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Controller desigh = how to use the sensor data (output) to generate the
correct actuator commands (control input) to ensure that the output of
the system satisfies the specification
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control output
>

’| actuator “ Process “

input
impact control
forces and energy

controller |+

command input = specification

Controllability and observability are conditions of how the system works with the
actuators and sensors, and it's not tied to a specific control technique
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Controllability

Controllability (null reachability) means that there exists control signal
which allows the system to move from any any initial state to any final
state in a finite time interval

Monorail | o km/h
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p — ’U even if infinite amount of energy is required for that....
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Controllability

Controllability (null reachability) means that there exists control signal
which allows the system to move from any any initial state to any final
state in a finite time interval

Monorail Example of uncontrollable system
=X imagine we lost control of gaz pedal
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Observability means that all states can
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Observability means that all critical states can
be known from the outputs of the system

Monorail and we do not consider them in the
: state vector of the model
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be known from the outputs of the system

What does it mean to observe a state?

Monorail we can mesure it we can estimate it from available
- v information
V=1U y=(1 1) (p)
° v . [
_ — (0 1 V=D
D= y=(0 1) <p>

measure position estimate speed

y=(1 0) (;) _p_=/vdt+(]

measure speed estimate position




Observability

Observability means that all critical states can
be known from the outputs of the system

What does it mean to observe a state?

Monorail we can mesure it we can estimate it from available
— v information

vV=1u y—(1 1) (p)

D=7 adding additional sensors v =7

can be expensive

estimations are
sensitive to estimate speed

measurement
errors b= /Udt‘|‘0

estimate position




Observability

Observability means that all critical states can
be known from the outputs of the system

Monorail Example of unobservable system

V= U imagine we lost all the sencors
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State equation Dimensions
. n states
L = ASE —+- Bu p controls

Solution of '
x(t) = etz (0) +/ e ) Bu(1)dr
0

a state equation

matrix exponential



https://en.wikipedia.org/wiki/Matrix_exponential

Let me remind...

o Let A€ R™", the exponential of A, denoted by e” is the n x n
matrix given by the power series

A __
e =) i
k=0
@ Let Ac R"™" and I, is n x n identity matrix. Then

p(N\) = det(M, — A) = N+ a1 A"+ 4 ai )+ aols

s called the characteristic polynomial of A.



Let me remind...

Theorem Caley-Hamilton

Let A € R"*" then A satisfy its own characteristic polynomial equation, i.e.

p(A) = A" + an 1A+ .+ 1A+ agl, = 0.

@ The theorem allows A" to be expressed as a linear combination of the
lower matrix powers of A



Controllability of LTI system

@ The LTI system is called controllable if for any initial state xp and any
final state x¢, there exists input signal u(t) such that the system,
starting from x(0) = xg, reaches x(tf) = x¢ in some finite time tr.

@ Starting at 0 is not a special case — if we can get to any state in
finite time from the origin, then we can get from any initial condition
to that state in finite time as well.

o x(tr) = fotf At =T)Bu(t) dr

g Solution of

a state equation



Controllability of LTI system

@ Change the variables ™ = 7 — tf, d7 = dm gives us a form

tf
x(tr) = e "2 Bu(ts + ) dm

o —



Controllability of LTI system

@ Change the variables ™ = 7 — tf, d7 = dm gives us a form

Lr
X(tf) = e A2 Bu(tf -+ 7‘2) d7o

o —

@ Assume the system has p inputs. From the definition of matrix
exponential and Cayley-Hamilton theorem, we have

o0 ' n—1
A’ : .
—ATo __ I I
e _*°= > () = ;E—o:A a;(72)

| =

—_—

for some computable scalars a;(7).



Controllability of LTI system

@ Hence

tf
X(tf) — / (E'_AT2 Bu(tf -+ ’7'2) drm =
0)

/ (Z A'c:u, (72 ) Bu(tf + m) dm =

n—1

Z(A' / aj(m2)u(t + m2) dra = > (A'B)Bi(tr)

=0
- -~

e the coefficients 5;(tr) depends on the input u(m) € RP, 0 < m» < tr




Controllability of LTI system

Bo(tr)
_ﬁ n,—.l.(.tf )_

@ In matrix form, we have x(tf) = |B,AB, ..., Ar—1B]




Controllability of LTI system

controllability matrix | SGo(tr)
@ In matrix form, we have x(tf) = [B,AB, ..., A" 1B] R

\f, _5n—1(tf)_
C(A, B)

@ A solution of this equation exists for any x(tf) € R if and only if

rank(C(A, B)) = n.




Controllability of LTI system

Bo(tr)

@ In matrix form, we have x(tf) = [B,AB, ..., A" 1B] R

o _Bn—l(tf)_

@ A solution of this equation exists for any x(tf) € R if and only if

rank(C(A, B)) = n.

Kalman's Controllability Rank Condition

The LTI system x = Ax + Bu, x € R™! is controllable if and only if the
controllability matrix C(A, B) = [B, AB, ..., A" 1B] has full rank, i.e.

rank(C(A, B)) = n.




Controllability Examples

Example.

8

u

Yy

]xz

In the hydraulic system on the
left It Is obvious that the input
cannot affect the level x,,so it is
infuitively evident that the 2-tank
system is not controllable.

A linearised model of this system with unitary parameters gives

The controllability matrix is

x(t)
y(t) =[10]x(t)

| x(t) + [ 3] u(t)

C=[BABl=[57 ]

which is not full rank, so the system is not controllable.



Controllability Examples

Example.

The conftrollability of the hy-

u draulic systfem on the left is not
. U U ‘s SO obvious, although we can see
that x¢1 (t) and x3(t) cannot be
y affected independently by u(t).

w2

The linearised model in this case is
x(t)
y(t)

[—11 0

REANERY S

[010]x(t)

The controllabllity matrix is

O 1 —4
C=[B AB A2B] = [1 —3 11]
O 1 —4

which has rank 2, showing that the system is not controllable.



Controllability Examples

Example.
Now in the previous system suppose

that the input is applied in the first
] U [ U l tank, as shown in the figure. In

this case the linearised model is the
- same as before, except that the
matrix B is now different

]

(1) = [_51 _13 i]x(t) + [8} u(t)
y(t) =[o10]x(t)

The controllability maftrix is now

1.1 2
cz[BABAZB]={01—4}
00 1

which has rank 3, showing that the system is controllable.



Controllability & Observability
of LTI system

State equation Output equation Dimensions

nh states

r = Ax -+ Bu Y = Om —+- Du p controls m outputs

Solution of '
. x(t) = etz (0) +/ e ) Bu(1)dr
0

a state equation

matrix exponential

t
Input - output 1) — (et ~7) B dr + Du(t
o y(t) = Ce™x(0 )+C/O u(T)dT + Du(t)



https://en.wikipedia.org/wiki/Matrix_exponential

Observability of LTI system

@ Observability: Can we reconstruct x(0) by knowing y(7) and u(7)
over some finite time interval [0, t]? (By knowing the initial condition,
we can reconstruct the entire state x(t))

@ Let us introduce notation

y(t)=y(t)— C /0 t eAt=7) Bu(r)dr — Du(t)
then

y(t) = Ce”x(0)+ C/t eAlt—T) Bu(7)dT+ Du(t) < y(t) = Ce”tx(0)

0 _—

Y



Observability of LTI system

@ Since the n-dimensional vector x(0) has n unknown components, we
need n equations to find it.



Observability of LTI system

@ Since the n-dimensional vector x(0) has n unknown components, we
need n equations to find it.

o Let's differentiate y(t) n — 1 times: observability

_)7(1.') p— CeAtX(O) - H(t) - - mz:rlx-
(1)) = CAe?x(0 (+)(1)

40 e x(0) o | T _| A e”'x(0)
_)7(1.')(”_1) _ CAn_leAtX(O) i )7(1')(”—1)_ _CA”—l_

CO(AC)



Observability of LTI system

@ Since the n-dimensional vector x(0) has n unknown components, we
need n equations to find it.

o Let's differentiate y(t) n — 1 times:

y(t)(l) CeAtX(g) w1 T C
y(t)\") = CAe™ x(0 ()1
O S LR (O L I R s
}7(1.')(”_1) _ CAn—leAtX(O) i )7(1')(”—1)_ ;C'An—l_
O(A, C)

Kalman's Observability Rank Condition

The LTI system x = Ax + Bu, x € R™! with measurements y = Cx + Du
is observable if and only if the observability matrix O(A, C) has full rank,
i.e. rank(O(A, C)) = n.




Let me summarize

State equation Output equation Dimensions

nh states

r = Ax -+ Bu Y = Om —+- Du p controls m outputs

@ The LTI system is controllable if and only if rank(C(A, B)) = n.
@ The LTI system is observable if and only if rank(O(A, C)) = n.



Let me summarize

State equation Output equation Dimensions

h states

r = Ax -+ Bu Y = Om —+- Du p controls m outputs

@ The pair (A, B) is controllable if and only if rank(C(A, B)) = n.
@ The pair (A, C) is observable if and only if rank(O(A, C)) = n.



Duality of
controllability & observability

State equation Output equation Dimensions

h states

r = Ax -+ Bu Y = Of —+- Du p controls m outputs

@ The pair (A, B) is controllable if and only if rank(C(A, B)) = n.
@ The pair (A, C) is observable if and only if rank(O(A, C)) = n.

Duality of Controllability and observability

The pair of matrices (A, B) is controllable if and only if the pair of matrices
(AT,BT) is observable.

v




Invariance Under Change of Coordinates

@ Consider x = Ax + Bu,y = Cx + Du and similarity transformation
X = Tx, where T is invertible.

o The system X = A% + Bu,y = CX + Du with matrices
A=TAT !, B=TB,C=CT!

is then called an equivalent system.

Invariance Under Nonsingular Transformations

The LTI system is controllable if and only if the equivalent system is
controllable.

The LTI system is observable if and only if the equivalent system is
observable.




Kalman Decomposition

The Kalman decomposition is defined as the realization of this system obtained by transforming the original matrices as follows:

A=TAT
B=TB,
C=0T1,
D =D,

where T ! is the coordinate transformation matrix defined as

T'=[Ts Tw T Tsl

and whose submatrices are

e 1.5 : a matrix whose columns span the subspace of states which are both reachable and unobservable.
o T}, : chosen so that the columns of [T,; T, | are a basis for the reachable subspace.

e T : chosen so that the columns of [T, T | are a basis for the unobservable subspace.

e T, :chosensothat [T, T,, T T, ]isinvertible.

It can be observed that some of these matrices may have dimension zero. For example, if the system is both observable and controllable, then
T-' =1, making the other matrices zero dimension.



Kalman Decomposition

By using results from controllability and observability, it can be shown that the transformed system (}i, f‘}’, é’, f)) has matrices in the following form:

_A’T'B A12 A13 A14_
A: 0 A*ro 0 A24
0 0 A As
L0 0 0 A5
—BTB-
B: BT’O
0
-0

~

c=[0 C, 0 C.,]
D=D

This leads to the conclusion that

e The subsystem (Ao, Bro, Cro, D) is both reachable and observable.

L 0 A'ro_’ _B'm_
—AT‘O A24_ _B’r‘o_

e The subsystem
L 0 AFO_’ L 0 i

(A- A [ B, |
e The subsystem ( "o 12 1,10 Che s D) is reachable.

[Cho C;.O],D) is observable. Please check the following_resource for the
proof


https://web.mit.edu/16.31/www/%2016.31-FAll05/notes/coleman_FS3.pdf
https://web.mit.edu/16.31/www/%2016.31-FAll05/notes/coleman_FS3.pdf
https://web.mit.edu/16.31/www/%2016.31-FAll05/notes/coleman_FS3.pdf

