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It is assumed that we count control inputs....

because there may be uncontrolled inputs (disturbances)
due to external factors, modeling errors, sensor noises, etc
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Feedback controller design

how to use the sensor data (output) to generate the correct actuator commands
(control input) to ensure that the output of the system satisfies the specification

specification




What is specification?

Specification refers to a set of desired or required
characteristics, behaviors, or performance metrics that a control
system must satisfy or achieve.

Examples:

@ Reachability: go from point A to point B in finite time t.

@ Tracking: ensure that the output of the system y(t) tracks the
reference signal y,(t)

o Regulator: ensure that lim (y,(t) — y(t)) =0, where r(t) = const

t——+o0

Specifications can include criteria such as transient response time, steady-state
accuracy, disturbance rejection, robustness, notion of optimality state and
actuator constraints....



Regulator for LTI systems
r = Ax + Bu +w

control disturbance

y = Cx + Du

output

o Regulator: ensure that lim (r(t) — y(t)) =0, where r(t) = const

t— 400



Regulator for LTI systems
r = Ax + Bu +w

control disturbance

Y — Cx —+- Du Let usassume D=0

output

o Regulator: ensure that lim (r(t) — y(t)) =0, where r(t) = const

t— 400



Regulator for LTI systems

Cb — A:I: _l_ Bu —I— w — P K e(1)

control disturbance ) W
t -sctpnimi@— Error » | Kﬁiegr]df —<E>—' Process | Output—»
y=Cx ‘ =
‘*\ ——» D KdT
output QK\Q 2
- /—\
o Regulator: ensure that lim (7(t) — y(t)) = 0, where r(t) = const
t—+00

Last time we assume that the system is SISO and we were trying to
solve regulator problem by using PID feedback controller

u(t) = Kye(t) + K; fo e(r) dr + Kyé(t)



PID: Pros
Stability

PID controllers are capable of providing stable and accurate control over systems, ensuring that they
reach and maintain the desired setpoint efficiently.

Tuning Flexibility
PID controllers offer flexibility in tuning parameters (Proportional, Integral, and Derivative gains) to
achieve optimal performance for different systems and operating conditions.

Simple Implementation

Compared to more complex control algorithms, PID controllers are relatively simple to implement,

making them suitable for a wide range of applications and accessible to engineers and technicians with
basic control theory knowledge.

Real-Time Control

PID controllers are well-suited for real-time control applications due to their simplicity and efficiency,
making them suitable for controlling systems with fast response



PID: Pros
Tuning Complexity:

Tuning PID controllers can be complex, especially for systems with nonlinear dynamics or time-varying
parameters. Finding the right balance between stability and performance often requires iterative tuning

processes.

Limited Robustness:

PID controllers may lack robustness compared to more advanced control algorithms, particularly in
systems with uncertain parameters or external disturbances. Robust PID tuning methods exist but may

require additional effort and expertise.

Potential for Oscillations and Instability:

Improper tuning of PID parameters can lead to oscillations or instability in the controlled system,
resulting in erratic behavior or even system damage if not addressed promptly.

Integral windup & Derivative term sensitive to measurement errors



PID: Pros

it is not clear how to design a PID controller
when system is not SISO...



Cart-pole control

Inverted pendulum on the cart can be modeled as follows
(M + m)y + by + mlf cos @ — ml6?sin(0) = F
ml cos(8)y + (I + mI?)0 — mglsin = 0




Cart-pole control

YQ g Inverted pendulum on the cart can be modeled as follows

(M + m)y + by 4+ mlf cos @ — ml§?sin(0) = F

ml cos(8)y + (I + mI?)0 — mglsin = 0
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Specification

Angular velocity tracks
reference trajectory
equal to 1 rad



Cart-pole control

2 - Inverted pendulum on the cart can be modeled as follows

(M-I—m)j)—l—bj/—l—mlécosH— ml6? sin(f) = F
y | “ ml cos(8)y + (I + mI*)6 — mglsinf =0
: I(/I Or in canonical state space ODE form
= y=n
Specification . —m?[2g cos 0 sin 6+(1+mi?)(mi6? sin 6+F —by, )
g J_/l — (I+ml?)(M+m)—m?I? cos? 6
Angular velocity tracks 0 = 6,

reference trajectory

: M-+m)mgl sin 0+ by, ml cos 6—m?1%262 cos 0 sin 6—mlF cos 6
[to 1 rad 01 = 1
equaltolra

(M+m)(I+mi2)—mZ2I2 cos2 6




Cart-pole control

Lineralized model
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o Regulator: ensure that lim (y,(t) — y(t)) = 0, where r(t) = const

t— 400
A (1)

1,t >0 |

r t — . 0371
() =90t <=0

—+

2 15 -1 -05 05 1 15 2




Cart-pole control
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Cart-pole control
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Angular velocity is stabilised, but position goes to infinity....



Regulator for LTI systems

r = Ax + Bu + w

control disturbance

y=Cx

output

o Regulator: ensure that lim (y,(t) — y(t)) =0, where r(t) = const

t— 400

Design a feed controller which works for MIMO systems...



Regulator for LTI systems

r = Ax + Bu +

control disturbance
Let’s assume that reference set

point is zero and there is no

y — CZE‘ external disturbance in the system
output

o Regulator: ensure that lim (y.(t) — y(t)) =0, where r(t) = const= O

t——+o0
Stabilsation
Design a feed controller which works for MIMO systems...

ll_%y(t) — 0 < !L}H‘E}X(t) — 0, since y = Cx, C = const



Stability of LTI systems

Response of a LTI system is composed of

t
y(t) = Cez(0) + C/ e A7) Bu(1)dr
response 0

el .. response
to initial conditions P

to initial conditions



Stability of LTI systems

Response of a LTI system is composed of

//O

t
y(t) = Cez(0) + C/ e ) Bu(1)dr
response 0
to initial conditions

response
to initial conditions

Input-Output Stability

The concept of Input-Output Stability refers 1o stability of the
response to inputs only, assuming zero initial conditions.

BIBO Stability. A system is BIBO (bounded-input bounded-output)
stable if every bounded input produces a bounded output.



Stability of LTI systems

Response of a LTI system is composed of
0

' /
y(t) = Ce™z(0) + C’/ GA(t_T)Bu/(T)dT
0

response

el .. response
to initial conditions P

to initial conditions

Internal Stability of LTI Systems

The concept of Internal Stability refers o stability of the system
response to initial conditions only, assuming zero inputs.

Asymptotic Stability. The system x(t) = Ax(t) is asymptofically
stfable if every finite initial state xo excites a bounded response
x(t) tThat approaches 0 as t — .



Stability of LTI systems

" ICs=0 yEt)
__________________ BIBO stable AT T A ——
A A

Asymp. stable \
u(t)=0 system Vf\ —

asymptotic stability = BIBO stability

It is known
asymptotic stability < BIBO stability



Stability of LTI systems

" ICs=0 yEt)
__________________ BIBO stable AT T A ——
A A

Asymp. stable \
u(t)=0 system Vf\ —

s known asymptotic stability — BIBO stability And since we focus on

asymptotic stability

asymptotic stability < BIBO stability



Stability of LTI systems

Internal Stability of LTI Systems

Theorem (Internal Stability). The equation x(t) = Ax(t) is

Asymptotically stable if and only if all eigenvalues of A have
negative real parts.



State feedback design

Linear state space control theory involves modifying the
behaviour of an m-input, p-output, n-stafte system

x(t) = Ax(t) + Bu(t)

(OD)
y(t) = Cx(t),
which we call the plant, or open loop state equation, by
application of a control law of the form
u(t) = Nr(t) — Kx(t), (U)

INn which r(t) is the new (reference) input signal. The matrix K is
the state feedback gain and N the feedforward gain .



State feedback design

Substitution of (U) into (OL) gives the closed-loop state equation

%(t) = (A — BK)x(t) 4+ BNr(t)

CL
y(t) = Cx(t). e

Obviously, the closed-loop system is also LTI,

Y
o—{ N :Q:..B.«Tj > C o
I I
I A - I

State feedback with feedforward precompensation

This type of control is said to e static, because u only depends
on the present values of the stafe x and the reference r. Note
that it requires that all states of the system be measured.



What if full state is not available?

When not all the states of the system are measurable, we
resource to their estimation by means of an observer, or stafe
esfimartfor, which reconstructs the state from measurements of
the inputs u(t) and outputs y(t).

|
v |
Yy
o—.-N—:Q—lea(if » C :.-o
| |
I A e I

R .
K }e— Observer J / We will address observer
design next lecture

Output feedback by estimated state feedback

The combination of state feedback and stafte estimation yields a
dynamic output feedback controller.



Eiginvalues assigntement

Theorem (Controllability and Feedback — MIMO). The pair (A —

BK, B), for any p X n real matrix K is controllable if and only if the
pair (A, B) is controllable.

Theorem (Eigenvalue assignment — MIMO). All eigenvalues of
(A—BK) can be assigned arbitrarily (provided complex eigenval-

ues are assigned in conjugated pairs) by selecting a real constant
Kifand only if (A, B) is controllable.



Let us proof for SISO system



Recall: Control canonical form

If the system (A,B) is controllable, we can take it to its CCF

[ — O] —&X2 *r —O&p_—1 —O&n | 1
- I D S - N
A =PAP T = - B=PB-=

L0 0 e 1 0 _ 0.

C=CP ' =[8182. Bn_1Bn].
These matrices arise from the change of coordinates x = Px
where
C
C

[BAB ... A" 'B]

P~ =ce ! with
[BAB ... A 'B]



Eiginvalues assigntement for SISO system

Theorem (Eigenvalue assignment by state feedback). if the state
equation

x(t) = Ax(t) + Bu(t)
y(t) = Cx(t),

is controllable, then the state feedback control law

u=r—Kx| where K € RT*X™

assigns the eigenvalues of the closed-loop state equation
x(t) = (A — BK)x(t) + Br(t)
y(t) = Cx(t),

to any desired, arbitrary locations, provided that complex eigen-
values are assigned in conjugate pairs.



Eiginvalues assintement for SISO system

Proof: If the system is controllable, we can take it to its CCF by the
change of coordinates x = Px, which yields A = P~'AP and B = BP. It is
not difficult to verify that

CG2£[B,AB,..., A" 'B]=P[B,AB, ..., A" 'B] = PG,

andthus P! = CC T,

On substituting x = Px in the state feedback law
u=r—Kx=r—KP 'x £ r — Kx,

Since A — BK = P(A — BK)P !, weseethatA —BKand A — BK are
similar, and thus have the same eigenvalues.

Now, say that A1, A2, ..., An are the desired closed-loop eigenvalue
locations. We can then generate the desired characteristic polynomial

Ax(s)=(s—A)(s —A2)...(s —An)

1

=s" +x18" + e+ &n.



Eiginvalues assintement for SISO system

If we choose

K=[(a¢1 —ax1),(ax2 —x2),...,(6n — &n)]l,
the closed-loop state equation becomes (in the x coordinates)

x(t) = (A — BK)x(t) + Br(t)

T — 0] — X2 *rr —Op_1 —O&n 7 (6{1—(‘,{1) (&2-!‘12) ((x'n_‘xﬂ)-
g) ? g 8 0 0 0
0 0 0 - D
L 0 0 1 0 . . 0
- dy — &g v —n_1 —6n "1
p e § g :
_ x(t) + [ | r(t).
L 0 0 1 0 - - 0.

Because the closed-loop evolution matrix (A — BK) is still in companion
form, we see from the last expression that its characteristic polynomial is

the desired one Ak (s). Finally, from K = KP~ ', we get that K = KP.

L]



Eiginvalues assintement for SISO system

—_—

Procedure for pole placement by state feedback (Bass-Gura Formula)

1. Obtain the coefficients of the open loop characteristic polynomial
As)=s"+o1s" ' + -+ + an.

2. Form the controllability matrices € =[g AB ... An— 18] aNd

Tl ] x2 ... X2 X1 —1
01 aj ... an_3 an_2
- 0 O [ I Xn—9g4 Xn_3 .
c=|. | | (note the inversel)
00 0 1 & 1
-0 0 O 0 1 -

3. Select the coefficients of the desired closed-loop characteristic
polynomial Ax(s) = s™ + &;s™ ! + -+ + &, and build the state-
feedback gain in x coordinates,

K=[(&1—a1) (&2—az2) =+ (&n—oan) ]
4. Compute the state-feedback gain in the original x coordinates

K = Kée !



Eiginvalues assintement for MIMO system

Theorem (Controllability and Feedback — MIMO). The pair (A —

BK, B), for any p X n real matrix K is controllable if and only if the
pair (A, B) is controllable.

Theorem (Eigenvalue assignment — MIMO). All eigenvalues of
(A—BK) can be assigned arbitrarily (provided complex eigenval-

ues are assigned in conjugated pairs) by selecting a real constant
Kifand only if (A, B) is controllable.



Eiginvalues assintement for MIMO system

A MIMO system in state space is described with the same
formalismn we have been using for SISO systems, i.e.,

x(t) = Ax(t) + Bu(t) x € R™,u € RP
y(t) = Cx(t) y € R®

When the system has p inputs, the state feedback gain Kin a
feedback law

~ kK11 K12 - K1n 7l [[x1 7
k21 k22 -+ Kan X2
u=—Kx=—
_kp1 kpZ kpn_ L Xn |

will have p x n parameters. Thatis, K € RPX™,



Eiginvalues assintement for MIMO system

A MIMO system in state space is described with the same
formalismn we have been using for SISO systems, i.e.,

x(t) = Ax(t) + Bu(t) x € R™,u € RP
y(t) = Cx(t) y € R®

When the system has p inputs, the state feedback gain Kin a
feedback law

~ kK11 K12 - K1n 7l [[x1 7
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will have p x n parameters. Thatis, K € RPX™,



Eiginvalues assintement for MIMO system

Example (Nonuniqueness of K in MIMO state feedback). As a
simple MIMO system consider the second order system with two
INnputs

: 0O O 1 O
x(t) = x(t) + u(t)
1 0 0 1

The system has two eigenvalues at s = 0, and it is controllable,
since B=1,s0C =[B AB]Is full rank.

Let’s consider the state feedback
u(t) = —Kx(t) = [ £1 12 | x(t)
Then the closed loop evolution matrix is

—k11 —k
A—BK- | T oz



Eiginvalues assintement for MIMO system

Example (Continuation). Suppose that we would like to place
both closed-loop eigenvalues at s = —1, I.e., The roots of the
characteristic polynomial s? + 2s + 1. Then, one possibility would

be to select

! Ki2=
K21=

(k11=2
! > A—BK-=
_ k22= 0

—2 —1
1 0

But the alternative selection

k11= 1
kq12= free
k1= 1
Kaz2= —1

As we see, there are infinitely many possible selections of K that
will give the same eigenvalues of (A — BK)!

= A — BK =

o 1

= eigenvalues at s = —1

= also eigenvalues af s = —1




Eiginvalues assintement for MIMO system

Example (Continuation). Suppose that we would like to place
both closed-loop eigenvalues at s = —1, I.e., The roots of the
characteristic polynomial s? + 2s + 1. Then, one possibility would
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will give the same eigenvalues of (A — BK)!
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= also eigenvalues af s = —1




Eiginvalues assintement for MIMO system

The “excess of freedom” in MIMO state feedback design could
be a problem if we don’t know how to best use it. ..

There are several ways to tackle the problem of selecting K from
an infinite number of possibilities, among them

» Cyclic Design. Reduces the problem to one of a single input,
SO we can apply the known rules.

» Conftroller Canonical Form Design. Extends the Bass-Gura
formula to MIMO.

» Optimal Design. Computes the best K by optimising @
suitable cost function.



Eiginvalues assintement for MIMO system

The “excess of freedom” in MIMO state feedback design could
be a problem if we don’t know how to best use it. ..

There are several ways to tackle the problem of selecting K from
an infinite number of possibilities, among them

» Cyclic Design. Reduces the problem to one of a single input,
SO we can apply the known rules.

» Conftroller Canonical Form Design. Extends the Bass-Gura
formula to MIMO.

» Optimal Design. Computes the best K by optimising @
suitable cost function.

Let us focus on Optimal design



Optimal design for state feedback control

Theorem (L&QR). Consider the state space system

x=Ax +Bu, x € R" uelRP
y = Cx, y € R°

and the perforrmance criterion

0

J:Jw X7 ()Qx(t) + u” ()Ru(t) dt,_7 Mﬂ )

where Q Is non negafive definite and R is positive definite. Then the
optimal control minimising (J) is given by the linear state feedback law

u(t) = —Kx(t) with K=R 'B'P

and where P is the unique positive definite solution to the matrix Alge-
braic Riccati Equation (ARE)

A'"P+PA—PBR 'B'P+Q=0




Eiginvalues assigntement

Theorem (Controllability and Feedback — MIMO). The pair (A —

BK, B), for any p X n real matrix K is controllable if and only if the
pair (A, B) is controllable.

Theorem (Eigenvalue assignment — MIMO). All eigenvalues of
(A—BK) can be assigned arbitrarily (provided complex eigenval-

ues are assigned in conjugated pairs) by selecting a real constant
Kifand only if (A, B) is controllable.



What happens if system is not controllable?

We have seen that if a state equation is controllable, then we
can assign its eigenvalues arbitrarily by state feedback. But,
what happens when the state equation is not controllable?

We know that we can take any state equation to the
Controllable/Uncontrollable Canonical Form

Xe Ae A1zl |Xe Be
: - | T u
X@ 0 Aé Xé 0

- o

A
Because the evolution matrix A is block-triangular, its

eigenvalues are the union of the eigenvalues of the diagonal
blocks: Ae and Ap.



What happens if system is not controllable?

The state feedback law

u=r—Kx

=1r — Kx

Xe Ae—ﬁeke A']z—ﬁel-(“é )-Ce i Be .
X 0 As X o

We see that the eigenvalues of Az are not affected by the state
feedback, so they remain unchanged.

The value of Kg is irrelevant — the uncontrollable states cannot
be affected.



What happens if system is not controllable?

We conclude that the condition of Controllability is not only
sufficient, but also necessary to place all eigenvalues of
A — BK in desired locations.

A notion of interest in control that is weaker than that of
Controllability is that of Stabilisability.

Stabilisability. The system

Is said 1o e stabilisable if all its uncontrollable states are asymp-
totically stable.

This condition is equivalent to asking that the matrix Ag be
Hurwitz,



Stabilisation VS
tracking a constant reference

r = Ax + Bu %
control disturkance

y=Czx

output

o Regulator: ensure that lim (y,(t) — y(t)) = 0, where r(t) = const
t—+o00
70



Stabilisation VS tracking a constant reference

Linear state space control theory involves modifying the
pbehaviour of an m-input, p-output, n-state system

x(t) = Ax(t) + Bu(t)
y(t) = Cx(t),

we apply the control law u(t) = Nr(t) — Kx(t) and obtain the
closed-loop state equation

(OL)

x(t) = (A — BK)x(t) + BNr(t)
Yy (t) = CX('I:),
If the system is controllable, by appropriately designing K, we

are able fo place the eigenvalues of (A — BK) af any desired
locations.



Let’s first consider a case of SISO systems



Tracking a constant reference

We review the state feedback design procedure with an
example.

Example (Speed control of a DC motor). We consider a DC
motor described by the state equations

d

dt

w(t)
i(t)

Y

w (t)

i(t)

The input to the DC motor is the voltage V(t), and the states are
the current i(t) and rotor velocity w(t). We assume that we can
measure both, and tfake w(t) as the outfput of interest,



polynomial is

Tracking a constant reference

Example (continuation). @ The open-loop characteristic

A(s) = det(sI — A) = det |

s ein] =87+ 12s + 20.02

which has two stable roofs at s = —92.9975 and s = —2.0025. The

motor open-loop step response is

0.12

0.1

0.08

Amplitude
(=]
[=]
[+2]

0.04

0.02

Step Response

0.5

1.5
Time (sec)

25

The system takes about 3s to
reach steady-state. The final
speed is about 1/10 the ampli-
tude of the voltage step.

We would like to design a state
feedback control to make the
motor response faster and ob-
tain fracking of w(t) to constant
reference inputs .



Tracking a constant reference

Example (continuation). To design the state feedback gain, we
next @ compute the controllability maftrix

0 2
2 —4

€-|B AB|-

which is full rank = the system is controliable.
Also, from the open-loop characteristic polynomial we form
controllability matrix in x coordinates is

- =4 —1 - = —1 - -
1 o 1 12 1T —12

0 1 0 1 0 1




Tracking a constant reference

Example (confinuation). We now ® propose a desired
characteristic polynomial. Suppose that we we would like the
closed-loop eigenvalues to be at s = —5 &+ j, which yield a step
response with 0.1% overshoot and about 1s settling tfime.

The desired (closed-loop) characteristic polynomial is then
Ax(s)=(s+5—j)(s+5+j)=s”+10s + 26

With Ak (s) and A(s) we determine the state feedback gain in x
coordinates

R= (&1 —oa) (&2 —o2)|={(10-12) (26 —20.02)]

:—2 5.98]



Tracking a constant reference

Example (contfinuation). Finally, ® we obtain the state feedback
gain K in the original coordinates using Bass-Gura formulq,

K=Re&e " =[-2598][1 2] [3 2]

- 1299 1]

As can be verified, the eigenvalues of (A — BK) are as desired.

0.08

/ | The closed-loop step response,
|/ | as desired, seftles in 1s, with no
~ significant overshoot.

0.04

Note, however, that we still
| have steady-state error (w(t) —
- 0.0769). To fix it, we use the feed-
| forward gain N.

Amplitude

|
0.03F |

Time (sec)



would asymptotically go to 0).

Amplitude

1.2

1

0.8

0.6

0.4

0.2

Tracking a constant reference

Example (confinuation). The system transfer function does not

have a zero at s = 0, which would prevent fracking of constant
references (as we can see in the step response, which otherwise

Step Response

2.5 3
Time (sec)

35

4.5

Thus, ® we determine N with the
formula

1
N =
G (0)

—1
C(A—BK)-'B 13

and achieve zero steady-state

error in the closed-loop step re-
sponse.



Tracking a constant reference

Example (continuation). We have designed a state feedback
controller for the speed of the DC motor. However, the tracking

achieved by feedforward precompensation would not tolerate
(it is not robust t0) to uncertainties in the plant model.

Step Response

To see this, suppose the real ma- | —
frix A in the system is slightly dif- e
ferent from the one we used to o/
compute K,

Amplitude
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The closed-loop step response given by the designed gains N, K

(based on a different A-maitrix) doesn’t yield tracking.




Robust tracking: integral action

We now introduce a robust approach to achieve constant
reference tracking by state feedback. This approach consists in
the addition of integral action fo the stafte feedback, so that

» the error ¢(t) = r — y(t) will approach 0 as t — oo, and this
property will be preserved
» under moderate uncertainties in the plant model
» under constant input or output disturbance signals.



Robust tracking: integral action

The State Feedback with Integral Action scheme:

di(t)_ _ __ do(t)
| i
Z @E(t)-—f z(t) P —_>(P u(t) ; | = x(t T x(t) i | ; 2{(;:]
: EA < :
Lo - ——— _ ]
K |

The main idea in the addition of infegral action is to augment the plant
with an extra state: the integral of the tfracking error £(t),

z(t) =r —y(t) =r — Cx(t) (IAT)

The control law for the augmented plant is then

ut) = — [K k| ’:g (1A2)




Robust tracking: integral action

%(t) ) A o] [xw]| B K 1] x(t) . 0 i
(1) —C 0| |z(t) ol L1 |z(1) 1

~ (Aa—BaKa) |30 | + [ 9]

The state feedback design with integral action can be done as a
normal state feedback design for the augmented plant

If Kq IS designed such that the closed-loop augmented matrix
(Aq — BaKg) Is rendered Hurwitz, then necessarily in steady-state

im z(t) =0 = lim y(t) =r, achieving tracking.

t— o0 t— 00



Robust tracking: integral action
for MIMO system



Robust tracking for MIMO system

Tracking with Integral Action is subject to the same restrictions:
we can only achieve asymptotic tracking of a maximum of as
many outputs as control inputs are available.

The scheme and computation procedure is the same as in SISO

di(t) _____________ do(t)
r e(t) 7 z(t) ‘kz __ u(t); | - :ic(t]I x(t)’_c | ;Eét)
: \EA*!— :
L o e e e e e — — — _—— -
K e

Note that now the integral action is applied to each of the ¢
reference input channels.
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Robust tracking for MIMO system

The procedure to compute K and k. for the state feedback
control with intfegral action is exactly as in the SISO case,

2(t) =1 —y(t) = r — Cx(t)

u(t) = [K kz]

where K, =[ K k. | is computed to place the eigenvalues of the
augmented plant (A ,, B, ) af desired locations, where

A O B
Aa= e ) Ba=

__C quq_ _OqXp_




Robust tracking for MIMO system

Tracking with Integral Action is subject to the same restrictions:
we can only achieve asymptotic tracking of a maximum of as
many outputs as control inputs are available.

The scheme and computation procedure is the same as in SISO

di(t) _____________ do(t)
r e(t) 7 z(t) ‘kz __ u(t); | - :ic(t]I x(t)’_c | ;Eét)
: \EA*!— :
L o e e e e e — — — _—— -
K e

Note that now the integral action is applied to each of the ¢
reference input channels.

oI

:{)ﬁ%ﬁ I = 1.c2
REE o




Summary

We have discussed how to design a linear feedback controller, solving the
regulator problem. This controller is robust to constant disturbance

| = sk
r = Ax + Bu + w

control disturbance

y=Czx

output

o Regulator: ensure that lim (y,(t) — y(t)) = 0, where r(t) = const

t— 400



