cx

- The closed-loop system should be asymptotically stable
 - $\lim_{t\to+\infty}\|x(t)\|=0$

Ideally, we want

MIMO Control system $\dot{x} = Ax + Bu$ y = Cx

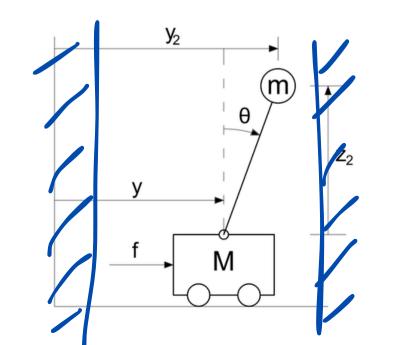
but, also ensure

 $x \in \mathcal{X}, \ u \in \mathcal{U}$

- The closed-loop system should be asymptotically stable
 - $\lim_{t\to+\infty}\|x(t)\|=0$

Ideally, we want

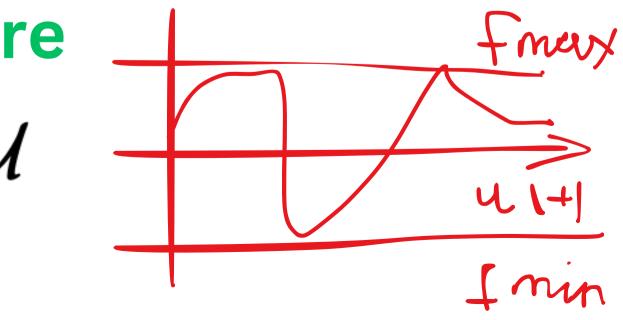
MIMO Control system $\dot{x} = Ax + Bu$ t ->y = Cx



but, also ensure $x \in \mathcal{X}, \ u \in \mathcal{U}$

The closed-loop system should be asymptotically stable

$$\max_{x\to\infty}\|x(t)\|=0$$



Do we know how to solve it?

• Constrained LQR for continuous system?

and $J = \int_{0}^{\infty} (x^{T}Qx + u^{T}Ru + 2x^{T}Nu) dt \longrightarrow dt$ $\dot{x} = Ax + Bu$ $x \in \mathcal{X}, \ u \in \mathcal{U}$

Constrained LQR for dicrete system?

$$egin{array}{ll} x_{k+1} &= Ax_k + Bu_k \ x \in \mathcal{X}, \ u \in \mathcal{U} \end{array} extbf{and} \quad egin{array}{ll} \mathbf{and} & J = \sum_{k=0}^\infty \left(x_k^T Q_k^T Q_$$

• well, not really...

 $(x_k + u_k^T R u_k + 2x_k^T N u_k) \longrightarrow \mathcal{M}$

• well, not really...

Do we know how to solve it? • Finite horizon version of constrained LQR for discrete

system?

$$x_{k+1} = Ax_k + Bu_k$$

 $x \in \mathcal{X}, \ u \in \mathcal{U}$

$$J = x_{H_p}^T Q_{H_p} x_{H_p} + \sum_{k=0}^{H_p-1} ig(x_k^T Q x_k + u_k^T R u_k + 2 x_k^T N ig) ig)$$

• yes, there are solvers capable to do so, at least when constraints are convex

mp

 $Nu_k)$, where H_p is the time horizon

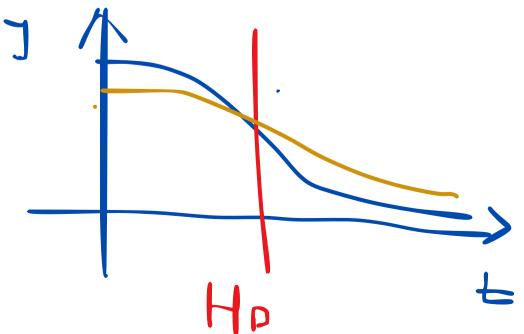
Do we know how to solve it? • Finite time horizon version of constrained LQR for discrete

system?

$$x_{k+1} = Ax_k + Bu_k$$

 $x \in \mathcal{X}, \ u \in \mathcal{U}$

$$J = x_{H_p}^T Q_{H_p} x_{H_p} + \sum_{k=0}^{H_p-1} ig(x_k^T Q x_k + u_k^T R u_k + 2 x_k^T N ig) ig)$$



- when constraints are convex
- horizon problem

rup

 $Nu_k)$, where H_p is the time horizon

• yes, there are solvers capable to do so, at least

• Suboptimal solution w.r.t. original infinite time

Model predictive control

• at each time t solve the (planning) problem

minimize $\sum_{\tau=t}^{t+T} \ell(x(\tau), u(\tau))$ subject to $u(\tau) \in \mathcal{U}, \quad x(\tau) \in \mathcal{X}, \quad \tau$ $x(\tau + 1) = Ax(\tau) + Bu(\tau)$ x(t+T) = 0

with variables $x(t+1), \ldots, x(t+T), u(t),$ and data x(t), A, B, ℓ , \mathcal{X} , \mathcal{U}

- call solution $\tilde{x}(t+1), \ldots, \tilde{x}(t+T), \tilde{u}(t), \ldots$
- we interpret these as *plan of action* for next T steps
- we take $u(t) = \tilde{u}(t)$
- this gives a complicated state feedback control $u(t) = \phi_{mpc}(x(t))$

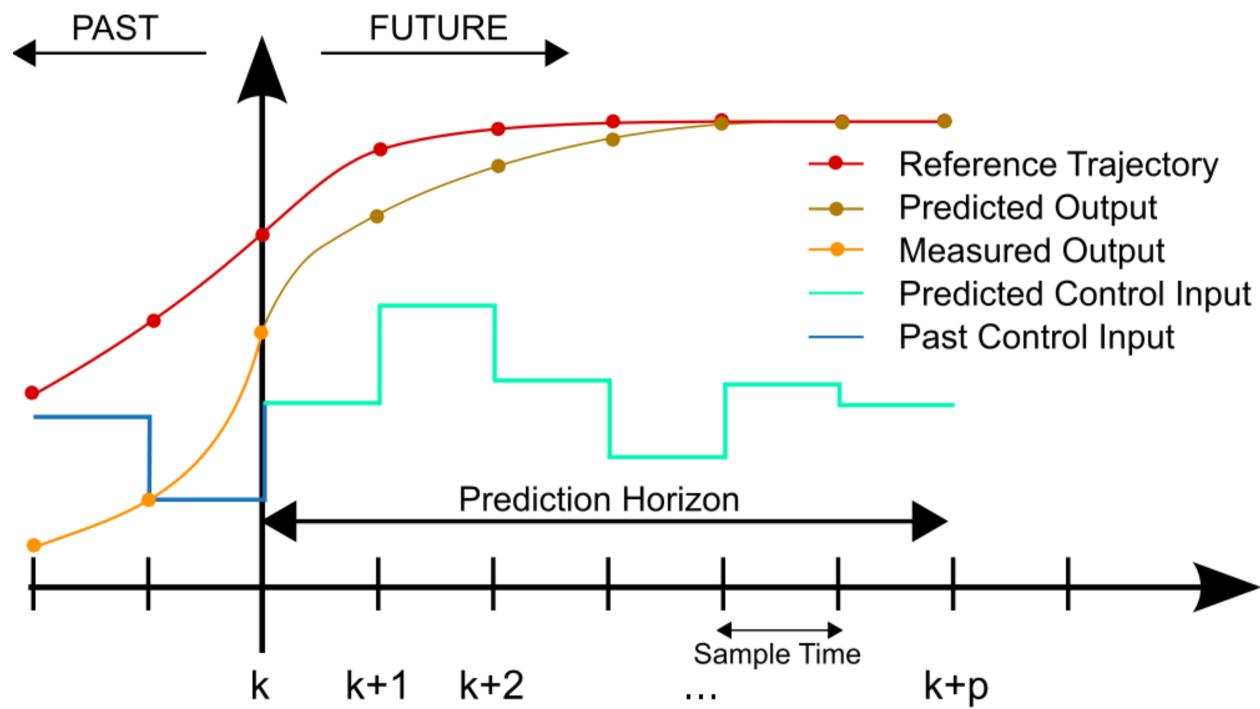
$$au = t, \dots, t + T$$

T), $au = t, \dots, t + T - 1$

$$\ldots, u(t+T-1)$$

$$\ldots, \tilde{u}(t+T-1)$$

Model predictive control



MPC for tracking

The Model Predictive Control (MPC) problem solved by pyMPC is:

$$\arg\min_{U} \underbrace{\frac{1}{2} (x_{N} - x_{ref})^{\top} Q_{x_{N}} (x_{N} - x_{ref})}_{J_{u}} + \underbrace{\frac{1}{2} \sum_{k=0}^{N_{p}-1} (x_{k} - x_{ref})^{\top} Q_{x} (x_{k} - x_{ref})}_{J_{u}} + \underbrace{\frac{1}{2} \sum_{k=0}^{J_{u}} (u_{k} - u_{ref})^{\top} Q_{u} (u_{k} - u_{ref})}_{J_{u}} + \underbrace{\frac{1}{2} \sum_{k=0}^{N_{p}-1} \Delta u_{k}^{\top} Q_{\Delta u} \Delta u_{k}}_{Subject to :}$$

$$x_{k+1} = Ax_{k} + Bu_{k}$$

$$x_{k} \in \mathcal{X}, \ u_{k} \in \mathcal{U}$$

$$(2b)$$

Tnank you for you attention!