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Space model of discrete-time

system
Continuous-time systems Dicrite-time systems
r = Ax + Bu i1 = Az, + Buy
y = Cx + Du yr = Czp + Duy,

Discrete-time systems are either
inherently discrete (e.g. models of bank accounts, national economy growth
models, population growth models, digital words)



Disretization of continuous-time system

Zb — Am —+- Bu euler method Lhkt+1 — (I T AT)mk =+ BTuk
Y = Cx -+ Du with sampling-time T> Y — Ca;k —+ Duk
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or they are obtained as a result of sampling (discretization) of
continuous-time systems.



Controllability
of discrete-time system

Tp+1 = Azxy + Buy

yr = Czxy + Duy,

Definition of Controllability

A discrete-time linear system x;.1 = Axi + Buy is called controllable at

k = 0 if there exists a finite time ky such that for any initial state xg and
target state x;, there exists a control sequence {ux; k =0, 1,, ky} that will
transfer the system from xg at k = 0 to x; at k = ky



Observability
of discrete-time system

Tp+1 = Azy + Buy

yr = Czxy + Duy,

Definition of Observability

A discrete-time linear system is called observable at kK = 0 if there exists a
finite time kpy such that for any initial state xg, the knowledge of input
{ue, k=0,1,...,ky} and {yx; k = 0,1, ..., ky} suffice to determine the
state Xxp.



Internal stability
of discrete-time system

Tp+1 = Azy + Buy

Y = Cxi. + Dug
Definition of internal stability

A discrete-time system is stable if and only if when the input ux = 0 for all
k > 0, the state x; is bounded for all k > 0 for any initial state xg € R"

A discrete-time system is asymptotically stable if and only if it is stable and
liMk_ 100 || Xk|| = O for any initial state xo €R™ n.



Disretization of continuous-time system

r = Az + Bu euler method L1 = (I T AT)mk + BTup
Y = Cx + Du with samplingtimeT> Y — Ca;k —+ Duk
Continuous-time It’s sampled

system version
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Disretization of continuous-time system

ib — Ax —+ Bu euler method Lkt+1 = (I T AT)mk =+ BTuk
Y = Cx + Du with samplingtimeT> Y — C(L‘k —+ Dfu,k
Attention!
Continuous-time It’s sampled
system version

Controllable ﬁg j> Controllable ?
Observable :ix :> Observable ?

Stable p— X t> Stable ?




Criterion of controllability
for discrete-time system

rrr1 = Az + Bup (1) Controllability matrix
~1
yk:C$k+Duk [B,AB,...,An B]

Kalman’s Criterion

The linear discrete-time system (1) is controllable if and only
if the controllability matrix has rank equal to n, wherenis a
number of state variables.



Criterion of observability
for discrete-time system

rrr1 = Az + Bup (1) Observability C

matrix CA
yr = Cxp + Dup  (2)

CAn—l

Kalman’s Criterion

The linear discrete-time system (1) with measurements (2) is
observable if and only if the observability matrix has rank
equal to n, where n is a number of state variables.



Criterion of Stability
for discrete-time system

Tr+1 = Azy + Buy

Y = Cxi. + Dug

Criterion of stability

A discrete-time LTI system is asymptotically (internally) stable if and only
if [A\j|] <1lforalljel,...;swhere Aq,...,\s is the set of distinct
eigenvalues of A.



PID controller

Control system
r = Ax + Bu
y=Cz




PID controller

SISO Control system
r = Ax + Bu
y=Cz

\AURJ Ljdﬂ



PID controller

SISO Control system Specification
d? — AZB Bu output of closed-loop system
should track the given reference trajectory:
Y = Cx t |jmoo(yref(f) —y(t))=0
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PID controller

SISO Control system Specification

d; — AZB Bu output of closed-loop system should track
the given reference trajectory:

y=Cz lim (yrer(£) = y(£)) = 0

PID controller

ult) = Kt +K/ AT+ K- e(t)

dt
Yugy 1 =Y /4:\



PID controller

SISO Control system Specification
d? — AZB B’LL output of closed-loop system should track
4 the given reference trajectory:
Y = Cx , Ijmoo(yref(t) —y(t))=0

PID controller

d
@ Ke +K/ dT%-KdEe(t)

Yuey 1 ‘}/4:\



Digital PID controller

SISO Control system Specification

output of closed-loop system should track
the given reference trajectory:

Tr+1 = Axy + Buy

Yk = Czy im  (Vref,k — yk) =0

k——+o00
Cr

PID controller

k
U — erk + Ki 21 €y T Kd [ek — ek_l]
n=—



Digital PID controller

SISO Control system Specification

output of closed-loop system should track
the given reference trajectory:

Tr+1 = Axy + Buy

yr = Cp, Jim (Vref.k —yk) =0
/ ——+00
Sk
v PID controller
St

k
— pek -+ Ki 21 En -+ Kd [ek — ek_l]
n=—



Digital PID controller

SISO Control system Specification

output of closed-loop system should track
the given reference trajectory:

Tp+1 = Azy + Buy

Yk = Czy im  (Vref,k — yk) =0

k——+00
Cr

PID controller

The digital PID-controller is usually implemented using the so-called velocity form
up = up—1+Kp e — ep—1]+Kiep+Kq lex — 2ex—1 + ep—2]

to avoid keep track of the sum



PID: Summary

U = Up—1+K, er — ex—1|+Kier+ K lex — 2ex_1 + ex—o]

PID: Pros PID: Cons

. o Requires Tuning
° Real-Time Control

, , o Wrongly tuned might be unstable
e Simple Implementation

, o o Not Ideal for Complex Processes
° Tuning flexibilty

e Don’t take into account state and input

constraints



Stabilisation by
full feedback
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MIMO Control system
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Stabilisation by full feedback

MIMO Control system

r = Ax

y=4=

Bu

Specification

The closed-loop system should be
asymptotically stable

im |[x(t)[| =0

t—>+400



Stabilisation by full feedback

MIMO Control system

r = Ax

y=4=

Linear Full-State Feedback Controller:

Bu

Specification

The closed-loop system should be
asymptotically stable

im |[x(t)[| =0

t—>+400

u=—Rx



Stabilisation by full feedback

MIMO Control system

r = Ax

y=4=

Linear Full-State Feedback Controller:

Bu

Closed-loop system

r=(A— BK)x
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Stabilisation by full feedback

MIMO Control system

r = Ax

y=4=

Linear Full-State Feedback Controller:

Bu

Closed-loop system

r=(A— BK)x

Specification

The closed-loop system should be
asymptotically stable
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(Y= K<



Stabilisation by full feedback

MIMO Control system Specification
. The closed-loop system should be
L — AZB B u asymptotically stable
— ' im ||x(t)|| =0
Y=z lim x(2)]
Linear Full-State Feedback Controller: ( U= — K x
Closed-loop system  theorem (Eigenvalue assignment — MIMO). All eigenvalues of
. A B K (A—BK) can be assigned arbitrarily (provided complex eigenval-
L = ( o )CB ues are assigned in conjugated pairs) by selecting a real constant
‘\\ K if and only if (A, B) is controllable.

To make closed-loop system stable assign eigenvalues with negative real part



Digital full feedback regulator

MIMO Control system Specification

st = Asy + Buy T
Y = Cxy, | k_lLT_OO k|| = O

Linear Full-State Feedback Controller: u, = —Kxy

Closed-loop system Theorem (Eigenvalue assignment — MIMO). All eigenvalues of

L A B K (A—BK) can be assigned arbitrarily (provided complex eigenval-
LE+1 = ( - )LE k ues are assigned in conjugated pairs) by selecting a real constant

‘\\ K if and only if (A, B) is controllable.

To make closed-loop system stable assign eigenvalues, s.t. ‘)\;‘ < 1, | = 1, ... Nn



Stabilisation by dynamic feedback

MIMO Control system The closed-loop system should be

Zt‘ _ AZE‘ _|_ B’U, asymptotically stable
y = Cu im_[lx(9)] =0



Stabilisation by dynamic feedback

MIMO Control system The closed-loop system should be
Zt‘ _ A T _|_ B’U, asymptotically stable
im |Ix(t)]| =0
y — CQE t—>—400

Luenberger Observer: & — (A— LC)X+ Ly

Feedback controller: u—= KX

Bu



Stabilisation by dynamic feedback

MIMO Control system The closed-loop system should be
Zt‘ _ A T _|_ B’U, asymptotically stable
im |Ix(t)]| =0
y — C,{E t—>—400

Luenberger Observer: % — (A— LC)X+ Ly + Bu
u= KX

Feedback controller:

If pair (A, B) is controllable we can choose K, such that for all
\i € eig(A — BK) we have Re(\j) < 0.

If pair (A,C) is observable we can choose L, such that for all
\;i € eig(A— LC) we have Re(\;) < 0.



Stabilisation by dynamic feedback

MIMO Control system The closed-loop system should be

lim [[x[| =0

yk p— ka k—>400

Luenberger Observer: %1 =(A— LC)& + Lyx + Buy

Feedback controller: u, = KXy

If pair (A, B) is controllable we can choose K, such that for all
\;i € eig(A— BK) we have |\;| < 1.
R TEVE AT S 2

If pair (A,C) is observable we can choose L, such that for all
A\i € eig(A— LC) we have |\;| < 1.




LQR: continuous system

For a continuous-time linear system described by:

r = Ax + Bu

with a cost function defined as:
o0
J = f (:UTQ:B + ul Ru + 2:ETNu) dt
0

the feedback control law that minimizes the value of the cost is:
u=—Kzx

where K is given by:
K =R ' (B'P+ NT)

and P is found by solving the continuous time algebraic Riccati equation:

AP+ PA— (PB+ N)R*'B'P+NHY+Q =0



LQR: discrete system

For a discrete-time linear system described by:

Trt1 = Az + Bug,
with a performance index defined as:

J = (mf@mk + ugRuk + 2$£N'uk)
k=0

the optimal control sequence minimizing the performance index is given by:
ur = —Fxy

where:
F=(R+ B'PB) ' (B"PA+ N")

and P is the unique positive definite solution to the discrete time algebraic Riccati equation (DARE):

P=ATPA— (A"PB+ N)(R+ B"PB) ' (B"PA+ NT) + Q.



Why LQR is “better” than PID?

e |t can handle multiple-input multiple-output (MIMO) systems.

It is an optimal control, taking into account the system
dynamics and control effort. This can lead to better
performance and efficiency compared to PID, which focuses
on reducing error but doesn't optimize a specific criterion.

LQR more robust than PID in uncertain environments.



What are the limitations?

Don’t take into account state and input constraints!
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What are the limitations?

Don’t take into account state and input constraints!

Ideally, we want

MIMO Control system The closed-loop system should be
Zi‘ L A 7 _|_ Bu asymptotically stable
lim |Ix(t)[| =0
y — Caj t—>+400
//I S but, also ensure Fineny
Q y /@ | xeX, ueld =
[ _ _— %\4]4
/AR s




Do we know how to solve it?

e Constrained LQR for continuous system?

z = Ax + Bu and 7= fo (z' Qz + u' Ru+ 22" Nu) dt —\)m&r\

xeEX, ueld
e well, not really...

e Constrained LQR for dicrete system?

L4+l = AIL’,‘!;; + Buy ~o |
ex yey and J=2 (@QutufRuy+ 2af Nuy) —run
’ k=0

e well, not really...



Do we know how to solve it?

 Finite horizon version of constrained LQR for discrete
system?

Tri1 = Azy + Buy

xeX, uel |
Y\
pd

H,—1
J = mgp Qﬂp TH, -+ Z (mngk + ugﬁuk + ngNuk), where H,, is the time horizon
k=0

e yes, there are solvers capable to do so, at least
when constraints are convex



Do we know how to solve it?

e Finite time horizon version of constrained LQR for discrete
system?

Tri1 = Azy + Buy

xeX, uel |
Y\
pd

H,—1
J = mgp QHP TH, -+ Z (mf@wk + ufﬁuk + 2m§;Nuk), where H,, is the time horizon
k=0

e yes, there are solvers capable to do so, at least
when constraints are convex

e Suboptimal solution w.r.t. original infinite time

horizon problem




Model predictive control

e at each time t solve the (planning) problem

minimize ZHT £(x(T),u(T))

T=t T

subject to u(7) € U, :c( )eX, T=t,...,t+T
z(t+1) = Ax(t) + Bu(r), 7=1¢t,...,t+T -1
z(t+T)=0

with variables z(t + 1),...,z(t +T), u(t),...,u(t+ 71 — 1)
and data z(t), A, B, ¢, X, U

e call solution z(t +1),...,z(t+T), u(t),...,u(t+7T —1)
e we interpret these as plan of action for next 1’ steps
o we take u(t) = u(t)

e this gives a complicated state feedback control u(t) = ¢mpc(x(t))



Model predictive control
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Prediction Horizon

Reference Trajectory
Predicted Output
Measured Output
Predicted Control Input
Past Control Input
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K+2

< >

Sample Time



MPC for tracking

The Model Predictive Control (MPC) problem solved by pyMPC is:

—JQu JQq
Np—1
.1 T 1 T
arg mblrn § (:EN — xref) QI‘N ($N — xref) + 5 (xk — -'L'ref) Q:r: (ﬁck — -I'ref) +
k=0
Ju J&u
; Mol , Mol
T
-+ 5 ; ('Ulk - uref) Q’u (uk — uref) + § s Au;—Q&’uAuk (28‘)
subject to :
L+l = Axk -+ B’Ulk (2b)

Xk €X, up el



Tnank you for you attention!



