{ "cells": [ { "attachments": { "TP1_SDSystem.png": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAFMCAYAAAANw1+zAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAD+mlUWHRYTUw6Y29tLmFkb2JlLnhtcAAAAAAAPD94cGFja2V0IGJlZ2luPSfvu78nIGlkPSdXNU0wTXBDZWhpSHpyZVN6TlRjemtjOWQnPz4KPHg6eG1wbWV0YSB4bWxuczp4PSdhZG9iZTpuczptZXRhLyc+CjxyZGY6UkRGIHhtbG5zOnJkZj0naHR0cDovL3d3dy53My5vcmcvMTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIyc+CgogPHJkZjpEZXNjcmlwdGlvbiByZGY6YWJvdXQ9JycKICB4bWxuczpBdHRyaWI9J2h0dHA6Ly9ucy5hdHRyaWJ1dGlvbi5jb20vYWRzLzEuMC8nPgogIDxBdHRyaWI6QWRzPgogICA8cmRmOlNlcT4KICAgIDxyZGY6bGkgcmRmOnBhcnNlVHlwZT0nUmVzb3VyY2UnPgogICAgIDxBdHRyaWI6Q3JlYXRlZD4yMDI0LTAxLTIzPC9BdHRyaWI6Q3JlYXRlZD4KICAgICA8QXR0cmliOkV4dElkPmE5ZmE0MWJlLTYyZmItNDhlMC05MWY0LTE2OWQ0OGU3YzQ2MTwvQXR0cmliOkV4dElkPgogICAgIDxBdHRyaWI6RmJJZD41MjUyNjU5MTQxNzk1ODA8L0F0dHJpYjpGYklkPgogICAgIDxBdHRyaWI6VG91Y2hUeXBlPjI8L0F0dHJpYjpUb3VjaFR5cGU+CiAgICA8L3JkZjpsaT4KICAgPC9yZGY6U2VxPgogIDwvQXR0cmliOkFkcz4KIDwvcmRmOkRlc2NyaXB0aW9uPgoKIDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PScnCiAgeG1sbnM6ZGM9J2h0dHA6Ly9wdXJsLm9yZy9kYy9lbGVtZW50cy8xLjEvJz4KICA8ZGM6dGl0bGU+CiAgIDxyZGY6QWx0PgogICAgPHJkZjpsaSB4bWw6bGFuZz0neC1kZWZhdWx0Jz5JbnRyb2R1Y3Rpb24gdG8gQ29udHJvbCBUaGVvcnkgLSAxPC9yZGY6bGk+CiAgIDwvcmRmOkFsdD4KICA8L2RjOnRpdGxlPgogPC9yZGY6RGVzY3JpcHRpb24+CgogPHJkZjpEZXNjcmlwdGlvbiByZGY6YWJvdXQ9JycKICB4bWxuczp4bXA9J2h0dHA6Ly9ucy5hZG9iZS5jb20veGFwLzEuMC8nPgogIDx4bXA6Q3JlYXRvclRvb2w+Q2FudmE8L3htcDpDcmVhdG9yVG9vbD4KIDwvcmRmOkRlc2NyaXB0aW9uPgo8L3JkZjpSREY+CjwveDp4bXBtZXRhPgo8P3hwYWNrZXQgZW5kPSdyJz8+6iW/RwAAIABJREFUeJzsXQV4U+f33m//+WCDYaW0WA1p0dLituHubEOKu9uAQnE2hutwhlvR4g4tLoUiLVDBHSZsDNne/3dOe7PbNGmTShj0vM9znqTJzc3NbfK99z36zt9//41Xr17ZxF6+fIlfnjxBeHg4tm3bhpUrV+Ls2bN4+OABnj9/DjqWFy9e4Pfff+dtli1fjhVqm+vXr+PZs2f8POGff/6BQCAQCASpEe8QUf7555/KnqWgRe//6dM/mJC3BATAx8cHpUqVwrhx4xB46BDu3rmjnn+KX3/7DdeiorB+/XqUVM+XLV8ee/bswaNHj5jUCULcAoFAIEiteOfpH3/g4cNHePT4iSLHxyloT/BAvU9Y2GVF3FvQvFlzuLq64ssvv0S/fv2wc8cOXLlyFbfv3MXpU6cw+6efULxkSZSv+CU2btqEGzdvsionCHELBAKBILXinV9//Q23bt/Bnbv3mDRTzO7e5fcJDQ1TJL0T7du3h5OzEzJmzIiiRYti6JAh2KQI+ty5c0zio0eORJ68+VDEsxiWLluOq1ev4q+//uKDFuIWCAQCQWrFO+Sa1ojbrCnipdt79x8Y7O69+/z47ZjnLHk9bXvj5i1cvBQK/7Vr0V8pbQ8PD2TKlAn58+dHly5dsH7dOvivWYMxo0YxcRctVoxj3VfDhbgFAoFAIIiXuG/riDk07DK2bt2GVatWY/XqNQgMDEJkZBRu3rqdMHHr9ke3RN4hIeeZpNu0aYOCBQogffr08Pb2Rq+ePfH92LHwHTQILm5uTNxLhbgFAoFAIGBYRNyksPfvP4C2imQrlCuHihUqYMyYMThz5gyTN70+tlv8Xiwlrn+MjLYn8j5/4SL8/f3Rs0dPODk5sfJ2dnZG40aN0LljR+TMlUsRt5e4ygUCgUAgiIFlxH3vAQ4ePIQunTrBSylgBwcHVK1aFT+OG4cDBw7g2vXrBuV9W0fUxqpd/ze52m/cuIlz50KwXBFz27ZtUaRIEVbe7u75UbpMaXyRISM8vbyFuAUCgUAgiIFFxE0ke/r0aUybOlWp4cZwcMyObNkcULZsWUybNg2nTp1GeHjEv8rbBGHrXeV65U2Ef/bsOaxfvw6dO3dm5Z1RKe90X6THex98iGLexRVxLxPiFggEAoEAVsS4rypiDgoMwlRF3g0aNEDevPkUgTuievXqGDlyJIKCgrhRyi1NedPrzLjO7xj9HRV1jWPepLy7du2KIkWL4KNPPsa7770nxC0QCAQCgQ4WZZVrJEvK+8iRo5geQ97Zc+aEfbZsrLynT5/O5H01PNygvGMReDzKO9ruIeT8eWzcsBE+Pi1h75BNkfcniri9hbgFAoFAIIiBRYpbb+ERkThx4iRmzJiBJo2bwMXFFVkVeVeoUAFDhw7FsWPHcO3a9Ti14ebu641eR25zcr/XrVsXdlnt4eklyWkCgUAgEGiw2FWuv0/bBx4KxJTJk1Grdm04ObtwwlrlSpUxZcoU7Nu3HxGRkbh561YsYjalto1j6deu3VCqewOXhTk5OUtWuUAgEAgEOljsKtcbbX/t+g1OSpsyeQqXbzlmz44sdllRskRJjB49GiEhIRy7Nn6tcXzb+Dna766duzB82DC45cn7bx23ELdAIBAIBNYRt3FtN5Hsgf0HWGWT8nbLk4dj3tWqVcPEiROxP6ZU7NatO7H2ZS7TXCPuvXv3xeqcJsQtEAgEAkE0LGt5aq6c69ZtLueimPdURd4U86aEtWwODihdujSTNz139Wo4b5eQ8jYQ9569GC3ELRAIBAJBHFhF3OZqvCMiozjbfObMmew2z5cvH+yyZkWVKlUwbNgwHDh4MFp5x5OwJsQtEAgEAkHCSBRxmyJdIvBjx45zk5b69evDXqlue/tsKKOUN5WKEbGHR0ToSsXiZpULcQsEAoFAED+SrLhjlYqFR+D4iRNcKtaoYSO4ueVBVkXeX1asyGM7jx8/juuKmM0pbyFugUAgEAjiR5KJ29T9wMBATJ40iRPWcuXODUdHR1T66ism9EOHDrHyNo55C3ELBAKBQJAwEk3c8ZWKRV27zqViU6dMRZPGjZEzV27Y2dujTJkyhqlitI0Qt0AgEAgE1iHZiNu4VIzGdh46FMgqm2Le1NucSsVoqti4H8Zh7969TN439b3NhbgFAoFAIIgXSSZus6ViMTO3SXlTwlrTJk3hkD07J6yVKlkSE8aPx+nTZ3h4ib63uRC3QCAQCATmYXXL04Q6oRmXikVGRiEo6DCXitWvT1PF8nKdNynvEcOH8zxvLWGNW54KcQsEAoFAYBbJTtzm6rOPHz+JKZMmo06duoq4syNr1uj2qFQqduLECUREREYPGhHiFggEAoHALKwe66lZfJnlcYk7ulSMarlpnjc1aaFSMZr+VblSJYwYMSK6VOzGDUReuybELRAIBAKBGVisuCMiIhW5nuCEs8Cgwzh/4WKceuz4Jn/Rfdr+4MFDmDRpImrVqo0cOXMhe/bsqFqlKn766ScEBgYhNDQMu3ftFuIWCAQCgcAELCJurSvacD8/dGzfHj26dsOqVausnrltKBU7fZpd5F83bYpcuZ2Q1d4epUqWwsiRI/l9dmzbjtHqvhC3QCAQCASxYRlx33/ASrlLx06oUK4cvL280KVLF/j7+yPk/IVYrnNLS8UCY0rF6tarF+02t8vKCWvfjx2LWTNnYviw4TLWUyAQCAQCI1isuCkzvH+fvihbujS3MfXw8ECrli2wccNGXL9xk8nY0oQ1qt2m7akcjKaKUcw7m4MjHJTRRUHH9h0woP8AOLu4CnELBAKBQKCDxTHuCxcvYf36Dejbpw8KFy6EHDlyoGCBAuiqlPfyZctwKTQU9x88NJmkZk7Fk9uclPfUqVM42zxvvnzIksUO3t7eSn1XQaYsWeCpiHzpMiFugUAgEAgIFhG3Fp8m27RxE9q2bsXknSVrVhQsWABtWvlg27ZtCI+ItEp5a/ukbHPqbV6vXn3YZ3PgUrFsDtnw0cefoJgi8aXqwkCIWyAQCAQCK8vByM5fuICAgAD06tnToLwLKOVNSWuLf/4ZV8PDcc9IeRurcOPHrl4Nx9GjxzBt6jQ0bNiQ26N+mjYt/u/9DxRxFxfiFggEAoEgBlY3YKF4N22/zt8fnTp0UORdmHuQF/BwR9s2bbBp0yYuFdP3IDfnPtc/Tvs9fPgwt0etXbs2MmfJgg8/+liIWyAQCAQCHSxW3HojUr585Sp27dqFLp07oXChglzSld/dHS2bN8PSpUviELclndioPerJk6cwZvRolC9XFhkzZoKnl7fEuAUCgcBK0DqprZXafePHkrJvU/s1Z5Zsm9RjSk2wirj19ykRjWLayxWpduvahZU3u809PNCpY0dsWL8e586FJJikZqzmr12/jhXLl6NNq1bIniMnihaT5DSBQCBILEytl8mxhlqzD0u2lXXdclg1HcyYaCkRLSrqGnbu3IX2bdoo5V0Ime3s4K6Ut0+L5livyJuUN1l8CWv65yjTfOfOnRg21E/quAUCgSCRMFayr169YktI9VqyX/3+tX2/fPkSL168wPPnz9nob+P307aj52k917YTxW0dEkXcxsqb2pSuXr0aPY0S1rp17YqVK1ZwKRklrJnbh/5xHjKydx+7y/Pkk85pAoFAkBjoyfiPP/5AZGQk7ty5jb///tvsdpYSuH4bIuvff/8dly9fxp49e7Bo0SLMnj0bu3fvxpUrV/Ds2TPejt731q1bCAwM5GmRo0aN4tkV+/fvx59//hlnvwLzSNQ8blMNVW6qfWzZshUd2rVD0SJFWHlTnTcpb0pYu3I13KJSMZkOJhAIBEmHnoTv3b+Pbdu2K5I8gHv37jFRktIlMrWWuPXb0usfPnyIU6dOMWGTeCtTpgyKKA6g+2vXrsWjR48M25E3dfDgwSzsvvjiC27kNWbMGDx58iTWvgXxI1HEbbKhyr37uHjpErZu3cZNWgoVLMjKO39+d7Rr0wYLFyzA1fCIOE1ajF3lQtwCgeBNhTXJWLYyAq2fY38Yh6F+w7Bw0c84ExzMSlivvhNKKtNvRyC3N+2DVHaTJk1QqFAhODk5IV26dEzKnp6eGDhwIG7fvo376sJh69at6Ny5M1xdXfHRRx/hgw8+QO7cuTFs2DA8fvw41r4F8SPRxB1ftvg6/3VM1pSwRtnmBQt4oG3r1vyPuxQaxsrbVGa5EHfKwtSPkX64erPWZSYQCP7Ff424NWKmcKbv0KH4tllzNG/REpMmT+Epj+Hh4Xis1C7Fmi25ANA+F4GIm5Q7reuVK1dWIi0/K2k7OzukSZMG6dOnR926dXHmzBkcPXqUxzfXqVOHtyOSJ2Vev359zJs3D78pHtLvWxA/kk1x67uhhYZd5oQ1zjYvVBDZHBw4Ya21jw+3R6Xe5qTQzca4hbiTFcaLiZY0Ygr0Q9cSSrTtBQJB/EhMnNiWoNjy8hUr0LZde7jmyYt87h6oVbsOJkyahMNHjuDXGOL8F6bJWn+fbmmtIBf42bNnuQ8HddBso0Rbrly5mLyLqfV7mVrzJ0+ezKRN6poaeB08eJDd6yEhIXxstCYZv4/APJKNuPX3791/yNnmVCrGdd5KedPcba23OQ0moalipvYhxJ280C8iekImkJvrzp076n8VxT+e33Q/XmPylnMuECSM6N9J9G/lwYMHOK3UJinOixcvvha7QLeXLjE5L16yBD6tWuGLjJm4K2UmpYyr16wJ3yFDmNSJeEmBU0yaFHi0B8663z/FqqdNm4YKFSqwu5zWfXKP9+vXDz169MDmzZvxyy+/mBQOssZYjiQTd3ylYlTnTU1aOnVozwlrdtTbnBLWWraA/1p/k6ViQtzJB2OVrYGyPam1LF0Rp02b1uDaevfdd1G9enWOWWnQXG1yzgUC84jtno6+PXL0KL4bNAgDBw/GhIkTX6v9MG4c/JTard+gITJltsOHH3+CTz5Ng/QZMiB7zlwoXNQTLVu1xqKff+YmWI8ePY7jPjf1WY1Dbk+fPmVF3bVrV1bdn376KfLmzcukHRQUxEKB9kvErQ/PiYfPOiQ7cRuXilGHNSLpvn37okiR6CYtHjFNWpYtXYqQkPM8o1uIO/mg/yFoPw4CxZmKFy+Od955B5kyZcKECRMQHBzMri66pR8bPUfWvXt3w/6EvAWC+KH/zVHpFSnXmTNnoXSZsryGlS1XHmXKlUOZsq/HSpcti1LqWPLky480n32O9z/8CO998CHefe99vv04TVq4uOZBPUXso8eMxY6dO3FTiS/jz6b9rX9c/zyVhlFZ2M/qAsDLy4sT1Yi4hw4dyqRNz8f3elljLEOyEXe8pWLKtm/fgXZtWnNSQhal8Dzc3dH822+4VCwyKsqQsCbEnXToSVsDkbRGygMGDDB7DqdPn27Yrm3btob9iLtcIDAP/e+DXM3Ui6JHj57IbJcVaT9PBzv7bMjmmB2OOXK+FnPIngP2Do5KYWfEBx99zGRNt6S8P037GT9Ox5ffowAnsM2cNYtd7cafzdTn1t9qmeYnTpxg7529vT0T+I8//hgrAc1c4pvAMlg9ZMRUJrhxO9PYr4++f/HiJR4JSlPFyG0eXSqWHx3at8eSxYu5VOzBw0cG4h4jxJ0omCJtijFpZDx37lzD43T1q5GyVtNJKF26tGF7yvgkaN2N5NwLBHGh/21QnJdGFffp14+Jm9Su75ChmDFzJpYsXfpabMHChfz+LVq2ZJL+3/+9x6qb1LeLWx40bNwYgwb7Ys7cedi2fTsnjelLtOIjbuM8GlpXKFmNMsZpRDOt9VS7TW5049dIHk3ikCLEba5U7Nbt2/Bfuxbt2rYxKG+KeXdo344Vedjly4iIjBLFnUiYcjc1a9bMQMLff/89P6YnaWM3F2HSpEmG1+TMmZNdf8bbCgSCf6H/bfz666+clDZIkZV9Nge09GmFQ4GBuP/gwWs7PiLN0LBQjBo9Glmy2rMXIJeTM7yKl2Ayn6su0I8fP8GxbW0dICT0ezdec2htIY/DgQMHeO2huu7PP/8cHTp0YFe5XgAIcSceVs3jphIuikfTbXwEbapULJq473CGI3XwoXaohQoWgKOjIwoWLMh13lQqRsp7/779GD1ypBC3FdD/ELSMTcor0Ai4Vq1a/Jhxrbb+9drrqAUhvYaS1eh2xYoV/Lg+wU0gEPwLY+I+dfo0J6VlVcTdoqUP9isiu3v3rkk3cUob4fr16/h58RI0afo10n2RAYWKFEEXtQYvWLiIvQMREZF4ohQ2rbHx9TPXf1ZTz1Hi2ZEjRzizvFOnTihbtiwnvtarV49bnVIjFuP1W9Zz62Gx4qYks32KULdu2arU8XZ1RRlseF38rnLjUrEHiIy6hlUrV6G7+uJQdx1OWHN354S1VatWYfXKleIqtxL6K17C0qVLDaT9ySef8PkjaORs6sejqXBKrPnwww/xv//9j1/fvn17w77l3AsEcZEQcR84ePC1EndY2GUMGzGCibtmrdrsDdi0eTPCIyIMpV/Gn8WUGo7v90/NWG7evAl/f3+MVMJrtFL3Pj4+rLip2Qq1RA0LC+N1hAicWq/Sexu/hyBhWETcpLDpqsx30GC0atmS+5EvUVdvNMmLXmuN8tZKxcglTn1zu6irsiKFCyFT5izw8HBH08aNMNzPD6PUP95NiNsqaD8++kFkzpzZQNx9+vThxzUXmLnzp72earqJ7LXXUxMFc4QvEAgsJ27jbW11TJcuXUK//gPwnVrDN28OwKXQUK6n1hS2PgHVHEnrH9caNREJa6E3Im1ykS9YsAATJ07kwVM0SITKTamSiDLLqbKFQm+kyg8dOsTnypbn5G2BZcStVPLBg4fQpWMnlI9pIN+mdWssXbIEwWfPsopOSHmbKhULD4/AGvXPpRo/cpfnzJkDefPkQb06deDTogUcs2eXedwWQPvSa2qbssGJcEkxEwFTgxVCfNnhesUdqn7U1EdYI24KZ8j0HoHAPP7rxH1Xrb0bN27iMq8bN24afs+mtjdH3tp9EgA3btzghi3k2aPxzbTGEBHT1C8ibOqMRhcL9DzFuR0cHNCgQQOsXLkSkZGRrMrXrVvHpajGxypIGBYr7sOHj2DggAEoX64cstpnQ758efFN06ZYs2YNq2dqY5pQprmpUrFr6nUBAVvUhUArrvMm5e3m5oai6v7n6dLB08tbEfcyIe4EoCliIt3333/fEJ9u3rw5P55QVjg9ru2DGrRoxE+31KRFyzA1HgkoEAj++8T96tXfvH6SmZqTbcotbmp/BCJ9UsxUYvrVV1/xgBHqiEYk7efnxwSuVazs27cPJUqUYA8g9TEnBU6xbqrzJu54EJOwJ8RtHSyOcVP/ccr8HuLrC69i0XHpfPnysfKeP28ez9ymci5jV3m8KvxOdMLbhQsX1dXgRvTu1YunilGbvEzqH011hsW8hbjjg7Ha7tatG5Pte++9x7c0Ro9gSXxac6XPmjUr1j6IuMmtpr2fQCCIjf8iceuPLTHPmduWiPvYsWNcpZInTx44Oztz1jitG5TYStnjGqjdK+XIEFdkyJCBM82XL1/O29Gsbr0nT9YWy2FVVjm5xKmJfOdOHTmpjMq58qt/SLNvvuEa7cuXr8Sa/GWp8r7NBP4A69etQ5tWPuw2T5P2M+6nW8y7uBB3PDBeMLJkyWJwcdMPytLkDz35d+nShV9Pyp1uyc2lLwkTCASx8V8kblNKOiF3eEL7I9A6TM1ZFi5cyFPBihYtikaNGmHJkiXcfIWgeebILT5//ny0aNGCS4BpAAkNHdHCd0LYiYNFiltvNJaTelkP/O47Vt6kjvPmzYeWzZtj7pw5nH2utTC1JmGNjFQ7XRhQdrmzsxM+TZNWFLcF0AiX3FV6wqXGK9rzCbnA9M+Ra0uvuEuWLGn1j1wgSE34LxJ3cuNft/sr7oJ27do1jnOTeqZOaVRyZjzli+rHiaRpEhi5zUmBU3zcuDfEm3pOXhesbsBCrm3afvMm6oLWA95e3nBwdGTl3UKRN5VznQk+i5u37sQhaEtKxShTfdbMmahRrRp3HYqOcUtymjnolbLWIU1LLKM4EiGh+mt9Yhq5ucg1rr8A0FqfGk8XEwgE0UgNxE2w5Lgtvci3NLYuiAuLXeV6o6QyqsU+dCiQyduzaBF2m7u6uqJxwwZYuGABb5OYJi1E3DSYffDAQXBxdYvOKpdyMJOInXzyiksuNDc5kS4lqhH0TVfMQSP3tWvXGhLT/u///i9O21OBQBAXqYG4TbndjSd8GZO28bbWJMMJzMMq4jYu54qMjMI6f3/079cPXsWKccIaTYJp5eODFYpsSXnru6wldFFAf1Ov8n1792HsmDHImy+/1HHHA71Spok8+hIu6gOvd1tZGt/WJoRpapu6HpELjGDJBYBAkBqRWok7obi5Jdu9iefidcOq6WCmyrlu3LjFjVS6du7M5J3FLiuT9zdNm7DbPOraNU5Ys7RUjIh7D/Uql5anFkEjXOpKpHeTd+zY0fB8QqStPU/bEuHribtx48b8nL58RCAQxEZqIG7BfweJHuupj0uHXb7CiVGDBg40KO98irzbtmnDbvPz5y+wQjfVjMUUccuQEctA50GrvaaSCz1xE5ETLHFva/ugrkaaYtdquCnxRL+NQCCICyFugS2RKOI2NTGMCHzXrl3o3rULz1/NnCULN2n5ukljnghGdeDxNWkR4rYOxkrZ3d3dQLpE3tRvnBCfe1vbh0bu3333Hb+e+pTTLc3T1e9DzrtAYBpC3AJbItGK21R8mhrZ0yASX/WFLeZZlJW3q5sb13n/NGsWl4qR8jYVMxfitg76+LbWLU0jbqqDNzW20/j1+ueobCNXrlyx1DaVeBCkT7lAED+EuAW2RJJd5abuU6kYTf7y9vZGNgcHuOfPhxbNmnF/2nMhIbGatAhxJx6aUqam/no3OY3T056PT20TtG5pNIaPXvvRRx/xbe/evWO9h5xzgcA8hLgFtkSSFLcp8qV9hUdEcqlYH7X4U6lYVnt7Vt5fN2mCnxctYnKmbPPbd+7EcZsLcVsGfXy7Xbt2sUi3e/fu/Li5xiv6EjICLSj6jmsU6tAIW6/cBQKBaQhxC2yJZCNu41IxImBS2H379GEiILc5NWlp26YtVq5YyVPF9KViQtyWwzi+TX2A9Z3OyFWeUJmGVn9JoCH3+klgNNaTIC5ygcAyCHELbIkkE3d8pWLUTIVKxXp064bi3t6svKnciErFVqxYwc8bl4oJcScMfXybRudphE2WPn16vt2+fTs/b9yrXFPqmqIePny44bWkui9cuMCPi4tcILAcQtwCW8Lqlqem4tLmuqFRpvmVq+HYsmULhg4ZAu8Y5U113j4tW2Le3Dk4e/acIWFNiNtyaLHpOXPmxIlvUyN/GgyigcibiJheoy8Po2H3GmnT/yQiIoIft7Rxi0AgiIYQt8CWSHbiNrU9ucT37t2LLp078VSxzHZ2yJPHjdujUotNInca7i7EbRn08e3WrVvHKuHS2pN+8cUXKF++vKGZvx7379/nBi0aadM+njx5ws8JaQsE1kOIW2BLWDXWkwhYs/gyy02VeVEd986du3iqmKa8KWGNBpPMmzuXS8Vonje5z4m4xwhxm4T+R08KmubhagRMLvNz587xc3S+KF5NCWs9evRgdT127Fg0bNjQsP2XX36JAwcOGPatj2mn5nMsEFgLIW6BLWGx4iZCJbf2qVOnERx8FlcU0WqvM6XATd2n7Tdu2MilYpSwRjFvD/f8aNWyJTas38Ad1iIio0RxxwN9fPv8+fOGQSD6/uTa8zQbl4bdk5cja9ascHFxYbIeNmwYjh8/btgnEXZCdd8CgcA8hLgFtoRFxE0Km0h7wfz5mDJ5MubPnYeDBw7GIe6E3Ou0PSlrSlijUrGiRQpznXfefPnw7ddfY9HChew2379vv/QqjwdafHv27Nmx4tsdOnTgx4mIjVuUmmpZqrncpeG/QJA0CHELbAmLifvw4SP4rn9/NG3SBE2aNMXYsd/zYHTqU37HzAQwUySuzdzesGEDBqj9lShRAjkpYS1PHp4qRnXey5cuxZjRorhNQR/f9lHnS0/cC9WFD0EfpyaS158vUtb0mBC2QJB8EOIW2BIWETeR7QGlsNu3a4cihYvAXn0ZK1WqxHFoUs9U0kXlX5YmrNG216/fQFDQYZ7n7a3ImRLWqLd5vTp1MGTQIIwYNgxuefIKceug/8FTpjjNP9fP3w4LC+Pn9P3JTdVzG9d0CwSCpEGIW2BLWKy4qWEKZSy3aN4COXLkRO7cTqhcuTInPO3etQtXwyOY4M0lqZm6GKAOa5s3beaENYrD5syZEy4uzqhRvRq+adqU3ehFi3lh6TIhboI+vk1JaPr4toeHhySXCQSvCULcAlvC4uS0a9eu4+LFi1w3XKVKFeRQJJvVPhtq1qyJMaNHIzAwkF3g1ihvel+ynTt3onPHjjwSNFPmLHBxdkbBAh747PPP4enlrYh7mRB3DLT49qxZs2KVgXXp0oUfT2j+tkAgSH4IcQtsCYuIW3NvU431kSNHMH/+PDRt0hTZs+dArty5UfHLLzF2zBjs3LGTydtYeRurbuPHLl0K5dfSPO9iSnlnz54dGTJmxPsffoRi3kLcGvTx7ZYtWxpc5HS7TJ0jgiXztwUCQfJCiFtgS8RP3OqLdtuIwCk2fUEpb5omVa1qVWTPkQMODo6opZT3aKW8Dx06pEg2wmypmCnlTfeJ7AM2B6Bbl84oppT3Z+nS4b0PPlTEXVyIG7F/7HQenJycDG5yUt1a17P45m8LBIKUgRC3wJawWHHr3dukqqmee+nSpahXty4rZPts2VCufHmMHD6c1TMpdGtKxcioFIymivXu1Ys7q6VJ+5ko7hjo1XZwcDDeffddA3EXLlxY6rAFgtcIIW6BLWF1y1O+r7anFqWnz5zhjlwN6jdAzly52G16vSJoAAAgAElEQVRerVo1jBo5krPNw8KuxFHZlpSKzZ0zG3Vr14ZdVnt4eklymgYtvj1z5sxY8W3jMZ4CgcC2EOIW2BIWtzw1Jlp6TWTUNZw9exZLlixBtarVOOadOYsdvvzqK455UyMVUt60bXwJa8Yd2miy1VBfX7i65YnOKpdysFiKu3nz5rHi2zRpjSDxbYHg9UCIW2BLWNWr3FQLU1Le1D5z6tSpnLBG2eYUf6XM8zGKvHfv3s3d0qikLL5SMUP2+vUb2Ld3H8aOHo28+fJLHXcMtM9MbUydnZ2ZsMldTs1Xbty4wc9JfFsgeD0Q4hbYElbN4zYXnyblTQlr8+fPR5XKlTnmncUuK2rUqMEETAlrlpaKGaaDjZTOaXroG6/QyE4tvl2/fn1+XCPt1HhuBILXDSFugS1hFXHHcZ/fjVHeMZ3QDh85wnXeTZo0gYOjI5ycXfBVjNs8oVKxOMQtQ0ZiQd98hUak9u/fH+PGjTOM49SeEwgEtocQt8CWSBRxm1PeRLrUpGXGjBlcKpYrV27uflZTKe+RI0dGl4qFR8TJOBfithymCFqfUS4QCGwPIW6BLZFoxW2KeEl5U4e1EydPcsIaZZvTTGhS3+XKlWcy3r1rN/c2v2MU8xbijh/6HzslqZHLXD9ARBYDgeD1wZi4TwtxC1IQSXOVm6nPpoQ1yjanUrG6detymRiVi5Hypt7m+/fvj54qxk1e7oniFggEbzQsU9z34mwrECQGSVLc5hqpaKViVOdNypv6mdNgEuptToNJqLc5jQTVepULcQsEgjcZcRS3WvsGKeLO5uCIlq1aKeI+JIpbkGxIFuKOr1TsxImTmDJ5Mpo0bsLtUZ2dnFG1ajVW3pRkpS8VE+IWCARvIvRk/NtvvyPk/Hn4DRsORyVYOnTsxK7zR48exRmtKxAkBkkm7vgS1jTlfe5cCBYsWGCYKkbzvKtXr87kfODAASZrLWFNiFsgELxp0JPxH3/8gfDwCEydNh0lSpXGsOHDERkZiadPnwpxC5IFVrc8NZUJbqqdqXaf9n39xg0cO34cc+fORdOmTXnuNsW9qbc5tUelUjEi+PsPHhqIe4wQt0AgeEOgJ+OXL1/g119/Q3DwWaxYuQpHjh5VKvw3Q0tiIW5BUpEk4jbeJqFSsQsXLmL69OmoXq0aK29q0sIJa2PGICjoMCIiIpnARXELBII3Efq1iao+SGX/9ddzqf4QJCusbnlqSWa5uVKxKEXKR48ew8+LFqFhg4ZcKkYETr3Nx4weg127diE8IpJbnkrnNIFA8KZAr6Q1o/4KpLKpfFNP3PpbgSAxsFhxR0RG4eTJUzhy5AhOHD+J0LDLZmdum7t/S92S25zGUk6aOBF1atdG7txOyO3kxJnnlLBGvc03btggilsgELwx0CtpUyRuygSCxMIi4qasb4rXzJ71E378YRxmzZiJvXv3xSHu+Nzr2t9awtqZM8FYrgiZ+pk7ZHNApsxZ8FWlShgxbJja/wyJcQsEgjcO5ghc+1sgSA5YTNwUg+7buzfq162HOnXqws9vGHbs2InQ0DB+3lySmknlrd7v5s1birzP8FSxRo0aw9ExO5ycnFGxYkV0bN8e3bt24QQ2Husp87gFAsEbgPhUt/55gSApsIy47z/gzj8dO3RA0SJFYJfVHuXLl4ff0KHs2qbhIdTGNKHJX7Hi3uo96XUhISFYEDNVLGfOXMiYOTNKFC+OmtWrI0sWO3h6CXELBAKBQKDB4hh3SMh5LF+2DO2VGqa4NCWVlS1XTilvP2zdshVXrlyNM/krIRXOpWLXb3DcfPbs2fj66685YY3GguZWavuTT9OgmLe3Iu5lQtwCgUAgEMAK4r5+4yYuX76CRYsWoVbNmjz5K7OdHSvlYYq89+3fzxnhVivvmFKxsLAwzJo5E5UrVeL2qB998inefe99RdzFhbgFAoFAIIiBRcRNRp3NiGCphSkllbVs2VKRdy6ljnOgVOkyTN5bArYgMvKa2Znb5krFbsZMFTt69CgWLlyIBg3qI0PGjHj/w4+EuAVJRmIyfsXEUsKMv48CQWKQIHEbbmNIlsq5Ll0KZdd2/Xr1kNvJmRvpV61SBUM55r0n3lKx+JQ37fvsuXMYPnwYinl6Il36L+DpJa5yQdJgatEUE3tdpn0PBYLEwmLFre8/Tsqbksr8/f3RuFFjVt1UzlW8RAn4Dh7MMW+t97glpWJ6I3e7/1p/9Ojegy8KJKtckFyQ743gvwD5HgqSioQVtxnSpXKus2fPYebMmWj27bdwcnbmhDUq5/L19cXOnTtZmd+xqlTsPl8U7Nq5C8P9hsEtT16p4xYkGXqlQyMXKZ8iMDAQmzdvxsaNG7Fp0yYxsWS3DRs28vfr5MmTuH//Pp49exbn+ygQJAYWtzy9Haec6y6Xc124cAGrV61G3Tp1OBOclHe5cuUU8fpxC1Nt8le8CWu652j7Pbv38PCR1NqARe9O0xu1UExJS8i996ZC/xmioqKwevVqDBw4EA0aNED9+g3QuHETMbFkt3r1qOdFHYwfP567RT5+/DjO91EgSAysHutpXM5FM7dPnTqFefPmoVWrVnBycuJ6bK7z9huKrVu3IuzylQRLxfTELdPBUsdntBX0CyWpbfISNWrUCK5ubihRoiRq166LWrXqiIkli9WsWRvVq9eEt3dxXg+7d++Ow4cPs+o2/j4KBImBVcRtNqlMke3ly5exePFiLhXLQY1UMmVGZS4VG4Z9+/Zzr/MElfddmcdN0D4fqWD6zDQS8MHDh7h3716K2N270bcPHjzkaUbaUIS3UXGTh+jHH3/kC8vPPvsMpUuXQYcOndCuXQcxsWSxVq3b4ptvm8PLqzg+TZMGzZo1w/79+9Xv7G6c76NAkBhYrbjZjDLFafIX1XmfVMp75YqVaN26Nc/czp4jJ0qULMkxb4r5EHmbKxUT4v4X2uejzxty/jz8/ddhzJix6NuvP/r3H4B+yWi0zz59+2LgwEH4/odxaoE5oC4Ufn+rZgebIm4K52TIkAGdOnfBxk0BWLd+I9Zv2CQmlmRbuWoNZs6ag6bffIt06dJzDpAQtyA5kSjiNihlvfKOadJCrkhym9evVx8uLq6wz5YNlStV5mxzKhULC7scJ+NciDs2tM/3559/4lBgICZMnIjGTZqibLnyKF+hIsolk9G+ypQthxKlSqF4yVL4qnJlTJ85k/8Hf/zxp+FY3vTzbYq4y5Yti8yZM8PPbzguXgrDuZAL6iLpophYku34iVPYFLBNXRR244vDb4W4BcmMxCluE4ll+lKxs2fPYu3atfi6aVMuFaPe5sVLlITfkKHYvm07E7ypzHIh7mjoiZuynydOmoQmTb9moq1Y8UtUSEYroy4GvIuXgLOrGxzU/6pnr944dvw4Hj56ZDiWN/18x0fcQ4b68WJ7Jvgcgs+GiIklyc6eC8GRo8exYdMWdOzUBV98IcQtSH4kmrgTKhWj3uaUBET9x51dXJA9Rw5U+qoSd1jjUrHQMJMJb0Lc/36+58+f48qVK9i5axdmz5mjCGc8xo+fkCz2I91OmICRo0ajV+8+rMAzZs6Cdu074OChQ29VIk3CxH3ptS/4Ym+HnT13XhH3CSFuQYoiSYrbXCOVWzGTv86FhGD16lVoUL8BZ1dmscuKCoog/IZGkzcpb+OENSHu2OVgL168YOVN/6cnv/ySfPbkF/zyy6+4du0aT37r1r0HK+72HToiMCgI9x88MBzDm36+EyTuC5diLbxiYtaaELfAlrB4yIi5Tmemss31pWKnT5/GHKUWfXx8eL42DSch8iblTW5zinlrCWtC3P/CVp+RGpKcCQ5Gv/794aiImxQ3xdVTleIW4hZLoglxC2yJJBH3HTMkrjcaHnLp0iUsXboUtWrWYvIm5U1uc4p5796zB5ExpWJC3NEw14AlOU1ruEJNIagaoE/ffqy4hbhfPwmIvXkmxC2wJSzunGYpsRtvzzO3uVTsNJM3KW9ym1PMm3ub+/oiICDAUComDVhSHvqF48mTJzh1+jT69BPiFuIWS6wJcQtsCYsVN83ZvnzlCru2r14NZyVtTmWbbNKiyJuUN7nNKeZNCWukvKtUrgI/Pz/s3bsPly9fRWTUtVSvuFMaQtxC3GLJa0LcAlvCYuK+fOUq9u3dywNAgoIO4+LFS+q5O2aVt7E7nUvFFNlTzJsS1ijbPHv27Mjm4IAyZcpimFpAt23bhqvhEep99mF0Ku5VntIQ4hbiFkteE+IW2BIWEffde/dx6tRpTJ40CYMHDWKFvHz5Cp4OFhV1PWb7hBPW6JYS1ijbnErFmjZtChdXN+TMlQuVKkWXim3ZshXrqVOYKO4UgxC3ELdY8poQt8CWsIi4KfZMruwWzZqjUMGCcHV1Rds2bbB+/XomYXo9WbzKO+YxrVSM6rz9165F/Xr1kCNHDu5tXr58BfiqC4NpU6Zg1IgRQtwWQr8QmEpEM7cNQYhbiFss6SbELbAlLFbcx46f4LhzlcqVkSljRri7u3NP8iVLlqov7FkmY9rO3AQw41IxbZ733Llz0bJFS54oRsq7VKlSaO3jg84dO/LfRYt5YekyIW5LYO68GD8uxC3ELZa8JsQtsCUsjnFTUho1TSFXuYeHBzJlysTzt7t26YLVq1YxeVMCml55J5iwdv0GQkNDFfkv4aliTk7O+CJDRhTz9ERVukDInAWeXkLcCUG/ENBwkGfPnnHXNbpPZV/G2whxC3GLJa8JcQtsCYuJm8q0Ll0KxcaNm3hgCC18GTNGK28aW7d8+XIEB0eTt7HyNnefS8XUfo+fOMHkTfO8SXk7ODrCMXt2fPTJpyjm7a2Ie5kQdzzQLwRUl01tUq9fv873icCNtxHiFuIWS14T4hbYElbUcUeT7UVF3ju270CfPn1QsGBBJm+Keffo0SOavGPc5rxPK5T35ctXeKpYndp14Ozsgo8//RTvvve+Iu7iQtwJQL8QnDsXgp8XL8aWrVtx/vx57oxmvI0QtxC3WPKaELfAlrBIcRvXY4eGhiFgcwCGDhkCT09P9eX8gsmblPfq1as5dq3t05K2qdQ1jcibMtdXrVqFpk2bsCv+g48+FuK2APqFYPHSpShVpizadejAF1KkvI23EeIW4hZLXhPiFtgSVrc81e6T8iby7ta1K7yKFUNGRbTu+fOjS+fOWLx4CSu/qKhrJruvmS0Vo6liSiWOGTMGpUqW5Hi3p5e3xLgTgH4hmDJ1KjJlsUOVatUwfcYMhKvzZryNELcQt1jymhC3wJaw2FVuSiWHhl3Gtq3bMGL4cC4To6Hx1FSlZcuW8Pf355j3TQtKxfQWHhGJDes3oHev3nBydpGscgugXwimTZ8OewcHVK9VCzNnzUJ4eHicbYS4hbjFkteEuAW2hFXEbaoNKnVQ27x5M8e8aTEkFzdlnVOd9+LFi5m8KeZt/FpzypuS4Kg723C/YXDLk1fquC2AfiGYOm06smbLhuo1a3KTGyFuIW6xlDchboEtYdU8bnOKmWLelLBG2eZE2hmV8s6ZMyc6d+6MNavXMHkTyZtT3vp9E3Hv2bNHWp5agdjEPU2I2whC3GIpbULcAlvCKuI2p8IpYe1iTKnYoIEDeVEkt3nBAgXQvHlzngp25kxwvKVieuKW6WDWQYg7fghxi6W0CXELbIlEEbc50r3EpWLb2W2eP39+dpu7uLigR/fuWLFihfpShzAxG2ecmyJumQ5mOYS444cQt1hKmxC3wJZIsuI2LhWjDmtbArbwIJLixYsbSsW+btqUS73Onj3LiW3xucrjELeJ5DSxuEZIKeJ+G4xgkrjPxyZuIXAxa02IW2BLJIur3Pg+Ke+tW7ehV8+e8PbyQuYsWZAvb14uFaMOaeQ2jzQqFYuPuJeR4lYEJIrbNGITdzIkpwUF4f6DB4Zt3wbER9zndYpbSFssMSbELbAlEk3c8SnvGzGlYlu2bMHwYcNQtGhR7rBGvc1bt2qFNWuiE9ZMTRUzJu4insWwZOkyXL5yBX/++Sf33n716hX+FjPYqxijxYDquO3sE0/cbdu1x8FDh3iReVvOtf78hISEYNy4cUaK+yLOBJ8TxS2WaBPiFtgSVjdgMdfCNPb299kdfuHiJQQEBKB3794oU6YMx7ypTWr7du24VIw6rGnK2xRx582XHx4FC2Ha9BkIOnwYERERuHnzJm7cuIEbdCsWbXQ+lN26dQsjR41Glqz2VhN3X0Xc2Ryz45tmzbB+wwa1AJ17u851zPnZt28fhqmLyTJlSsNeXeAMHuyLk6dO4/TpYFHdYok2IW6BLZEk4uZe5Ga209T0pdAwbtLi6+trmCrm5OSETp06GZS3VipmiridXd3Qr/8AzF+wABs2buQe3AFKyQds2SpmsC1sW7dtU4tFZ2TKkiVRxG2fzQFVq1XHj+MnYPmKlQjY+u++X/9nTPr52aLOz+w5c7hM0cvLC47qQqVfv/44cOAgTpw4FWcBFhOz1IS4BbaEFUNG7nEpl2YJxbljlYop5b1p0yb0798fpUuVYvIuoJWKxczz1krFDMQ9ciTy5XfH5+m/QOGinihf8UtUrV4d1WvURDVl1cUMVk07JzVrIb+7B5+zGrVqYYaFxH3y1Cn0Vf+bzFnskD1HTpQsVRpfVa7yVp1r7fyUq1ABHuq7l8UuK4+Nbd26DVaqi5TAwMNxFmAxMUtNiFtgS1g11vPipUsICbnALnBqTWpQ3Wbc5/q/Kea9c8cOpXD6oVChQkzeOXPk4IS1FctXsNucyJu6rGnETSREoz2z2mdDjly54eTiAidXV3UrZsrIO0F9ytN+ng41a9e2irj7KeLOqIjs83Tp4ajIO5eT81t3rp3V58meMxeTdpq0n3Ev/G+/+RYLFyzEwYOBcRZgMTFLTYhbYEtYRNykhENCzmPJ4iWYNXMWFv+8WCmUIKsmgNH0r0uhoay8/Yb6oSQNEfniC+TJkwfNmzXjUjFS3hGRUdi7dx8Td978+Xmh9WnVGn7DhmPS5MmYOn06lzxNnS5msGnRNm3GDDRs3AQZMmVmxW2dq7w/J7WVLF0Gvfr0xdjvf3h7zrV2ftTnGTJ0KJo0acJhm2wODujRoyd27NiJo8dOxFmAxcQsNSFugS1hMXEfPXoUQ3190drHB23btMXUqdNw5MhRXA2PMKmwTbnN6X0uXLyIrVu2omfPnijm6Qk7Ozu4u7vzlDFymx8/cQLbtm41xLhJdY/7cTy2q8X1THAwv/78hQtiJow8IoPU/yizUpSJSk5zcGTip7r5wKCgt+5c0/mhZMlBAwdxyMbB0QGDBg1WpH0cp06dkeQ0sUSbELfAlrCIuO/df4B96ovXSpE2ZYU7Zs+BmooYJk+cpAj9WKw2pgkpb0pEI7f5VkXOI0eMQJEiRVh558iRAz4tfbByxQqsWrnSUA5G8e2Fi35mEvnll1/w7NkzLgsTi2tU5z5R/U8SUw7Wl8vBsqO1uijbs3cvrt+48dadazo/p9VnHTt2LMqWKYMsWbJgyJChvNhq5WBC3GKJMSFugS1hseKmOOikiRNRv159djG6ubmhXr16SnlPRWBgIMe8zfUhN1UqRglrW2KUd4kSJZi8aTRo69atMWzoUAz67ju4uLjyWM9ly1cwAT1//vx1n6//PMgdnJQGLO07dGS1/eDhw9f2GVISF9UF4Pjx4802YHndBCD2ZpoQt8CWsDg5jeqtqXRr6pQpKFO6NLIpcnBwzI5GDRtiyqRJOHHiJBMyWULkrZWKhV2OVt4DBw5E3jx5uUmLo6Mj6tSujXZt23KGs7l53GKmW3pKy9P4z09CLU+FwMUSY0LcAlvCIuKmWm0i5GvXruPgwYOssuvUqQMHpbxJFVevUYPV+L59+zn7nFzrlpSK8Txvniq2EQMGDODFNH369HByyo1ChQvhs3Tp4OnlrYh7mQwZiQe2IO43GQkStyhusSSaELfAlrCMuHV27fp1nD9/nt2N5cqWQ1Z7e1beDerXx8QJE3D8+AlW5/pWpgmVilGTlt27dmFA//5wd8+PjJky4pM0n+Ld995HMe/iQtwJQIg7fghxi6W0CXELbImEiduIaEl5U8kWxUFnzZqFqlWrsvLOmSs3qlWvjgmK0OlLGp/ajnsxcAOhirypVGzo0KEoVboUPv70EyFuCyHEHT+EuMVS2oS4BRqM19mUMKtbnmplXZR1fOLECYwYMRyVvvqKE9acnV2U8m6ASZMm4dix44pswxPsca7dJ6NyHYp5d+jYAbmdcivVnVYRt7jKE4IQd/wQ4hZLaRPiFmh47cQdu+Xp3Vi39BrKJD92/Dhmz56N8uXL89AG6nddQ5HGlEmTcfjwEatLxSjmPXfuXJ7fTXXFnl6mk9ME/yI2cVNWuUM0cc+aJcQNIW6xlDchboEeKf3/tZi4zSlvmrp0+PBhrruuUaMGK29XNzfUr1cPU6ZMQVBgkCKPCItKxWgb6rAWsHkz+vXtywqes8qXC3HHB2PFbWdvj2rqf2Fpy1MhbiFusaSZELdAg/a/pbHI1Avj2rVr3Bl0+vTp+OmnnwxGoWYy8owmZLSd9hqa2mjVPG5TipleGxERyb3GaacVKlTgmDf1F69bty4mqEWSOqxpE8BMKu+7/z5G8e7du3dzcxZqwFK0WDEh7gSgXwhmzJzFfd3rqAsnmoRFo1CNtxHiFuIWS14T4hZo0P63L1++xOPHj7Fnzx58+eWX3KuE7LPPPkPatGmRLl06LoGm7qFZs2Y1a9QoKkOGDPj888/xySef8Ghiq4g7DonHkC2Xil2/joOHDmHK5MlM2FTn7eaWh1U4ZZvv27uPy8nMlYrpiZuGjIyJ6ZwmxJ0w9AsBjT5t+vXX8B0yBJs2b8bt27fjbCPELcQtlrwmxJ04WBsP1r/mvwq94qaOjSSeli1bhm7duqF48eJM1h988AHy5cvHcxP8/PwwWfEm5YYZG3mtqVS6YsWKLIjfeecd7Ny5M3HEbS5WTZO9qFRsgiJq6gXNMW/1Zlqp2MmTp5iY4ysV08/jFuK2DPov9ZkzZzBHKe31Gzbw0BZqE2u8jRC3ELdY8poQd+JhOBfxEfYbQtoaTB3n8ePH0alTJyZs6lfSqFEjJvRbt27Fuy/ivokTJ3IFFylu8kgnWnGbIm5S3pGRUTiklDf586tXr8Gd0JycXQxNWg4cOMBu8zsmYt5C3ImDfiEg1wydK8o9eKxIWWsTK8QtxC2WcibEnTjEXpPMbAPTihz4b55LU14EAhF3r169eN4HuczbtWuHXbt24d69e3G217/u119/xeXLlzFu3DjkzZuX+TVJrnJzCWvkEid1TXFq8u07MHk7o7G6wqCua8eOHeOENVHcyQtz58X4cSFuIW6x5DUh7sRBT3LkWn715zP8ER6J389fwrPrN/Hi8RO8+us5/n71yqC84yjw/9i5NEfcR44cQYcOHVhxU1x78ODBPDuBiNl4e1METpMNq1evrrj1ZNIU979NWmKTOCesKeVNpWLz5s1DpUqV2D9P5V01atTExPHjeZ63qVIxIW7rYeoKNL4rUyHu1EHc2ucx7sOeVLNmn/rjeJtNiDtxMKxJirT/fvESf167gYjRE3C+bXfcmLcYT9S5JPL+++VL/KN7zZsSB9cfE8WmSchSslnu3Lm5jJo8opTEZuoz6PdBIKVNQ7mI7JOHuE2VeHGp2E1W1zRGsVat2tGlYq5uqFunLgfeibypSYtG4ELciYMQd/xIrcSdEGmeCyG7EM/zFwyW0D6t2fZtNCHuxCEWcStV/ezmLUSMnYTghi1xvnVXXB40AjdmL8C9TVvxy7GT+DMiykDkCe3zdUK//hIxE3etXLkS7u7unJxWTPHa6tWr42xLeKXOA5WQ0Vr1m+JnDZTktmHDBv4eWd05LaEOaMalYtSkhYiBSsWoSQu5zam3uVYqRk1abt66xfFxIW7bQIj77SZuU8qX5o2fPnMWJ0+dMdjxE6cUyRzHiZOnDfPI6fbU6WB+7OixE/w8GW1Lj9Pz2nvQ/rRtjx0/ydvRa+hvelwUtxB3QjBWyC9++RX3N2/H5X5DcaxEJRxyLYogjxI4U/cbXPEdhTsr/fHrqWA8v/8Ar549i3ajK6X+D7nSFfn/V9S3/v2plpuqe6ZNmxZdKp01Kw/p2rJlS6xttXABuc63bduGhQsX4vr164ZtXrx4gd9//50vBKzonGZZhrnxfW2q2KFDgRivFsxatWpxwho1afk3Ye0gZ6Tfe/BQysFsACHut5u49WTC98+eV0QdrP6vR7B+wyYsXbYCy1eswrgfJ6Bz5y6YNn0mP0dEfFyR7tbtu/DT7HkYMGAgz2fv0KETJk6ajA0bNzM5k6qmfQcePorNW7Zh/oJFGDVqjNpXV/Tu3RezfpqDLVu3M3kLcZsnbrG4JEtk/DTsKm4tWoETFWrigGN+7Ld3Q1B+b5z4sjbOfdsWob0HIXLcFNxevhZPgo7hz+s38er5C5PrlKXvm9xrnH7fRMSUmDZo0CBecyjG3aNHDwSqddb4vSnDnL4rRNoLFixg5W3q+CxW3LQNkWtU1DUm15s3b5lV4caDSei1lG0eHBzMi2Y5tWhSa1Syhg0acO33yVOncP3GTZ4sJoo7ZSHE/XYTt15pExmTGt6+YxcW/bwEw4aPVItGL/Tq1QfVqtdANvUb7NipM3bt3osgRcS03aQp0/Bt8xbchyFt2s/w+efpUL9BI0yeMh379h/k/R49dhJr123A2B/Go3Wb9ihVugy+yJABOXPlQvPmPoq857JKPxsixK0n7tdNjv91Ixf4q2d/4Zfjp9lVfqRoORzM6Y792fIoEs/HdsipIA4XKoPghi0QMWYCK/SnYVfw1+27SrH/gpdP/8DfSombUuCxCDuFSNt4zXnw4AHWrl0LHx8fbqRSunRpLu86e/Zs9GdWx0lqmmq+6XsyZswYnr65Zs0a7pKm359mFhN3eKRYKvYAACAASURBVEQEu7VJOVPG+OXLV8yqbeMGLUzeMaViVA5GLoMaMYuGi6sratWujcnqiv7A/gOc1EadYVIzceuvAlPSCELcby9x0/2Dhw5j5aq16Na9B7y8veHu7qEI2Q158uTlfJMCBQrCz284DhwMxOo1/kzsFSt+CQcHR3z66af43//+h48//hjlylfAoMFDsHPXHiamdes3oXfffijqWQw5cuZkgnrvvfeY5AsVKqLUhS+7zTV1/rrPyWsl7mbNsF+te/diflOC+EG/1Gc3b+PW4pVM3odcCmN/VlccUORN6vuAQ15F5h44XKAkq/Iz9b7F+XbdEfH9JNxZtQ6PA4/gTyUA44uD8/tYuEZau/4Zv57c5DNmzEDNmjW5WxrdEilrbnAC9dsgYUv5YNWqVYOvr6/JUjENFhE3JY9RS9P58+bx2M7p06azf55GcZL6Tij2HatUTG1/+vQZfK8OsHKlSsiuyMLJyRn169Xnq5CDBw9yr/LRo0YKcduAuKnuW4j77SXu/YqQlyxbibbtqAwlv/q9ZefF43/vvsuxtuo1amLCxMns2v5x/ES09GkNLy9v/k3mzJmL2zN+/MknKFO2HPr1/w6bNgWwy3z4yNGoU7c+nF1c2XLlzs0EnyZNWriov3v36RfLrf66z8nrIe6uXK/7db262Ll6JSKV8Pn9QqhYQnYxTCnuU7i7ZgNCew5EYN5i0YRNqjvG9seQOBH6/izOrMRPlK+BC227IXzkONxaspIJ/Lez59X+QrnEjC4GKDb+4tdf8ffzf0vMzKlxvo+kE3dUVBQGDhwIT09P9ftIw7lepKjXr1/PfEe2bt06/PDDD0zqzs7O3E2N1ipTDbQIFhE3tSndr9Rw29atUapECRRTB0Bp6du3b8el0FCTJG2qD7nWpIWnih09hvnz56NKlSpwcHTgDmtUKvb9mDGY89NPqT7GbavPSIr7tCLuvnriDgoS4n6DTe8qpzjz4SPHsGPnbnaV9+jZG+XKVWBCJuVNbvIffpyAqdNnokvX7vDxaYNRo8di1Jjv0b1HL7XYFOO+yrXr1MWYseOwbPkqvq1Q8Ssm7j79BuD7cePRf8Ag5MqVG5kyZUalylUw9vtx7KJP9cSdPj0alCyGdQN64Fi/7xDaZ7AyXzGzFnN+en6Hix174XSdpghyL44DOdwNhH3AlDnmxSHnwmrbEuxeP162Gk7XaISQlh0R1m8IoibNxJ0V/ni4ax9+U9/JF49/wd8vXsDcypZUBa65wAnUPOWbb76Bvb09tzol8qYLaFdXV453k9H9HDlycMa5VipGrnNyoRu/P8FixR0UdJgndpUuWVL9ODOhpLod+J26At+4iUdxUnw6vgxzvRtdmypG87zJn09F5TSUxC1PHr7i6Nm9O3qrC4Pc6qqfp4OlsrGe2uejsgC64rpx8yYuXbqkFoVzyWrnQkIQqEh61erVSmm14nGgorhfPwmkhF1QqoNi2EP9hqOiIt3PPvuc3eTfDRzMj/UfMBD9+w9UpPwD1m8MwKo1/hgxcgxKlynLww2++aYZxk+YjOEjRqNb915o3ORr9VpfVvOr167H9z+Mh4urGxwds6NFCx/8NDsmxn0ulRN3unSom98Fy5vUwp6qNXC8dBVlVWNuxcybOkdlquGIZ3kcci2iiDu/acI2KHC3fxW4nUu0Qs+en0mfSDy4fjNcaNeDSTxi7ETcnL8Ed5Sif7BlJx4fOMyZ6qT0/4y6jhcPH+GVIs1/171/Yq0llqw3BMr+pnIuCg+TyiZPF3m5vLy8uN1p06ZNuVc53dJMj6JFi8LFxYWVOU0TM1679LA4xn3h4iWsX7ce3bp2Ra6cOTnI7uHhAd/Bg7Fj+w52m5tzl5sqJ9OatJw6dQozps9A6VKlOead2c4O5cqUQf26dWCX1T5VzuPWPh8V59PV2o6dO9VCOBs/jBuHcYp0ksuIwIaPHImevXqjfIWKyKLONykwIvP7Dx4YjuVNP9+pjbhNlYKR8t2zdz86deqifrcFuedxkSKeGOI3QqnwPmjdui3mzJmP/QcOsVJeo8iYiNzT04sXHB/1/Ljxk5iw27RtjzlzF2D79l04eCgIK1f7o2//75BTKW5yk/fp2x/LV6zmsjDteF73OXltxP15OtTKnQ0/VyqJbQWL4GAOD47PillmRL4U094fQ84H7GNu9aRt5EZnc8jDr6PX034ooe2QSxEEuhVFYD4vBHkUx9HiX+FUtYa40LY7rg77Htdnzse9DQGKxM/gr1u38UrxjXGCm7aeJLTeEIivQkND2bNMrUopbEKJadTDhLLFKWmNYth0S/1OyH3esmVL1K9fH5s3b461diVKcdN9yvY+ExyMnxcvRps2bbjfKi18tAD26dOH3+iiInfuQ24uYc1Me1S6IiH/PpWK0WASchXQB02T9jNF3N6KuJelSuL+Q1310cS1HydMQMPGjVFaneuy5cqjTLlyyWYl1QVT4aKecHZxg5NadIf4+XH449eYwn8h7jfPjDuXcW32mbPYuCkAderW43aLNOSgqPq/d+nWA76+flwaFrBlG2eh02uWKSXt49Na/c4L8W+SCNt36HB2p48a/T227diFkyfPcALagkWLmcxpOw+PAhwzp+x0KQcj4v4ctXJmxaIKxbAln4dShDHKUMwqO2CvI21joqZtTClx/T5IibMaj1HkWZzVa/IymZOqP/llba4VP9+6C64MHskkfj9gO5emEYFHx8Pxb8vVBNYbwh9//IEgJYJGjRqFnErsUg13ixYtOLZNLnA9Hj16hMOHDzN5U1tU6rKmX7sSRdx6lRwcfBb+a9cq8m7NPnm6iiikSHzE8OHYtnUbQsMucxzbkoYtBuUdEYlz584ZpopRh7VP0qTBu++9j2LexVMtcT99+pTzCL4bOBDeJUrA3sGR49DJbdkcsyNvfndUqVYdCxYu4i8RqX1TX5g3EamNuPVkQrdExhTn/vnnpfBWvyeKs2XNas9JaC1a+nCZ185de5mET5+hBixnMXPWbHz1VWXkyZOPM9Br167LSnry1BnwX7+Jt6V9k/udiJouCIi4S6kLQYqDE3lpFwFv23m1jriV4s5lj0UVvbDVvUC87l6xhMyEsraEwEl5a0YlZTEq/CCpcNcinPxGLvWgAiVx1LsiTlauj5CWnViFP9p7EC/VOvy3mVizufWGQM1SNm3ahC5durCLnMTokCFDWKhSUxYtDk5Gfz98+JA7o1EPc2pvarx26WF1A5aoqOvqyxnC48i6qgNyz5+fY95exYqxGz1gcwAuXLyYYGMW/T61Ji2kLiltvkbNmkivLgje//DDVE3cL16+5Do+Kr8L2LKFW+StXrMmRWz9ho3YvXsPt6D9i7oRmXARvalI7cRNyjdgy3aMHvM93D088J66ILazy8pJav2/G8RubY20KS69a/c+DBzki9y5ndTFeU4UL15SKYVWGE3x7w2bEKQuAqK7qIVwXTeFWsilTq53ypXYtn0nq3x9l7XXfS5eH3F/jppKcS8s74kted2j1Z6Y5UYq2aC4deo7Pje5XmVr+yGFrW6JvAPdPHGsZCWcqd0UF9p0w5VBIxA1cQZuLlyGu/6b8GD7bjw+eBi/qgvYvxQ3Rndm+ztWtrm5dUZ/S/lJ1DGUcrgo3ESx659++gkhISGxpjYSSJ1T2RgJNZqsSQnDxmuXHla3PNVc3OcUeRORNGvWjDPiSHnTgQ3x9cXGjRuV8g7jhDVLlTcZlYqRO97XdzAKFPDAZ+pqtVgqdJUT/iuf8T9yGElCaiduam+6dNlKdO3WA87OLly2RbeNGzfFDKWsSW1rcXBS0MtWrOayMMo8p7yTypWrcSkYZaUHBh3h7Wh7Kvfy91+PRo0ac0Z59eo14ec3guPeIecvvpXn1GriVgt2nTy5sLReZewqVxFHCpfBkSJiCdlhdZ4OFyrNapgUsl5J709IYStVfTB3QQTl8+b9HPX+khPeTnxZC6cVWYe06MDZ65E/TsWdZWvweH8gnoZdxvNHj5mkTa4h+DdFLb5MdP0teS6HDRvGuWCUSV6xYkWe8EXd0V7G1Jhr21IG+Z07d7jDGrU7pb7kxmuXHhYrblP12MFnz2L58uXcvo3Im5R3AXWQPdXfO3fs5GxzS0rF9G7zK1euYsXyFWjfrj1y5MyVqrPKjeMbmlslJcySmu83FamNuI1j3JQkRm1IKU5NswIyZMioyLgq/IYNx46dewy9yomQSUFPnDQVtWrV4TKwXLlyoX79hpgx8ycmbboIoH2SG3zL1h34cfwkzpMg1zt1TKPtiPz1ZWBvy3lNFHGnT49GZYpjo29fnPhuEML6+CobwnZZzKTx+ek9GKG9BnF3tCB373izymPFsdXtwRzuOOJZDsGNWiK0dzRB31q0DPc3b+NBJVQr/vRyOGeQU7c1IuyXvz+NjmXTpC5TPc+jA9yGOLfx+qK/r5WBUdJZ9+7deRoYEXfjxo05WY1ImyqG9K+lv4nfqD0qvY6I3Hjt0sMq4jYuESNFTTFvIm9S3h7u7pxtXqpUKc4237hxEy4p8iaST8htrt2nbYn0/dSC6pYnb6qs4zZH3K/T3mSkNuKOJpJoMiECJfc3lXmVLl2WO3nRrIAOHTtj4aLF/JymoEklU703lYaVKFGKO6cVKlyY67nXrF0Xi4yJuKnfOT2XJ29eJu4+ffph9Zp1seq336ZzmijipgYstaph58LZCPNfhwebd+B+wA48EDNt6vxQiRY1X7k+dTZnfHMdN8WmTSWdKaP6ba7dLlcDZ+p8g/PtuuHK0NG4MWcRkzWNBqWWqNR8JeFuavGvu+Zc5fo1hoib8pOopSmVepHniuq2icS1fvWaWNJea27dMgerxnoaEy29jslbHeDqVas45k0Z4VRETu6BQQMHYseOHbgUGoZbFrjKNeLes3sPRo4YkaobsAiSD6mNuKM/h55IjnMnM4pXk5ucks2oacp2RdKagtYU96bNW7gOm2qyP/3kU1SpWh3TZ/zErU6NG7vMmjUHDRs05tpt6rL2g9onKXbap8zj1rU8/bop9u3cgVvh4Xj5629i8RhNB3v52+9KEV/FzXlLcN6nM08I01qdxko2IzJXSpzi1edbdeaOadTy9Hd1Acod0khJ036f/sHDS/6mQSTaFLG/zRMzk3P0wmHxuqLfB2WMh4WFYenSpShXrhwTN4nZ77//3tDCVO/lNH69qceNkSjiNlbeNHyEri6WLFmKNq1bc6kYKW9aHPv26cOZdZSwduPWLcPsbZO9ze/ek+lggmRHaiRuzYIOH+NhIE2bfoN06dJzxUa1ajV4QhgNCtEyv4lsqa/5rNlzub0p9SqnISNdu3XH5oBtTP7aPk+cPMP13tSPnMrFaNsSJUrG1IEHYuu2ndxqVZLTdENGDhzAXelVniDY1azI9beQixyHpuYp5PrWmqpQHXyQR0mcrFQX55q3R2hfX0RN+Qn31gfgcdBR/HE1gkk6ofewxMNoKc8Yb0du7q1bt6Jz586G/C9yk//888/sCjd+TULHkGTijk95awlrlM7esUMHLhUj8qasc3KbU503JaxRBjltay5hTeZxC5IbqZW46f627bu441mZsuVZbRcvXgI9e/XhOmvqaqYpbXJvE8EPGDiYlXk2+2xcAjZl6nSOgev3STHstes24ttmzbmrGiW6NWnyNRYtWsykvXjpch73KeVgMh3MGiP8rdb4ZyQI121m0t6vlPWh3AWj25nm98axUlVwtklrpa5/xL11AXgaegXPHz/hci2OTxsUtfm8HeM1ITnWFYpRU2Y4dZykODZ1BC1SpAhnk9M6Q5PBFi9ejPDwcHajvzLRJ90aJIq448a+78aUil0DtdJcunQZOnfqhIIFCnDCmre3N7pSqVhAADdp0d7PlPIW4hYkN1IzcW/YGMAtTYsV8+IEmVqKjH/4IdqlrcWh6ZYU9fwFP6Nd+05cKkYd0Dp17orFS5bFIWDqwDZbqWtKYCPiLlWqDMe6R44ag3nzF2Lr9p1cMiaKO/553IK4mdg0AOTehi242K0/dzijOmtqjhLSqjOuDhvLE8Me7jnApVqUXEaucK3G2mjHZrO/k/PYtfclFzg1VqEsclLXBRT3UXLnO++8w1PzKMmT3OXU6nTRokVcs01JajYn7vhKxYi816xejRbNW8BFXY1TzJv6sA7z82Pyppi3qVIxIW5BSiA1E/fKVWvQpWsP5M/vzt3SqMPZop+Xcoa4ti0Rd2DQYXz/w49KZddDFjs7bs5Cg0I2bd4ah7ipTps6rVGDFlIUVapUxcBBQzDY14/ncOungr0t51SIO2VgIG5SyOr2+f2HuDZtjlLVPjjxVR0EN2qBK4NHKMJewUlmzx8+ivN6kxb9ZIqeZ/3/kfptzJkzh5U1KW0aHOLu7h7L6DEidFLj9F0wN0DEEiRJcZss9bp9l2PelG1OwXnKpMuXNy8vkvSBevfuzR3WSHmber0QtyC5kVqJm8hz7tz5qFOnHmd9U6yNhoqQ+/zY8VO8rZZNvm/fAbRr14F/czTFqE6duli1ai27xY2VM40ApQliZctVwKdKxXt7R7vf5y9YhF279xoS3iQ5TYg7IeiJm5TzX3fv8/CPqMmz+PbRgSAey/nsxi28ePQkun94PO5vWx+79p7U+Yzma1OuV2BgIHdHo3GddKvdJ6OOaBqXJaXJVbIRt/F96ll+5kwwVijSbd6sGV9xkPIuU6YMDwmnhDVtnre4ygUpidRM3CtWrka37j1Rs2Zt1KpdG3MUkR8+cjxWH3EibmqaMth3COrVq48GDRqye53c6aS2jYmbXOW0n85duqJK1apo3boNz/ImJU6kbbz923JehbiTH3rSJeKmePUvJ8/wLG2an/3yjz9jnat/kPSRmyn1GWyJJBO3KeWtLxWjspQ1q9dwkxYnJyeOeVOpWP/+/bB9W7Ty1rYX4hakBFIrcdP948dPcgY4lXORkRubyNiYVOkxIm9SzGR0n8jdVFkXPU77IWKnuu+9Sq2TMtdIOzURthB30hArWYwU6KtXPFKT+4PTvAQt2SwFksuSClPHo1liGl1Zg2QlblOlYkTEZ8+ew/LlK9SVeXSpGJE3Bep79eqFDes3GKaKadsLcQuSE6mNuPVkQqqbFPV59RnJ6G/98/pb/XZ033hf+lvj/ZrbPrWYEHfikeC5MGqKor3mdZ/D+Ig7MWYNrO5Vbq7neHylYlQCRuS9ds0atG/XjpV3RkXe+WNKxajmjaaK3bp9m+PjQtyC5ERqI25jlUymDf0wbodqyXbmttW2N95WFLcQt6WwlPj02wqsnA5Gipgsofi2KRWuJaxRLVunTp14iAglyxQvXhw9e/Zk8qb2qJFqu3179wlxC5INqY24xWxvQtwCW8JixU2qOTLqGiIio5iEybWd0NQvk6ViSnmvUcq7efPmPFw8gyLvYp6e3OKUyPv8+QvYtXOnELcg2SDELZbSJsQtsCUsJm6a00yp7Pv27cexY8c5IzwhojY1VYzIn0Z3Llu6jBPWyF1uZ2fHpWIU8964YSP81679T7Q8NefG0T/2upDQsb2O40nI7fVfODYhbrGUMCFugS1hEXGTe5xKu2bNnIlRI0dh3A/jsG7dOpxXiyCp7zsmVHdCpWJazNunpQ+XipHbvGTJkujXty9+/OEHjn27uLm9duL+l3Didvl5vT++fxD99tq4uX8Mj7+2I4p1PoS4xVKPCXELbAmLiPve/QfYq5R2i+bNUaRwYe4AQy1Nt8S0MDXZiMUEgesT1oi8yS1ObvNuXbsaepu7uLigaZMmPGksZ67cr2Ued2KyAV+3F+BNOKakZFEm9riM30+IWywlTIhbYEtYrLgPHzmKwYMGoZxa8KiRCsWle/bogbVr1zIBm5q5nVCpmDYSdMniJWjZsiWXilFbRupxXq58OWTImAmeXt42J24NekKivrIvTPXEteHxmHs/Ojat7+1/4ZioXvHFCzpfz9levnz1n1HcFy9exPjx43ncnhC3WHKZELfAlrA4xk0Z3wGbA7hlqYurqyLVjMiTJw/69evHk78uXLgYZ/KXRaViN28jODiY49rt27eHo6Mj0n/xBdJ9kR7vffAhinkXV8S9zCbEbUoVEgk9f/6cm8LfUp/v8eMnPLaNiNKSYejJeWz6Y9SO6zf1/7utzuPde/fwh9FxpbS6NaW06b3p/0RTcqh/L9mTJ0+ij+sf0w0IbHFsNI2HjuH06dMYPXo09xEg4h46dBhCzgtxiyXNhLgFtoTFxE2x7HMhIVi5ciW6devGipuUt5eXF7vNOeatlLfWSMWaUrHImKliM6bPQM0aNZArV2588NFHePe996KJm2Lc4eGxiDs5v/zGSlW/6BNJR0VFYcHCReijLlJGjByFlatW4Z76jBpRGV6H5CdwU0lfBCLtEydOYt78+eg/4DuMHjOWZ/7evHUr9jGZeG3yH1/0/b//jj4f12/cwE+z5+C7QYMxUFnAli08ys4WFzrm/pf0f6Th9nPmzkXVatV5hjT15B4+fCQ3DxHiFkuKCXELbImEiVtPvHfucUIaTfiiGLSbmxvHpfPmzYvvBgyISVi7yC5wUzO3zSnvaLvHjVeoLKx06dL48ONPFHG/D091YbBw0SKe5W2suJPzy29K0ZJCi4yMxJq1/qhXvwEyZbFDbmcXNP36G+xRx/rg/gN2n+tfl1LEbay0SclOmzYdlapU5ePK7+GBQYMHY/uOHXjw4AFvk9LqVn/O6Lio0f4tdeGwaXMAqqkLsGzZc8AxR0706NVbKd0zePToEStfUxcWyXlM+v1qHoBIdfH18+LFaN6iJeyy2uP99z9AtmzZMHLUaCFusSSbELfAlkiwAYsx+VIsm9zi/v7+6K8UaKFChVh5U//xtm3aMHmHhJw3O3M7lgvdaN90UUDDR2ieKU0d+j+1uBYsXASTJk/BqdOnmRgIya0kTbl8KS777NlfWLNmLarXrAUnF1ekz5ARadOlR558+XmwwoYNG+N4AZLzmAz70x+jUrU0hWbT5s34pllzZLbLyhc5aT9PD7c8edFZXVBt27aNCdT4M+k/a3Icm+ZlIHIkQiYvxJy589CgYWNOLPz40zT4JE1aFC7qiS7dumPP3r18vozn0CbnMRnfpwuYiIgIrFUXX7Xr1IWTszMcHbIhbdo0yJw5iyhusWQxIW6BLWF1y1OtHpvc4kTSRNZE2kTehQsX5nIuGipC5E7u9YSatBhfFFCNd/8B/eHq5qrI6HNWuO3ad8Cq1atNzjBNTpKk3WhKmy4qgoIOo0fPXrB3cFSKtgDKlCuPvIq0nRWJuxcoqI5zAMdMHz1+nILH9K+Ruzda0W5mtz2FEUhtexbzQqEiRZEhU2aULF1aKW9fHDx0CE+f/mHyfCUVxvsi0r7GFxMBfDHh7OrGHgCPgoVQQBldUNDxUZiB3PukvE3tJzmPSfNM0P9x3foN/H+kiy+aNU1hnuyOjuo7mwl+w4YLcYsl2YS4BbaExS1P45Rz3bjJbvF1/uswoH9/TlSjWmxXV1d07NgRW7dsYfK2pFRMvw01elm4YAG++bopsufIiU/Tfsa3Xbp2xcmTp/DLk1/MkmRifgzGKo1Im5T9gYMH0aZtO+Rz92BV27FTZyxYuBB9+vZDteo1kDWbA4qXKInBvr44cuRorP0lVd2a8gAQiLSpu1ynzp2ZHHMoVVu+4pdYsGAhZsycidJly/1/e+cBXVWZfXHXf0bHNipNENIgtNB7FanSpCkCKr13CEWaBRRBVEBBBMugVOklQEBqgAGkKkJIIEBC7yqIjoM66/y/fZIbLzf3vbwXkoiyf2t9KyG8d3NzX/L23ec7RQoUKixlypWXSZPflxMnTsr16z+6Hiut18rN1UK4ly5bJk83f1bPKW9ofn293hk/Xt5+5x1p0qyZ5Hwst1Q012vwi0M0sgLsSXS3ck5uPx+O/e2338nu3Xt0/GShsCISlDevOYfK0qVLF6lsPmLYDZPTuNJjUbhJZuKXcDvLuZCIhoQ1NFLpat4My5Ypo3ve5cuXl0EDB5qvL9Y3aW+lYs5jnjx5WlauWCGDzfMLGhFCZjnCrY9Xqy5j3xwne/buVRdp7ZNa3Mofgv0PCRnQ6zdsNK71FXXVBY1bfKpRY5kxc6aWEq1dt07eHDdOqlR9XMKKFlPhhDihQc13xnk7j5ce54SbievXr2vXuv4DBkilKlVVIJs+/YxuI6CWHtdl1GuvS+06T0qewCB55tkWMnXqNG10g+fiGOl5bhbYT9++Y4fe0OBawV1DqFEJsHvPHtm1e7e8MXasXi+8no9Xe0Kmffih1lO7bTOk9Xzsz4fTvnz5iqxbv17LvXDDgL325i1aSri5fsOHj5CaNWuqcLMcjCs9FoWbZCZ+jfV0K+eCeGNPe7lxXCgVQ8Ia3hDDjAMfPGiQlopBvD2VijldOER+w/oN8vqoUVLECOM9994n2R/NKUEhefUNGNnKly5d1tKnW3FsTqcG14h1yIhzn779dG8dTrt+w4b6PaOjo9WJI1wN5z902DCp+ng1CQgK1izlcePekgMHDshvjnIsf87r5nP6PekLrxFazE6Y+K7ur+Na1KlbTzPdz507pxnbly5f0vN6+ZVX9TEQb4gk3Hhc3FH56aefbilK4Xa9cAO1c9cuGWaEsGq1aiqOzxjXPeWDDzSD27peyHZHZAKvX0BgsN5wTJo8Wc/dSlZLSzjfLfKCY1258q25adir2fZw2niNqlStJjNnzZblEREyevRo1nFzpeuicJPMJM3zuO2iC7GFeC9csFC7oGEPMatx3hUrVpRevXpqkxb8v7dSMfuxrLGeEG7s4SJzunyFipIrdx5p9kxz49g+0rrytNQse0ti2rtvn3Gw76mjRSi6XoMGMu6tt41r/UauXr2afAzs0f7739u01Amd3YoWKy5169fX7PfjKFszx3Ie598K8AAAIABJREFU3/q3p3NyOz+I2g8/XNfvj/OoW7+BXo/aT9aVye+/Lyihs64B3CtCw+vMTQ/2uLH/DfFu0bKVTJ32oY5MtYTN7dy8XS+3c0N0Aclm2COGm8aWAqIP702apDcw+L2yOH/+vGwyj+3Tr5+ULlNW8wWaNG0qn/xrevLP4O218fX8rCQ53MDgGuDGJU9AoN4o4KYHeRm7d+82N1njKNxc6boo3CQzSZNwexJdhGyxB4s67/yh+ZP3vF98cbAmsuH/Id5upWIphHv0G5oIhj3bl15+RTp17iL5zDHhNmvWriNzP5+nJVH2THPxQ7jtDg3HSEhIMG/uE9U9IwwNMZr47nsa7v3vDff68U1RUdKzdx9NwkICW5eu3TSJ7syZ03ojYBdJ+0dv52T/N1xytLnh+fjjT/R8cpobl2JG9F57/XW9QXBz0WgQg/Gpffv115sPuOCmzZ7W8jU0RYHA++O43Zz2DeO0Dxw4KEOGDNWoA352fITbR/a//fHWNbj+44+yxPwOINEQEQFc40ZNmspH5mfDeaUl6dB+bvg+iDycOpVYQ16iVGn92StWqqw3LvHxCfo6s+UpV0YsCjfJTNLsuN2S1pBFbvUfxx532bJlNWyOkjEkBC1btkwORkdr2NxbqNxy3JgOVsI8F2+8KDPC/i7eiPGG3PK55/UNGlnDIDV368nN4Q0fmeEQ7XpGtHGjUNmI5MBBg1W04Sx/NWJlf561zpibkHXr1ksXI0aJmdQltMYb4h139KiKt7fv7e2cIJDnjFN9+53x6mRxwwIH+dbb78i2bds1AuBWVoXvia2EZcuXS7/+4boPj2zqNu3ay+w5c/X/cOzURNJbZCL28GGZ/umnUqNmLRVh7Ku/MWasOt3vXDLs9Xm/3NDkurVr10mHTp11KwIVA53M7wXyBqzyNbfv7cT5f9oV7Zdf5fCROL0+uPlCMhzO681xb5k30p0audCtEAo3VwYsCjfJTNIlVO4sFYM4Q6S7du2qk78s8UaTFtR/W73NvTpu21hPuGuMFIUYdercWYUI4ekXWrfRBKSLFy/61AjFKShwYAjjIlu8cdNmKkIoX0JId8mSpXLt2rWbnuc8BoQTrVBnzJwlLVs9lyje5rzwfEQYrPNyhqc9hZ8t5whXjIzwlasitfYY4XEI3YCBg7ScCq76Nw83EwDfExEEONxnnn1Wk8ZwQ9K5SzfZsGGj3uz4Ktz2mwk42nhzXDQyQcY9Xoey5crLiBEvSZR5Y3K7UXH+G9dr+qefyfPmtUMoH5EE7H9DvK2IgD+vI8DriH183JhgOwHnBceNPe4dO3boca3HUri5MmJRuElmckuO2y1cjmMhXAlxxt42mrRAvFHnjalivXv3lpUrEhPWUtvjTp7HPfdziY2NNY7+pGYrt+vQwTjJouome5rjLVu2PEXZk/1zT/9GchQ6jXXv0VPf7JE81bt3Hw2BQ2DsNwNux9Yw+39/1tI4OMkX2rTRc4LzDh8wUMPGyFL3tA/vJp64Gfj++6v6MyMzHCHlfKEFdM8W54VsaQzwcLsZsItsovifkFmzZxuR7aJRCpwbwvkIm/tyfeyfI+qAKALavaKLXEi+UL0Z6Gjc89at29TJO/eq3ZwzRBY3JRDZak9Ul7yhobo/jgjHhg0b5KIRWV/PzboG2NtHVAY3OUhEQzncK6++KuvXb9AIgNVFDlC4uTJiUbhJZpJuwu38XEvFDhxU8YbzLlOmjIo3EtaQbY6vI4PbXirmTbiPx8er40NJFpLAmiQ5ZIht+MCBRjy2aucu576yhdOhIVkrcvVqFQzszyJsC1FbuHCxunDnc34/5s1ChO+HhUEfSJqD2EI8IEooX9uyZWuyeDjPxb6sxi8QtWXLI3RPv4Bx8IgAPP9Ca+O+V5nrcyFFZMHb5/8xP2eMueGZPv1TTZ4rbG6cIGqvvT5abyqs8jVP18vCGrKyyLxmcNq4MbFEe/bsOXpebq1M3YTbGvaBGzuEses3fEqv1xM1amqm/q5du3Xv3hlRcDs3fD/kOeB1bN2mrf6+oIQP1w6RGPyf8/eBws2VEYvCTTKTWxZuT/vdyTO3D8VIxPLl6rzRpAVhc3wM7x8uKyIi5MDB6ORSMY/C/XniWE9rKtdJ47yRJYzkJrTWRMY5wqJwpBDl/9n2cIFdHLHwB4Q3+wHmBgJhZLjHuvXq6w3CBXMOEDw30bEfy3lsdClDpjvE28roRtKaJmztSxRJp/O2Px8O+TvjziNWrJTmRvzRnQ372l26mZuJRYtU0J1Z9LiJSHljkbJkC2KFbHnUVweF5NO9aZwX9qQhyr95uV5o/YpQMxqZ9OvfX0UWJVbokLYB/dqNoPuS8OZ0ykhWQ6QC18vaw0dE4EPzb4S9UXvuNpTE/rPhRm7p0mVJNxPFzc1EIelqrte8+fO1vjzl9aJwc2XMonCTzMTvlqfeltvzEsPm0eqw+ySVikG8y5mP3bt3Nw53oe6JW6Vi3oTb2v/8z39+lq++/lrrhVEahVBr1WpPGIf7pqC8yF665Qz3QkC3bNmi3bSQ6AbRRokZkt+Q9W7tSbu5Rut4bsf+7bdfdcQmxBAJUuhvDpGDm8ceMM4XImhvHGN/PsK9CLejkUmhJOeIRLfZc+YkRhuMC3U+x+183I6N64HRqehkBmeL64VENySUISJgXS/nz3vjxi9a+gb3ivPCbHTst7fv0FHF8XSSo/W1xMz+f4kzu39R5z/x3XfNedWQrNlzSGNzMzZhwkSNxmD7w5PzRr921GR379FD9/9xk4QQPs4Lvyuech4o3FwZsSjcJDPxW7jxWGc5l9tetfPxcN5w2L1tU8VQKgYnHrE8QkUTzhuZ6a7Cffx34baEFc95ddQoqW4cJETyaRXgT7SbG1yzPesaAnD12jUjrHtl/IQJmkSGMiY0MpnywVQNnd/47w2fm6e47b1i4XscORKnEQH0EEd2MxKl0CzljHGYCAPbnSTOEV/D9Kzhw1+S6kZYtcuXcd2fzZipjUwscfTlvNzOzXr+jh1fytBhw6WCuWFBy9ZatevIqFGvaZY4hM7uvBMbmVzRdq4jR47SmwlEESpVqaLJaXgTQgTEW1g8teuF74GbHeQvIEyOrmt4TWrVeVJD8Gg64yx5w/XC98V+eLfuRrSTyr6aNHtay/cSEhJu+h2hcHNlxqJwk8zE55an+Hjx8hW5lLTgjj0JvPNrGgI3gowmLAsWLNAOa2iPijrvMqVLa29ziDf2PTGbO2pTlFfHbf3Swz2jcxf2bEuUKqPigpD3+1OmmD+ib1QUgCUQcHEY4/hE9RrqHCH4yAjH152C6s8fl/2xEECUHmHIB5qTVK5SVb8Xaqknvz/FCMuJ5C5tAOHe9UaEICB4LPbta9aqreVpR+Likn8G+8/tD/Zzs4T4xSFDda8b+9QondIcguPHk12qJY7IYEc9uCX0yCtAEhgiJHgtvO1D+3I+lhAjS36Tec0xhASTxIJD8ia9jh9o0pvd1SPTH9EL5A+gmQvEHpnkH338sd6AIATv9n0o3FwZuSjcJDPx2XEfj08wIrlbNm/ZquHV/d8c0DA4nKq30HmKUrGk9qjobY69bmuq2Ijhw7WEDM1D1q5dm6pw/+6+ftYSp85du2nSFFxhq+eel48++jj5ORBHJMqh/SdqtSFCCK/CfVpC6i3z2xtuThLgjxS9xfv266dJYchaR8kZxoTGxycktwOF20SPcdxEIGyPwSUIraP8zU0Yff2j9/QcXI+IFSvUrRYpWlxvdjAKFIlnCD//9NN/9GYB2xtTp03TkL0OVDFOG1sAceZmAvvPbj9zWq/Vr7/9qlsFO3fu0gRB7HUjbN6i1XP62uJ3DK8zRBtd5LBF8myLlurOEfrHjRteX0/nROHmyuhF4SaZiU/CDXf9723bJbx/f2lmxKd58+YyefJkfRM85aEe2+1r+D5We1TseQ8dOlRKlCihe94oFevVs6fWeS9euNAn4bYysZFNvm37DhkwaLAKDTqsNXjqKYmMXC2nT5/WsqhJkybrPjjCqnB1EKEdX34p165eSxRtL7XWvuAUfZwr6rgjIyONwx2i4XIkYGHvGwlZiBYgDI7OYWjpirIoOG0ICRwl9p3darX9xflcuGqUwWHfGnXwcN2JDVra6WuCxDDczLwzfoLmD6BPPK7bpPff13ahEPVbnaftFHprvxvXa/WaNTqyFFsfyPRHEtySpcv09wcDS9DjHGKN/8ONGqIauImEa3eeEx03V2YtCjfJTHwS7ouXLuugCGsCWHBwsIr3Rx99pKFXiPFZqxvaBc9DRKzPsZeNsDjC4wiTl0kKmyNhrY9xfxDtl0aM0HIob8JtF3C4McxdhmOzRl5iBvMHU6fpvjccGkQI5WMIFeO8UWPtqfbYnz8sTyIB4cWNAzLYUTqF/Vi4ajRrWbhwke7JwlXC9aLsCyKEP/CfXBLR0ku4E7uy/U9LuFBW1659BxVuzMtGGRUSxXAzgYloEEeEyTF3fN++37ui3eq5eXqudVOBRjt4vSDMuDZoK4v9/pdfeSW5hhyJclr7vXGjDpzx1g2Ows2V0YvCTTITnx23JnWZN7ymTZpIrscek8DAIKlXt65Mnz5d94ixN+2L87YS1iDeMbGHVbwHDRwk+fPn17B53rx5pfkzz0jP7t11rxNDPLAH67bH7XS4KJmKiFih+8kYSALhKVW6jDq0/AULGhcXpG/UKM9CtrRb7fGt4HZDgRsD/MEuMELds1dvnVUNoYQwYp/5MXOe+Y3rRfMWOEr8HHZHa/95b/XcrI9WgxZEKhCVQO15qLnZyZUnj2ZnY643pnghZP0yGpls2KA3Ob60Sk3rOdmvF7Lo55qbtbbt2kuewEA9j8e1WUt+/TeiKhDtr/dj+Mu1VCMAFG6ujF4UbpKZ+LzHfSTuqHaiGjt2rNSrV0+FNiQkRJ4zjhFhc4RRUZdrHcstYc15M4DHa8La/AXSs2dPqWDcdZYsWaRIWJhUrlxZsphfejir1IQbJLbk/EmOHj2mQznQkAPC/VCWrCripcuW1XAw6qQhQm6NTOzHTgvO4/y+r3xDzwtd3yDYSKjKa1wjzguh6m49emp/cwhpep+T8/xudt6/qUgi4715y5a6r/zgQw9LoLlhqvJ4NR1vajUy+eUWJnh5Ox+3c/vh+nVNzEMr2lbPPy+lyiSOWL3vgQf1eqH166pVq5K60vlWAUDh5srIReEmmYlPwm13yfgFHDtmjIp3TuO8g4KCpWH9BjJ79mxNHILztsrFzqeSsGYdF+K9csWKxKli5oYgW/bs8s+HH5a/3X2PNjOB4HkLldu/hiQmNGhZtGiJZkwjWQ37pW3atpMFCxbKsePH/S6v8hc3J4mP2NN+881x0vCpRhrKRxgYIWH0JL967Yfk1pyZcU7WQlgeAz4+mDo1uXwN4oh9ZvQPRya6/WfIrOv1W1KL1bnmtcfWQu6AAM1PeLr5sxoeT2xJm/J60XFz/RGLwk0yE7/KwSznjV/CN43zbtCggXYuCwlBeLu5vDtxonz99dfqpM+d877PbT+mNVVs/vz52lENe9333n+f/N/f/+5RuO0495UhRqil/sw4SZQYvTpylCxctFjdpZUR7XxeRmH/HlZW9MxZsyV8wAAZY64hIgAJJ064zhbPjHPC9UJ2O+rIkQswbPhwGWxEG/vyyOZ23ixlNPbvgUQ4OO9/TZ8uffv31+u1ePESOXU65dhUb+dG4ebK6EXhJpmJ3w1YrOQyNEmB865Vu7YEGFcbGBSk+98zZszQftPYb8bjfCkVsxZKkNCkpWOnjsYlBxrxfsAId0Wvwu3JbaHcCrXjeKNGTTeSntxCvBn5R+Tp3BB63mhcI0qYcCPhtkebmedkOW/0aMco042bNun1cjv3jDwvt9cE1wY5FCgLO3z4sOYmOKeQMVTO9UcvCjfJTHx23M6yruPH42Xbtm26592kcWMJCAg04h0sdevWlYnGecckDRDxNWENC6VlaO4xdepUebZ5c03cKlfBc3KaHeebuOUkIYxwbj8n9R93e2xG4ibIOBcIEBq12J22/fGZeU4A1wvnhTI0nJsv4zUz+tyA9jU3ryHOCfX4bk47tXOjcHNl9KJwk8zEL+F2loghxL1u7ToVbzjvfPlCJci472effVazzVEnDfE+k1Qq5qmzmj1hDY+H6x40YICE5s/vNavczu9f8/xHkVlO29/v6eYcMytU7u173RbXy8vj3D5P7ZgUbq6MWBRukpn4NR3MKbRWb3F13mPGSKNGjdQlBwUHa/Laxx9/bN4oYzRsnlp/c+trJ0+dkvXr1svro0Zp9rW3lqdO3ITGzV3+EX80qZ2b8zF36jnZz83Tefn7OlK4uTJ6UbhJZpIm4XY672PH42XD+vWasIZQeWhofhXv5557TqZMmSK7du3ShCK3UjHnsXU62KYoGetDr3Int7twezuvP+Lc7pTrReHmyuhF4SaZSZrmcbs5b4zl3Lx5i4p3/foNtFQsJG9eaVC/vnz22WeabX5TqZhHx536WE/+0hN/oHBzZfSicJPMJE3C7cmFxx09Jlu3/lvefvtteaphw0TnHRQszZo1069h9nJqTVoo3CS9oXBzZfSicJPMJM3C7W0CGMZyYs+7Tp0nJU+eACPeQbr/PWvWLNmzd+9NzpuOm2Q0FG6ujF4UbpKZpIvjdgr30WPHdSylVSoWHBKi66mnnpJJ772n9cueSsUo3CS9oXBzZfSicJPMJN2E21nWhWxzzNUeO3aM1K5TR0vFQoJDpFWrVloqZk0V01IxCjfJQCjcXBm9KNwkM7ll4XZLWDuflLCGkPj27Ts0YQ2hcgyKQIc1TBXDSFD07kZ3Mzru9MGZiW31ZHf2Zv+jS70yGwo3V0YvCjfJTNJduJ2lYuiwtm7deg2b105q0oKpYs8//7xMmzZVdu7clZywZjVgoXCnHX9qm+8UKNxcGb0o3CQzSTfh9lYqdsoIM7LNkbBWv359yZ0nQIKDQ+TJOk9q2By9xBMSTujjT1C404zdSaM9KNqEYorW5cuXdWEMJtrA/uoyovOvDIWbK6MXhZtkJn4PGUltubrwixd1HrVOFXvzTU1SyxcaKnkCAuXpp59Onip25uxZ3RtHAxYKt/9Y1wU9x+fMmSNdunSRTp06SceOHXUh6rFu3TodcmI9/k64lqkKd/Tvws3FdSuLwk0yg3QR7vPnvY/vtGecb9r0+1SxnNjzDgzUqWKfG3HGaEnUgm/csIHCnQas6wK3/frrr0uhQoUkV65ccv/998tdd90lVatW1dwCTNly7nf/lUlduGNk//4Df/ibPteff1G4SWbg1zxu7FlfunxFF/aj3crBPIp9knDHxR2VrVu3asJa40aNtbta3nz5pJFx4e+9+67s27dP1q1dS+FOA9Z1QSj86NGjsmLFChk5cqTOTX/wwQc1QRA3TpcuXaJwJwk3ZrUfijmcFPI8JAcOcnGlbeF3CB937torEStXS49efSjcJEPw2XGjNjtq8xaJjFwtq1evkd179nqcuZ1aqRgS0BCyhXjXqlVba7wDAwKlZcuW8sknn8jMGTPk9ddek0Jh/g0ZITe/KXz33Xfy6aefaiIgRKpNmzYSGxubPOL0TnkDcRPu6tWfkOzZs8uAAYNkU9QWWb9hExfXLa8NG6NkZeQamTFrjrRr31GyZMlC4Sbpjk/CDae9Zcu/pXu37lK3Th1NMBs/frzOzsY0L08zt70lrCEZDWM/Id5oj5ojZy5NWKtVs6YMDA+XV15+WQoULEzh9gPruljzqrGX/dJLL0m1atUkb968RqQG3PTmYf/4V8ZNuGvUqCFZsmaVFi1byXuT3pcJEyclrne5uNK4zO/PRPNx3Fvj5eVXRkrDpxrJww8/rDfMFG6Snvgh3FulR7duUq5sWQkICNCwK0Lb6JAG8U6euX3+ZtH2WCp2+Yo69g0bNqh4o0lL/vwFJHfu3FKjenV55plnJJf5vJyP87hJIlb9Njh58qR07txZSpQoIVWqVNF+8VevXk1+3J1yHZ3CjeuAUPl9990nhQuHSd16DeTJJ+txcaXLqlX7SXOzXF1nNfzjH/9Qxx0VFUXhJumGT8KN8Pa+fV9pu9LmzzSX3Ea40YO8pnEtU6dOE5RzxccneJy5nVqp2JYtW+TNMWOkQQM475ySO09urfW+7/4HpHzFika451K4fcDpuOPi4qRJkybmhii/jlhFr/hr167d9Ng74Vra3yixVTBp0iStbECoPMsjj0iOHDn0cy6u9FyPmN+trFmzSjdjeGBwLl68mOL3kZC04NceN5LKJk6caMSgqRQqVFgCA4Okqfl83Lhx8uWXX6oIe5r85cmF46bgSNxRvSNFqViD+g3UeT/40EPyt7vvMcJdicLtI/bkNNRvI48AmeShoaHSv39/iYyM1Ixz67H+rD8z9p8Bte1IgFyyZInOin/P3IxycWXUev/997X18+nTp+Wnn35K8ftISFrwLtwXUgovWphOGD/eOJZG8ljuPJLHrNq1amkjlb3mDTE+wea8L1jPS5m05paRHhW1ObFUzBzvoYcfkb/f8w8Ktx9Y1+XGjRsSHR0tH374oRQrVkzLwt566y3ZtWtX8puHsx3qndAW9a/ycxBC7mxSLQdzJp6hkcr2HTvUeWPONvZx4LwbNmioDT727t1rnPfpVJ23Wz04nDeSOEYMHy4VK1SQLFmzSbkKDJWnhlNscZ02btwoQ4cO1aS00qVLy6JFi/Su/7fffvPruH8F3G5EuLj+6EVIWvG7AYvVSAXJanDeDRo21DpsNFJBvfDUqVN1Pyc+4UTKUjEXt+3cS0fntNmzZkrb1q0lwNwQlKvA5LTUcL4ZoK3pzJkztSsdEglr1qypWxlIVkOYGK8PkgLXr1+vH63PsV2B5iw/mN+JX3755aZj/5mx/wx/9Js11529nL+PhKQFnxuw2BceD4HdvWePTJwwQRPWILIInT9RrZrueUdHH9LH+FIqZv8/TAtbu+YLLQcrWAjlYBVYDuYj1nWxOqeFhYXpDVWLFi20IQuSAJFlXqlSJclnbraw920tJAPi8WjYcvDgwTsy+5wQQv4M+CXczhIxNFKJ2hSl4g3nXaBAQc02b9y4sSZlbEWp2ElbqdgF91Kxm4Q76ZjIMg8rUpR13D5gv6NHYtr58+elV69emi2NUrDw8HCt6Y6JidEaZmxxFChQQLJly6aPKV68uNSpU0c6dOigmecJCQkpktgIIYTcHvg1Hcy9nOu07Ny5Uya8M15rr/MYhxcQECg1a9SUKUa89+//Ro7H+14qljzWczRbnvqKXbhR7gXHjC50Dz30kNSrV08mmBsriDlEHQI+d+5c6dGjhzbSQbkY3PmaNWvk7NmzmryGMLlVUkbhJoSQ24s0j/W070tj5jb2vJGw1rhxEylYqJBO/oKzQ7MLJLOdOuU9YS2FcLNXuc/YhfvUqVOyatUqefLJJ5O7Ns2ePVvbn2K0J5L/8DoNHDhQy1VQFoX9b4i2Jdb24xJCCLm9SJNwO0UXz8dKLBWbII2Ni8N+N7LNUSqGiVR79uzRhDXLeSc/3yHkFG7/sbviAwcOyOTJk6VChQoaBh88eLCsXr1ahRmREYj28OHDtWYezhxZ5nDi+PhXLwcjhJC/Aml23G7738eM8/7SiAM6Uz3z9NNSsCCcd4CGaxGOhXh7c94Ubv9wy1jdvn27DBs2TAoXLqztYz/44AP9WkREhEybNk3eMNd14cKFut9tJaA5j0kIIeT25ZZD5W6lYlu3/lv3vNFWMjgkrwQZ5w3xhvNG2Bx73p6milG4fcdNuOGu0RsZWeJY7777rixYsEAHjHTv3l3dNsrBvB2D15cQQm5f0s1xq/Amhc0REt+1a7cmRTVv3lzFG84bYXPseSNh7aSHUjEKt//YRReJZ5UrV5bg4GApWLCgtGrVShdKvsqVKye9e/fWem378xgOJ4SQPw/pGiq3J6ypAG+KUvGG80bYHHveSFibklQqdsJWKkbh9h+76KLpyqVLl7TcC93S0HilvLl2ffv2la5du2rYHGKOpiwrV65M8XxCCCF/Dm5ZuL0lrEGE1XmjVMwIhvY2TyoVQ503mrQ4E9Yo3L5jF11kjCM7vE+fPjqVCELdsGFDbXX6ubl+GOuJZixly5bVrmr253vr8EQIIeT2wu+Wp546obl1Q4PzhjBjzxsJa8g2R6kY6rzRpAUd1rDfavU2T3bqFG6fsIss2pkuXrxYx3eifhvd0V566SX56quvNDmtXbt22hkN+96IgqDeG8NIvB2bEELI7Ue6CXdqpWLINtdSscZNtEkLOqyhPSp6m2MwSXx8gj7+BIXbZ+zCjR7juDmqW7euzgCGUC9fvlwbr2AG9ahRo3TEJ0rEkHWO64me5CgFu379ujZeQUkYHTchhNze+NzyFB/R5vTi5Sv6Ee7Ym+tOfp6tVAx13qgjRoc1tEdF6ByDSRKniu2T02fO6L73pk0U7tRwhrUxPAQztxEKR5gcddrokoa9b7QwRUY/ohzZs2eXjh076qzuixcv6txuDBhBmB1NWuDCKdyEEHL74rPjTjhxUr766mvZuXOX7lvHxh5O0cbU2+Qvq1RMp4q9kzhVDINJsO+KkaCY5w1XfuRInGzcsIHCnQpO4caWg9WDHCHxOXPmJD/23LlzWibWqVMnddzY+0akAw1Yjhw5otd+xYoVmtxG4SaEkNsbn4Qb7hqTwN4cM1bC+/WTIYMHy5IlS/2euY3Hoz2qdvBKmiqWOBI0scPaW2+9pWHztV98IWNGj6Zwp4JduOGaK1asqFO/aplruWzZsuTHYD8b4fIRI0aocKMsDHXdSFxDC9R58+bJtm3bdLAIQ+WEEHJ745twX7qsCWZ9evaSJ2vWkmpVq8rgQYPUxcUY5+0Mm6dWKoZkNPtUsdDQ/JI7dx5p2rSZTJ40Sf71ySfy+qhYh1n9AAAUgUlEQVTXpFDhMAq3B6xrgIEg33//vdZvo1Ybjrt9+/aycePG5Mf9/PPP+hi0QrVGeKKXOW6U0Ncc4o3ra5/Bbf9ICCHk9sFnx71t23YZGB4uj1epIrnz5JHSpUtL965dJDJytZwxz7d3QkstYQ2PRfY4XPyE8eM1xKu9zYOC5PGqj0uf3n1kxLDhkr9gIQq3B6xrgKQyhLzR2AbbDnDdo0eP1mxy63FWH3JkndeoUUNy5cqltd6DzM1XZGSk9jHnRDBCCPlz4PMed/ShGA2thvfvLyVLlJDg4CAj3qV01jN6Xx8+fEQuXb7isTTM+W8kuCERzZoq9tRTjYzDLqyiUqVyFW3a8qj5vFyFCjJnLoXbiXUNsCeNJDR0Q4OD/vjjj3W/G9nk1uOsxyJcPmPGDE0GRPIa9rWRjY4ENudj7d+DEELI7YNPwm3tT8MpL1+2TDq0aysljHjnzPWYlC5VSrp16Szr1q2XEydOyukzZ/0uFUP/cjjvJk2bSq7Hcpv1mAQEBsi9998v5Y2DnDN3LoXbgT2cDaeMsi6IOBY+d7pny3lbj7E/jo1XCCHkz4Nf5WBYCMsi8alvnz5JzjtYw+Z9+/SWz40zxgARp/NObf/76NFjyaViCJsXKlRYHvznP+Vvd99jhLsShdsDqV0Hf90zryshhNz++N2ABZ/Dec+fN0+dd9GixeSx3LmN8y4pvXv1VOd9JO6ox+lfbs7b+vfWrSgVe0fq168vWbNll7v/cS+F2wPOedne2pam5bGEEEJuT3x23E7hPhQTq3ukXTp3lhLFiyUnrPXo1k0WLliQdEzPTVrcurChScuOHV/KqJEjpWqVKire5SpU5B43IYQQkoRfwn1zctkVI7THZdbMmSrWJZLC5qWM88ZEqshVkTpEJLUkNWf2OhLWPp87Rzq2by+BQcFStjyT0wghhBALv6aD3SS0Fy5oIhr2tNesWSOdO3aQUiWRsJZL9767dOooERER5tjnbuqw5pawZv8/CPfatWtl5CuvSMFChROFm+VghBBCiJIm4bYLLhLRYg8fNi55rvTp3fv3hLVSpWRAeLgsWbxYYmJjtfzLYz9z20drjvfYMWMkrEhR1nETQgghNtI0j9sZ4obzPnX6jEQsj5CO7dtJySTnXbZMGenapbNx5F9or3NfSsU41pMQQgjxTJqE203EsT99MDpali5Zqs67WNGiSXvepbR0bJ4RX8zmvnzlW49JahRuQgghxDtpFm5vE8CQVd62TWspVqyYOu/SJUtKz+7dZaMRZCS0ISvdLbOcwk0IIYR4J10ct7PDGva0MYCkV8+emrAWEBgoJY14d+vSRebPn6/i7DbPm8JNCCGEeCfdhPvmUrHLGhafPWuWdO/a1Yh3SQkKDpIypUtrr/NVqyLl0KEY81iGygkhhBB/uGXh9uS8kYiGhioo7erSqZOULFFccuTMqc7bKhW7YMs0p3ATQgghqZOuwu1WKnb4SJzMmTNHevfqJcWLF5eQ4GApU6a0DBwwQJYtXSqHYmKSBZzCTQghhHgn3YTbW6kYxBjtURMT1oomThUrXUqd9xdffKGlZHgchZsQQgjxjt9DRtwywZ1NVdxKxeCslyxZktikpWQJCQoKUgfep3cvHVgSH5+gpWKWcI+lcBNCCCEpyBDh9loqtnChNmkpZkQ7x6OPSqkSJaRXjx6ycdMmOX48XpPa6LgJIYQQd/yax4296ItJy62cy5OA69fNQv129KFDsmrVKi0VQ8JaoHHepUuXke7duqrzRkLb5qjNMmb0aAo3IYQQ4sBnx41hIl9+uVOioqJky5YtcvBgdPLz3GZueysVQ/vT2bNnS1eMBC1ZUsUb9d7h/fvpXvjSxYsp3IQQQogLPgk33PXOXbtl1KsjtS67X+/esmD+ghTC7c15OxPWjh07LuvWrZcunTtJ8WJFJTvC5qVKSfs2beTNN96QN8eOlcJFikgZCjchhBCSjE/CDZe8efMW6dyxo1StXFkqGDFFeddi44wPRh9SYfclSc1+TCSiof0pnHf3bt2kiBFp9DZH1nnLFs+qGw8KDuE8bkIIIcSGX8LdxYhpyRIl1R2HhYVJmxeel6VLl2omuLfJX56cN/a88dyVK1ZKh3ZttTlL9hw5pFChQlKubBl5+JEsUq5CRSPccynchBBCiPi6x20c9TcHDsrMmTOlU6dOEpI3rzz6aE4dItKje3eZOWOm9idHwxVnqNyXUjFMFYN779e3r5QoXlzbo2I4yT333iflK1K4CSGEEAufk9NOGWd85MgRmT59ujSoX19CQvJK1mzZpWiRItK+bVuJjIzUjHB13hf8c97WPjrEG8fCDcED//yn/O3ue4xwV6JwE0IIIUn4JNz2sPbOXbuM854hbVq30T3pnDlzaSMV9CP/7NNP5eix43LR4bxTKxWzFpz3iogV0rVLFwnNl0/uf/BBOm5CCCHEhnfhxkeHuEK8Y2Ji5IMPPpDGjRpJ3nyh2kileNGimlCGci7UakPo3Zq1eCsVu5BUKjZ58mR5sk5tc9ycSXvcTE4jhBBCgM+O21p47ImTp2Tfvn0yZ85sadasqeTJk0eTyooVKy7t27aRuXPm+FUqZv86jo1ktSGDB0v+AgWYVU4IIYTY8LvlqX5uHo+97K/375fJkyZJq5YtJTQ0v+TMmVP3vLt17SqLFy2Sb7454FOpmHOsZ9SmKHlzzBgJK1KUDVgIIYQQGz63PHWKOJ6DsPaBAwfkcyOsjRs1lpCQEMmWPYcULVpU2rZuLYuMeJ88dcqvUrHk6WCj2aucEEIIceJXr3Kn88bzTp8+I3v27pVp06ZJ2zZtJW/efPJozqRSsR49ZPasWbrnraViFy6kOJZH4eaQEUIIISQFfs3j9jQpDPvSsbGx8tlnn0nDhg21zjtb9uxS3Ig39ryRsIZsc2/Om8JNCCGEpI5fwu1p//vs2XNa571r124V79atW0tAQIDkypVLE9aQbY5SMYztvHTlW9e9cwo3IYQQkjppEm5PzhviHRt7WKZNnSoNGzSQfPlCE7PNixbVPudo0hJ7+LCWirk9n8JNCCGEeCfNjvsm120rFTt58pR89dXXMn/+PGnZsqUEBgYa8X5UwooU0YQ17HkjYc1tnjeFmxBCCPFOOoTKU2acI2ENpWBopNKyRQutx9YOa8WKSc8ePRJLxQ4ccA27U7gJIYQQz9yS4/ZWKoaENYjzvHnzpGmTJhIcFKwJa8g2b9v6BS0VQ8jc3mGNwk0IIYR4x+8GLG770m5NWqxSsb1792l7VPQ2R7a51dsczhsd1g4ejNaxoRRuQgghJHXSTbhdH3cusVTsUEyMzJwxQ+rVqydBQUHapKWYNml5QVasWKmNXFAqRuEmhBBCvONXAxYklFnLk2A767Nx7FOnT8vuPXu0JKxN69baYQ1NWsLCwnSq2IzPPtORoJevfJss3GMp3IQQQkgKfHbcENTo6EMa2j4SF6cu2ZMbdy0VO30msVRs2jRtj5ovNDR5njfEO3JVpP5/fMIJOm5CCCHEAz4JNxz2gQMH1Rl/On26rF69Wvbv/8brBDBPU8XQHhW9zTGYJE+egMSRoMWLS7u2bWTWzJlGoONlc9RmGTN6NIWbEEIIceCzcO/Y8aUMGzpUunbpIkOHDJE5c+aq+4YYe9oTd/saEtYwmASlYs2faS758yeWisF59+jRXRYsWCAL589nqJwQQghxwSfhRtb3pk2bpM0LL0jJEiWkUKFC0q1bN4lYvlwORkfr87F8dd4Is8OxQ6SbNm2qTVqyZMumzvu5Fi3k9ZEj5Q3juAtRuAkhhJCb8Nlx79y5S0YZQa1dq5Zkz55dSpcqJb169pT58xeo88YeuLMbmrdSsTOY5/31fpkyZYo81+o5CQoOVudd2NwUPG3EvH27thIQGGSEu4LMmUvhJoQQQoDPyWmHjxyRL774QsPlRYoUkWzGIYeGhkr/fv1kyZIlcuDgQS3pusl5p5KwdlJ7m8fKzJkzpUH9+hISklceyZJV8ofml1IlS8hDDz8s5SpUNMI9l8JNCCGEiJ9Z5YcOxcjSJUt1j7tq1aqSI0cOKWWcd8eOHTXsjTanyB5360PuyXljMMnOXbtk+vTp0rZtWwk2zhulYkhau+fee6V8RQo3IYQQYuFzHbcltodiYmXN6tUSHt5f25cibI4970EDB8pCI97IPofIOzPOU3PeR4yj/+ijj+Sphg21VOy+Bx6Q//v73Ua4K1G4CSGEkCR8ctxOkY0x4r18+XIZPny4lC1bVsUb4fMOHTrI4kWL1Xn7UyqGfuU47u7de2T27NnSokULHQea6Lgp3IQQQoiF3y1PrRB39KEYzSrv0b27lC5dWoW2ZMmSEt6/v8z7fJ4cjD7kc6nY701aTmup2JgxY6RqlSraoCVxj5vJaYQQQgjwK1RuX6fPnpWY2MOyYsUKefmll7SUC84bCWtdOndWR47pYP6UimHFxyfIqpWrZPjQoVKgYMHErHKWgxFCCCGK33vc9hIxZJEjYS0iIkKzy6sYlwzxhvPW6V9z56p4W87bl4Q1JLdFRW2WcWPHSliRoqzjJoQQQmz4NY/bKbSWm8aed2RkpAwbNkwT1pBtnj9/funXt6+WimHPO0WpmF2wHdnrG9GrnC1PCSGEkBT4JdyeXDhKupBtvmzpMhny4ovqvLNmzapNWjp17Cjz5s1LFm9PpWJ24eaQEUIIIcSdNAm3J9FFM5Uv1qyR8PBwLRFDk5YCBQrIwIEDZdGiRTpdDKFwu/OmcBNCCCG+c8uO261UbNmyZdphrXy5cireCJ93aN9Bw+Zoj4ryL0+Z5hRuQgghxDPpEip3fn4oJkazzXv27Kmd1R5NGt2JJi3osIb2qEhYo+MmhBBC/CPNwp1aqdjhI3Fa1jXy1Vc1yxx73vny5dNSsWVLl6rzPneee9yEEEKIP6SbcDtLxRAOjz50SEvFkF1euXJlzTYvU6aM9OrVS+bO/TzZeTNUTgghhPjGLQu3t1KxM2fPS2zsYYmMXCUjhg+XsLAw3fNGqVifPn10Lxyd0iDy1jlQuAkhhBDPeBTu1Lqc2R/jtVTsNKaKHVKRHjBggFSqVEmdN9qkdurUSUvFMJgEpWIXL12mcBNCCCFeSHfh9lwqdlibtCBsjlKxLFmy6J43EtYg6qgDh/NG6JzCTQghhLiT6pCR1By1NwF3LRVbukxGjBghFStW1IS1YsWK6jzvxYsXq/NOOHFSojZFUbgJIYQQF1J13Pi/hIQTEhd3VF3zsWPH5aytDttNuFMrFVu1apXucVulYiVKlNAw+vx582Tvvn3axIXCTQghhKQkVeFGp7P9X++XzVGbZY0R1C+//FL3o897aF2aaqmYOR6miq1cuVJGjnxVxTtrtmwaNu/cubMsXLBAF4WbEEIISYlX4UZZ1/H4BIlYHiHvvPW2hPcPlzFjx8qa1WuS6rB9T1JzlophqhjEu0/vPlLeiDP2vFEq1r17dxn92mvy0vDhUqBgIQo3IYQQYsOrcCPL+8iROJk6ZYq0fLaF5C9QQCpVriJDhwwxYr5c4hNOyBlPE79SLRU7J7GHjfNesUKGmOMVLlxYs81DQkLk6WbNpFvXrhIcHJI4j3suhZsQQggBqTru+PgEWR25WuuwixYtKoGBQUa8K+vgEDhxZIND4J3OOzUX/vs870OyePES6d+/vzZpgfMuVLCguvCHs2SVchUqGuGeS+EmhBBCxIc9bjjj48ePy3Ij0s8/95yWcj2SNZtmhb84eLBEGlFHOB0inNZSMex5r1u7VgYPGqTOO1v2bHL/gw/I//39bilfsRKFmxBCCEnCp6xyJJR9vf8bHc3Zr28/FdfAoCDjiivIYCPeSxYvlsOHj6jzTlOp2MlTRrxjZenSZTLcOHs47/seuJ/CTQghhDjwXMftcMUQ76NGPNHprHXr1lK0aDHJ9dhjUqN6jSTnHanlYqdOn/VaKubuvBO/joQ1lIp169ZN8oXmM677QSPcDJUTQgghFp4d94WbXbE67zNn5JsDBzQbHCM70XP8sdy5pUzZsvLii3DeS+TY8Xjdv05LqRhKzyDen07/VNq1aSsBgUFSrgKT0wghhBALr6Hyc86yrqQ67CNxcTJr1ixp3769hIUVkdx58kj16tVl8OBBKurR0YduFm0/SsXQYU2T4YYNSyoHq8ByMEIIISSJVKeDpQhrm8fCGaN9KeZtt2/XXgoWLCiP5swl5cqXl8EDB8nSpUsTS8XOnvPLeePfEO4N6zfI6NdeZwMWQgghxIHPvcqdAmzN2549e7b07t1bwooUkYDAQKlYsZKEh4drnfdB47zhor2Vijn3wq3pYGPZOY0QQghJgU/zuK1wtxUut+9Jo4f5iogIeeH55xNLuXI8KpUqVZahL76oYXPseftTKsaxnoQQQohnfBJut4zz5FIxJKx9c0AWLlwo/follYoZ562lYoMGacIass3dSsW8CXcKx32cwk0IIYSkTbgdYouEtWPHj6t4w3kjYS37ozk1YW3Ii0PkizVfSNzRYxpe99Vx/y7cFWSuCvdxCjchhJA7nruuXftduN1KtHxZZ88mJqzt/+YbDZv36tlT8ubLp9nmZcuVl5dffkUT2dBhzV4q5lyWcG9EqHz0aBXuMub5rOMmhBBCErnr+o8/ahj78uUrcsnPddnx+fkLFyQhIUGbtHTu1EmzzEuWKiX9+/aT+fPma6b5lW+/k0vm+7ke78q3mrW+a9cu+WDKFKlQsaJUr1FTlpubgdOnT8uNGzf0pCnchBBC7lTu+s9/fpbvv78q167+IFevXrvldeXKd0a8T+j8bozsrFO7toT36ydzZ8/RkPoPP/zo8blw/1eMeMcdiZMF8+dL5SqVpUbNmrJp0yb59ttv5ZdfftGTpnATQgi5U7nr119/Uyd748Yv6bRuCG4GrhgHvX37dokwbnnrli1yODZWrl//0Yjvr16/388//9eI+FUNjaM3OmrCz5w5o2Hy//3vf3rSFG5CCCF3Kv8PQRZLgoFrH8IAAAAASUVORK5CYII=" } }, "cell_type": "markdown", "id": "9b3384e6", "metadata": {}, "source": [ "## EX 1: Mass-spring damper system\n", "\n", "\n", "Let us consider a mass-spring-damper system![TP1_SDSystem.png](attachment:TP1_SDSystem.png)\n", "\n", "With the following system parameters:\n", "\n", " mass m = 1.0 kg\n", "\n", " spring constant k = 5.0 N/m\n", "\n", " damping constant $\\rho$ = 2 Ns/m\n", "\n", "The state space model of the system is the following:\n", "\n", "$$\\dot x = Ax + Bu$$\n", "$$ y = Cx$$\n", "\n", "where\n", "state vector $x = (p,v)$ (p - position, v - velocity), and state and control matrices are the following:\n", "$$ A = \\begin{pmatrix} 0&1\\\\ -\\frac{k}{m}&-\\frac{\\rho}{m}\\end{pmatrix},\\ B = \\begin{pmatrix} 0\\\\ \\frac{1}{m} \n", "\\end{pmatrix}$$\n", "\n", "## TODO\n", "1. Is the system controllable?\n", "2. Design a PID controller that ensures that the position of the closed-loop system tracks the constant reference $y_{ref}(t) = 1.$ Plot the trajectory of the closed-loop system, starting from $x = (0,0).$ Tune PID to ensure that rising time < 10s, overshoot < 10%, Steady-state error < 2%. \n", "3. Design a full-state feedback controller with an integral term $u = -Kx + k_z\\int_0^t(y_{ref}(\\tau) - p(\\tau))\\,d\\tau$ that ensures that the position of the closed-loop system tracks the constant reference $y_{ref}(t) = 1.$ Plot the trajectory of the closed-loop system, starting from $x = (0,0).$ Chose eigenvalues properly, to ensure that rising time < 10s, overshoot < 10%, Steady-state error < 2%. \n", "4. Compare the performance of PID and full-state feedback controllers. What can you say? \n", "\n", "Let us now work with a discretized version of the system.\n", "\n", "5. Disretise the system with sampling time T = 0.1s\n", "6. Design a discrete version of the PID controller that ensures that the position of the closed-loop system tracks the constant reference $y_{ref,k} = 1.$ Plot the trajectory of the closed-loop system, starting from $x = (0,0).$ Tune PID to ensure that rising time < 10s, overshoot < 10%, Steady-state error < 2%. \n", "7. Design a full-state feedback controller with an integral term $u_k = - Kx_k + k_z\\sum_{i=0}^k(y_{ref, i} - p_i)$ that ensures that the position of the closed-loop system tracks the constant reference $y_{ref,k} = 1.$ Plot the trajectory of the closed-loop system, starting from $x = (0,0).$ Chose eigenvalues properly to ensure that rising time < 10s, overshoot < 10%, Steady-state error < 2%. \n", "8. Compare the performance of PID and full-state feedback controllers. What can you say?\n" ] }, { "attachments": { "rsz_2024-01-30_22-36-17.png": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAogAAAKXCAAAAAAkouQoAAAABGdBTUEAALGPC/xhBQAAACBjSFJNAAB6JgAAgIQAAPoAAACA6AAAdTAAAOpgAAA6mAAAF3CculE8AAAAAmJLR0QA/4ePzL8AAAAHdElNRQfoAR4VNyudMwK8AACAAElEQVR42ux9d3gc1fX2uTNb1HuxiiW59wLG9NBCrwlJIIQAAVJIh3zpvf3SQ0IIhNDBvchFXbJ6l6xmyeq9d2l3tX1n7vv9sZItG0OMpdWu5H0fP2vttD135p1z7zn3nHMZyA03nA/B2QK44QaRm4huuAjcRHTDJeAmohsuATcR3XAJuInohkvATUQ3XAJuIrrhEnAT0Q2XgJuIbrgE3ER0wyXgJqIbLgE3Ed1wCbiJ6IZLwE1EN1wCbiK64RJwE9ENl4CbiG64BNxEdMMl4CaiGy4BNxHdcAm4ieiGS8BNRDdcAm4iuuEScBPRDZeAm4huuATcRHTDJaBwtgCOBxjcBX4+FIyBOVsGIiLmfkZuuAIuC41oHmTC5fTCzeg4BjDGMT0AYyDiAoFAwnQfwSBEKl1DI14GRORi7Scl22VEREFpsf8BtdIADxXIJBMRVFzwNHFRIcKoUIOIiFkCi+PcRFwwyHrv1dzZQiwYBNPgBvtrp+ifXKvq0jJEBUtEil4v62i4wqDjFDc1TkREDAZXuS+XBREVdGuixSXe+wVp7Xj1bZyICOqCiuc8kws85SfWWBjUJaGa9z8fNNAwoHyuNckLBEF6zewqbpPLwFiRxZNX353K2WXDxIsFmPWqxrZY7hJcvCw0osTuo6X/wp0BMEMtDpE4iARGRMQZyQIDaNpYgWiTXObtvCyISIIXsctII55pqkDE7Bbz9DfF9J+MiAiCwnXuyWVBREFudLYICwl2zl/sAttdEC4xPnA3043L4glZQ77j4vrAjcuCiIrxI3Q5WSuLEZcFEQWccrYIbvwPXBZEtAX+yt01uzguCyK64fq4TIjoHiC6Oi4TIrr7ZVfHZUJEt0Z0dVweRATcXHRxXBZEhCC6e2cXx2VBROXEbrdGdHFcFkRk1ONsEdz4H7gsiGgL/Im7a3ZxXBZEdJPQ9XFZEFE58Q/3GNHF4azAWCxcsgyI07KF/ME5w0WKLywonEREMEBYoNvNiPveQWyR9M9guAxp6DQiMmKE6d4SxAj2fEJm/0YffBQX/XAucCopp36VcFH6EBdm65lrzr74rGPP3XymOeycIzH7w37GzLHEZhQ2I+K0UG+oS8FZGpHY31/3tGffKgWLqCRYlaJsIyhEKzFROv94BeSLezoK+XzKQTRQztaLIeKH/AoT5Jn9nM/sZyrb9LEQ2dlkOChEGbKCCEy0Tm9TyRIjEjmIqWycmCiRQiIippRJJpUgkcRUVlHBuWAlgfz+dcVlmPvqLCIKXb/TedmrDFi5h2wjUltBaoEsXC1INo/zjmdmUXlROo2ZleL5BzKZTG0XczYzC6oPHsckyQPnX5zJVsW0REy2eZw5i1k4qUQLkcC5WoD9SEENYmaFgmSrSiTZ5sEtKhFMtorcQ7YSg4qsKlkmIrUgS/ytf1+GKtFpWXzM9t7DWpGI++yp/Fv1P+SoX75Ses0Lsk980W88BlKfOnegxL0Pxl5juAgLH8r466Ks5z5G2bf4nk8cMf1vJcN9jvvd8oFfgbqj5mELIyLueXztBpNARATF5C+fvN4oEBH3bGh70CTMCHqs6Jp1O4+p4d+f938AIwiWn9/5oJ48j69bJ4/+7hubbaP5nzPv/XSATTn+55tU92j+0nq3592aP/8+8+DW9dW/URq/kXpZeDLOh5NsSS70rD94vywuxG/JYsktBx+ShUWhZSTFwUe/89LCCAtmubK19bKv9ACZ+IJwg4s2nx2ExVGtEyRfnh5PJybYMxIEu0PxjFpmYOcanNOwH3RRtP3ggSCByyT87675wr9yduus/dNysvPPshu/0+2Z2WZv0YxzgOztZeccOuumLArFPf9weqUHRmzWFBw7rzjBBQ/6H9e7wIHsok6/8K+c3Tpr/yw5zzmLzaroMUuimUNmdrIPOfQyhkuMDxwP9+N2dVwWRGTShHuu2cVxWRBRnEpxtghu/A9cFkS0BT3h7p1dHJcFERW6PHfX7OK4LIgIwcvZIrjxP3BZEJH77HR3zS6Oy4KIxGV31+ziuDyIyAS3RnRxXB5EdMPl4SaiGy4BNxHdcAm4ieiGS8BNRDdcAm4iuuEScBPRDZeAm4huuATcRHTDJXBZEJEtoro3xC6PZ3I+LotGu9CyxP8bElnnfpHFh8uAiIxWXWF2thAXC4E2x17tbCGcAadn8TkeDMvfD1osMQ8CtuVG0uIoBjCvcBoRF3DUxrB80VQcBOOxF1/6bAnBaV2zuGA3m4Fh8ZTphABn1YFxKpyjEUGUZlqwn2a0eMIRGS0iYecTTtOIVyhkZ7fdDReC04jYKl0GBrsbFw2nsWHkcux/3PhQOI2Ia4k7u+1uuBCcQ0RGtMXLTUQ3zsJpGpG7eejGLDiHiCCaWEzzv244HE7TiFnSZTC76MZFw2ljxMe8bM5uuxsuBKd1zVnGBVlSwI1FAqd1zZXkJqIbZ+E0Im50+xHdmAXnGStujejGLDiNiG6b2Y3ZWLSBsTOryjpAqvl3cDrwskvFG7tIQ2BA9jXN5jeC1DFXdZiw4ACWSgHSRdpDMmIOWLfJMVd1nLCiA4R1FhapRuRU/9C9X9HPszrg1PfofY8Nz7c9L1PWXfd+U5pvjQj+13vufJX40lCJi1QjgkYSaLnFZ37TjEDaJKPP78LnvWvuzqD18jzfai7m/lCUY5ZKptUi1YhECpFU8y+8qCSVOP+9neiQZDEbKUg571d1EhYtEUkmRyS9OOaqIEe47xnJS2dWYPES0Y0lBTcR3XAJuInohkvATUQ3XAJuIi5eLA0H4jTcRFysEHDnFyRnCzGPzXG2AG5cIsAG250twzzCTcTFClBt2SKdF7sQ3ERcvFhSkcVuIi5euI0VN1wCSyPaYRpuIi5eLKkCk24iLl6EhbjdN244HYyCo50twzzCTcTFClBjjdt944YLwO2+ccMl4HbfuLFAWFJU+2gsoVHGxQAM5OxVqM5ffOhD5QE5X9gFw+Ik4gdyQMAwewMTLvj8wEhmDB98uA6qxPCh4rMZEcCAD/1hRuyCUoHxRbXw70VhcXbN7LysODBAFMQzEC78cBkxUWDsvJ32kgl8wWomMAjg4Nxm4xwy/5AnAID0ybYLCAV2lshLB4tUIzJqnP2EGNhUPYiYSDKIseVRuLAqMTW0NP1ciQ+QGCSAL8xLCQgVXx5XgHmTAYz8/3UTZxd+bT5XNPzaV/j5K5WCgQ0EeC01jbg4iUiM+md/BZOf3+UvM2mKvNQQx//8ww9JZ1e88V92z7V8tuODgfjLw4L2eyvkhdEyoD/K39MrDS/ZnvcTe//9r5s+RLvhc6ODF5o64ULnk2+tdRPRFcBk8Y7fznoUYPpjv/rGuH/pZ22/elbj/Z0aUlzo6TIoX2vPPM/9BkaHq75pfjQvefmCrMrGiNb8cpss6vfovx/MhWf+0BODCwjLSHqkrepa+uBwFnTopMcCCLqwWJxjRBCNndM1E/NZGRQbFilQaPDyZb/MaSAOYPoQANPluJhMPtNbZk4Hp9eef/7qm35a94XeBXkruViSFkIyWW2SlSRaX3CEJC7bh6ggyBxc5tPyTtUSIMv8rCMHjIv7f+S9ZPLqz2BxEpFE2x9nfwXpbngIRJyTTCRvftxAnHNu5x+4DPu3GWsbXJZn2SY1w6dJ+tLmwh8siOOOU11wGIkkEokkkk1ixERB4JwBjENkYCIDI0Yke24gxkTx7MK5YBCnKjyXVNyNHYuzayYoby2b9ZWRuNKbRLu7Q2C00oNEgQicMUxXb5vhGCM6t54bo8eNt5MiscWuLB0Oke5+8Iy5xMhrzxoa1hk81otggGBpCwpvN0cFghGR2pR/ta1XlsW1M1YyA8OfHs6tW6T64yOwSInI5IpzN4T//Ow4i9EzasPbOqXp9htkEax7t+XT3getkc9OFywCde5n2rtvs1vJjNGN1yqsqjZr8I8WxJfIEINZPm3FHUL9Z1q/1xn4wkZOQtlr737ltm/o79wVyKdLKo7d3enxyx/xGbcjF3MDdk4tPR4u1q4Z4tWzvzISPM9yiEHJ/vwd/d1+DxaLnGjPH35397t3W3/TO60UGcUW/7ww5MylQAooR/rpp2sWpMcD47PnVrgw/kjzd//6hz3vEhHFrqYMnl7r8/SZ/VGPrMn5znSlT2JcHPrB7cqlZjETLVqNCOZ97lfM0mYgooF134pakXhn5rWy/FPbr/HsqqtqPpUTzImIZGrR7vu8jJl3kHHhYNnxjj98b2FGXowEorNMZOR/xW0vSmt/8Ndn1nN52Y107ResqpWp03s5jS1LXSFPTwaBCLt/coVxkWqPj8TibBMD3TS7F2XEZjmFGQn0h9woyfcuQyWBiNF3V1lIWddhV4m+XZ995vPymUkyBqLo4EdCUgZEZ2gaBsXrfyJDtsKUTSAyk5JkkpTTDfGm739ihSRMDxEZF/bG30ecllI9umksTo0IIvmjWMMQyjQj7x2Yec8CiRHsRS05Ff45+lnpjDMRjCBff60Y/sIXdjsj4hlM9jDvfb1RE3w/gUggkDijMGV67/3mX5IwXRUWEPv7jnmQShRUJCyx/nlxEvF/gIFZDr+70aKiaSeNvdOdDm0oF3o6V/CZsAhGTGAgevL1vJ/sckLcFeNi12c0Dycd/K7iQuTy0Lzyd8xoey78OidYo7COWd/wueKTzrm3jsIi7Zo/uhQwGP70xZtfeu0xEuzDfDb71O+nDDxpFPiMZ47ojz+yCeSroqkFbYPdrQku9H6+Yd9ffUIs49RpPruTEZFIT+XetStfnHG/C/TcL1mgv7/AfAKW2tzK4iQiBDp+vvYAzUxOgFP5rz/zczOBQAW6s7MS9g/t2mcKE2gm2oZT6c/+cpRxiS9geiYIJAhMIE6c/lK2arOZlLY3Jm6oInu4DVcSZ0ScdPSa6RmjYDezmUA7nnz2maefDlI89uXrlphTe3ESkZhc+4FNxEhQkEiMgUzkRyINkkgHR+2zGCTahyEiqeiVhx47qeAzetLb94sPcKgVtHzhxCdGY1Z5lARi9ITH0KBH969Ilj28yYtUROSpsYggUpEvxf2i/W8z4bEgLskSkSA6pCa3U7FIiQhxy/lbQBrtiJXG9WNcoI07judbfraLNKfWLpcnaFQSoaF+LnC9jvpl0Zf+OSDbNaLAt3zvK14QM+s+8zcsVHAsp/RvPTyk/ewLPxsRceWT4w//4rkbrk/9xeNXpv+BsupU45lND+qY+OouitdJJfSrHzJMj28FBVP2P99j/v5pxRJj4iI1Vpjp8PmbwPZX0C1y1fPLfubJw+K/9q9AW8HfC/i3PF9uu7XqtW/lKm9/T3GH7k/q23b5x07cOvizn62e9onQM//41VeMX31gl6e8UHlxoMGs0NtIyvh0KJH48tM/qvnbpu6vXvF56hy8a2Jwy6THzUznxyrZJ5mBLLdaJ84xY/SVVygaRpZcPgucAS7jC5QGaQ7nv0gUNwF51jZINgmQbRIHOIds44Ascy7JkCXIHJIMbuOQZM4BSQa3n8ZlJP/tpVc1kGU0+pB/x+yrzgdseIdog8X+ex9oCjgHtwvH+YxMFwEJGaSgr0K6qKMv/NPmjcqu+W7tJWKRasQLJPUyEhgApgCzT6MpIDNGxERwJkAAFxhIAS4wAmfidD/MwAj33kMMEBZs/I+ZvhaMgUFmBAGcSABAjBEnRoym01lAszMDpk9l7lQBl4Bg/tf5m8Dssygg2HOOQALZNzB79t5MqtL0YbMWD5OJIC5sPtK0F5OBgQnT38/kSrFzjqHzgjGWGgeJaNESkQSv87fMzoli53oOz/88bwebVq8OesBgHzBxZ8nHZr7MWsD0HB5+RDOXEhap1byY3BcMtNS8zw7AoiXi4gEUlmPOlsH1sWiJuHgEB5l7nS2D62PxPM9zwY3OluCiwch7nbNlcH0sUiLC43Zni3Dx4IqtzhbB9bFIibjIfBhLbRbEAVikRGTmE84W4eIhSPXOFsH1sUiJeAE/outCVmxztgiuj8VKxEXkR4Q4/Bdny+D6WLREXEzwjHO2BK4PNxEdDib7PeJsGVwfbiI6HqK1xNkiuD7cRHQ4mKS6x9kyuD7cRHQ4wGgJLVXmKLiJ6HiI1kxni+D6cBNxAcCW1BpRjoGbiAsA0ZdIABEnDnDiM/+f9/Ehm0EX3re0Jg7dRHQ4QOMZ9mwEAYxIAGMQiBgEIsH+cf5m+z5u30y44CmMVM5u2XzCTcQFALcQ3dgyYalgjUMoYW2trIAPnGYVJm0NO6U1VbKGEbmctXSxQuo+zUotk6dYjc5YJdSP2SpYcz8rYR1NrNA2XMsq9foqVjdhqWBNQ9QVvYSMoMWas7KowBjR5xUTnjadUTVm1ehJYx3XG/W2cZi1lgmlVWvSw6Yz2CYsE3rjlHVcMk9ZJxWWSZPOZtUZhDHrpF7SWiamjHrrhGjRmifNNo1RMXD1Iy86u2XzB7dGXAAARKkbTB3X5W3wPn3zyeVx5Z9s9Nqaf12f4drMqzXd12VuVjTcUBoXUfnJ2qDNhTd1STuzrx4bui7jCqn5+vzVgdU3V4evLflkm3JH3nXDk9dl7jS2Xpe9zrNu4+KZb7+om+QEzDnBHpZN5yfYzwMkhyTYyxiKJlaX36WLR2ajbTcK8vG2tT4VhycHEpDUP3kEGa3mA8grxzu8Mg17dT2JSBgcP4q0DuMh5NRhN0qz8Y6xOQlHRkaPIbVr6jCyG80nXqClk2DvJuIsOIyIUUS/wukSZE72F6JgaCQPJT2abJxsMqdYa0qRqusqQv7wcD6KeydzUN5uOCFXV0uJhuYiZI0N5aOofzwXZZ1TWahqsKaaTxchbbI3B0uJiO4x4gJhg8bHZ2CtTrG8L87MVnZHMe3agVDl6MbRAAxs0Cii+leahbie5Vy7ui9cMb5uKFAY2jThGTmwxqCM64uV9Ku6I9jE2oEgxfCGcR/vgfVTYoze2W2aT7jHiAsBRrSim/k3Lx80h9VFjY9G1YaY+6KafMWO2A6VX0tsvy2kMWpUE3kqbKo/ut6fupa3e3i1ruhFcNPyEX346WWaoejaQFt3dLOXuj22Swhsih0yhTU7u1nzCTcRFwIgem/baMWtBzepsu9Jio5LeCBfsT3+ttrhm3bd2F19y+5tUv7tCbHhKQ9k+209clfl1PX7P9HedMvbV+kKbzu0yi/97vTgdUcfKJOvOXRrc8/Nu64fKbltz3pF1g5nN2t+75EzcLmNEaOJ1Zb3TqWgoE06gvIyHLA25yBZM3wCmUPaVOR3WhJRWoMDvDYXx6b6M5ExMpmG3B5jMkqacARVRTho6shE6th4OnL6DCkoajUXLqUxolsjLgRASN6ubbqlaI266q6Ty6LL7q1VbSy9pUNzVd7OkdZP5K2nmtvLo0PL7qvyXVd6e6v5iqLrBntvyNpiqru1ONa3/K6KoJVl9zRga8lNfSPX5F2hrb85f5Wq8gZnN2s+4TZWFgieXFRJHmAqSUXwkFQCV8tKhewhKyB7gKltajC1TcXgISlF2UNWMMmTi2r7KWoGtU0lwENSKmQPWVRKHmBLaobPPUZcEDCiW0/7rize0WHZnLNteGBb5gZLyxVFMb6nrqkJiiu9poU2FGwbHNuetVnftj1/her0joqwiJPXN6rWFV3ZO7U9Z8tE1/bs1ai/onRZcNU1p33XFl/dZd2ytOK+nTIguNzGiFFET6IkAe9ouw7jwMDIPhxr1b+P1Ar8B7lJeM3QFI99w4P7caRDuwspdba3kJ2Nf1mrjuDdsf4DONw9uQdJDeb3kFmC/6D4KP6rbd+H55fQGNFNxFlwoLFC1dV9U5ko6bAloaoSx6xthTihHclF3rA2C8XdljRU1OGYXF+EFP1gHnJHJ7NR1GvMQHkrT8KpMhwzdeUha3wiG4X9+hMo6zCVu40VNz4eQFS+2tC7rT5a2bqzOSik6Zp2RWzj9gHDutr1mv4ttTHUtqM5JKDxmlav5Y07+qyr6zeOj26qXmHtvKJhmVfTzma/iMaru7GqccuoZkPtakP3ttpIReuSqqjjJuICYdDHqgsc9mSTwWNK9ViIhrxGAvUW30E/ky5wyEvWBI+qFeMhk4LnaJDO5jvkbzT4D3rbNEHDajYePCF6jIZoufdwoMHkP+hr0QYNeWJC7ew2zSfcRFwIMGIPl/lvSr2t3nTN0Rt6O288tMNcc3PKmoCiuwrCN6TfeYquSrixc/DGQ9do6m5K2OBR8smcqNjseys9rki+tVVz49HrRppvit+Kk7dkxIbn3lUasDX1zkbLtfnObta8wikDgsttjBhF9C1UZeLQVF8qkobHE5HRZTiCvDrsQWk29hjb05AwOpqE9J6pY8hplg6ipBjvWk+nIX5yKAmp/drjyGqzxKOoGntQlYG9uu4Ed9CDGx8TjOiR+qDlhZ+uDroh+44G3JF+3UjdQwUbpJJHS6PVRY9Uh16bd0+d+raMG7oH7s/Zai7/TEmsougL1eFXFzxY63dL1i2tg/dkXD1Z+amiVULRI+XLYgo/WxtwY+3cBXMduIm4QJhYb7JETgSpDcu1fkwba1SHTERZhfCxcFgix4OVhuUaf4UuVu+lmoi2CGHjETJFjIWKxqiJQNVUjM4HmhiTMnQiUhIjxsOYOXIiSKmPcnab5hPuMeJCAERlobrulZVhQsua077+p9e3sWVVK/t0cWUrxntXlC+T2lbW+ns3rGtRhdes6THFnIwbG1pZEmXsWFkdqGpa0+QZcmp9l7S8csXwxMqyGG3nypMhrCXY2c2aT7iJuBBgxL6Q57Pl8N0l2ut33dp0+ra3rtHm33l4rV/Sg4mhG+IfKLRds/+20+23vn3jYOEdezYp0u49HhF39OFsxY5Dd1UP3bLrpq6Tt7+93Zpx15GYsKMPpvluP3x/ue7GDGc3a17hlJHpZWis/Ah1hUjSD+Ygc3TyBPJ7jakoacQRVBXiqKkrBycmxjOR269PQ3G7lIjKChy0NeciWTOaiZwhXToKO60pOHkaR1GXh2P6vgy3seLGxwQjurnVK6jyE63+m0p29NJVBet0jTdULEfVbdWBoZW3NAVsOHl1l+qKgs0jQ9eVxkk1N1WHiJW3n/ZfW3FDt/e2km0D0jWFawy1N1aGi5W31PgHVdzc7rO5xdnNmk+4u+YFgooLoqwEKWQloJAVDEpZFGQlF0VZCRIl+2biSllkXCULoqziTCErQQpJQVBKIuNKWRBkFWeirOSkWFJr2LuJuBAAUdq6qearM9d6VN9YHLm8+JY61casazq0O1N3jLZfnbaBaq8rWB5WekuV/4bcG1otV6ZfNdR3ddJWy+lrsuP8Tn6iPHhV/i1NtC3z6v7Rq1Ov1DVek75aVbXB2c2a33vkDFxuY8RoYnWZ7dq9SKm3vYXsLPzHeioBe8b7DuNI78R+JDeZ30dmMf7DyxLwjrYrHocHxg4gsdWwGxk1eBOFafiPoeEI9g8PH8TxDt1epNeZk5bSGNFNxFlwpLHyS9SX4oR2sBD5I2N5KOmdysbJZmuKfKoUKfruQuSNjuahuF+bg/IOcwZqapBgailC5sRIPgoHJnNQ1mXMQlWDnGKrL0aqts+dTurGJWDziId3x8YRj5jWVVq2uilaHlzfESr2bOn29evYPKRa3rFGo1jVFGM2rGsNF3o3dfoLHdsGVFEd6ydUK1pXGI1rmyJ434aOQEXnll5Pr45No8rYMWe3aT7hHiMuBBhR9IDo2x05ZgluD9dqwlsDrSMRXd5if3Sfyrd7+Ygc2BGhmQprDTaORHT40kBkr9qzJ2aYAjqjJkwhbaH68YhWf3koottT3Rc9KPp3RY9bg7ud3az5hJuICwEQHdg+eerWI5s9C+/OiFmR9kCp+orjtzVO3LT/EwN1tx64AqW3p6yIOPFAYcC2hLvqTDfE39TTccvuq4zlnzy2JiDnnpzQ9ckPVNE1x27tGLh5//UTlbcd2qgucKeTzhmX2xgxmlhtSc9UIvJapEMoLcFea1MWEjRDaUgf1CQht8NyFMVV2MtrshA/1ZeOtOGJZGR3G4+jsAGHUJGPvaa2dCSNjaUgs1efiIIWc95SGiMudo04bW6d8/HBLdObP2of4MACrCAk7Zxqur1wvVfV/eXRsWWfOuWxpeSODu21udePtt2Wu5nV3Fseu6zsU5UBm0vvabXuLPjEUN/NmdvNdXcVrQoou/9k6NrShxqEHcW39Y3emLtTW3973lp15U3OvvnziUVtrICITa9Tes7HB7dMb/6ofQ5GiE0tmoO44GvyJ/gb/UQ50OztYQu2eqoswZLC1+QP5m/0E+QAs7dSCrZ4MUuIpPYzB4L5m/wZDzD5KKRAi5fKGmzzEMxBXPRbUlXpFrdGlGCzwCxLFphl2QyLjZtgtcLMZ222wCLJJlis3MRtVpi5NL3Pcu4pkgUWR5WlZkTX1HtElW3sMK0pWDfYvz53pbllfdkyz9otp3wjyre0yauK1g2Mrc9do2tbXxglnt5YHRBcub1JiCvZ2KNbX7B2vHt9bozcsKE82K96S71HbNmWLvOacmff/vnEoiUiI89fB8Xz9gKWZBzIZKkTkwkso9W6h5VUsnjWUsQSzb3ZLFUzlsrSe8wHWU61cECoK2bHrV25LEU3ks7Sh/XHWHYDdrOTpSxe7shjKVNKxzARRP/eMVB4154tyuQHj0aviP9Mhrhj/13l/be9fWtbyZ3vXGlNvzc+LvzIZ5J9th98oFhz067bGuvu+O+1k5l371vre+zBhJD1hz6TZ71+3511bbe/fVN/zl3vbhSTrnX2M5jfe+QMzIOxspW+YMhCbo/xOEpPIwnNlciw9JQgSzech9zhqVQUNMnHUFuFNFtXKTL1gwXIGZ/MRH6n5RhO1iCJt5XjhLG/ENmT4znI7zcmo/pgiKPSSU9V9elPoKTDHlhz1NZWgAztSA5yh3WZKO62pKKiDkd5fSGS9YO5yBnVZKGo15SO8lYk4lQZjpq78pA5MZGFgn5DBsrazWVLyVhhTlkjARAe35t2l3yp64+AWa+qu2J/YH+YyRQ2GGw1LusLlcdje3y8u1ePUFhPpNEYPhBsNYYPBEtT0d0ByoGVfcrQrhidJbIn1KoPHwyS9BH9wRiL7fXy7Vw9xpd1L7NORfSF996h869ewee1n+DC8I5+eunZHlt0dygmogd8hcmIYV/F+PJ+T9+euBE5qiPKql3e5y9MRA75KCaiBn08BmOGhZD2uClDTHewMB416KOYiBjxUo8uH1L5d8eOW2LaI+SxrT/6B331v7JwqeNbMMuVra2x89vaS4VLCHFpMHNfjReZ/XUeoiFAr1Dp/A3wnPS12Hw03tzir/UUDP5TSuWUn4F5aPxMspfGR7b46jzJFDClUuoDDIJaa99stfhovWDy16k9HfZearxkk6/Wgxn9p5QqfYCReWp9LbL3pLdk9tV4wOg/pVLoAwyCh87fzL21vjaL76QnN/np1KI+QK9Q6wJM5KX1tdh8NF6yyVfjwQxKZz+BeYVT9PC8dM2Pa5OQ1mnYj7waHEZ9CRLMHXlI1g5mIH1AewSZddJ+VJbhmK0tH0lT/ZlIG51IRmareR+KTuIwbypEoqEnG6njo2k40WOIR9neUIf5EUt7ppKQ3yodRmkJ9lmbs5GoGU7HiUFtMvI6LcdRUo19/FQ2jkz1ZSB9eDIFOd3GRBQ14jAqC7DP1J6B5LHxVGT16pNQ2GLOX0pd86Il4maKOIk91oYMHNB1JeLw8Og+HDtt+i+yi/C+XJeJ/fr2ZBweHYzHsbapt5FSgrdQkY29ptZUHJroP4ajfZN7kVRtew0FuXjf2pSGA7o2b0cFPXwF5anYres+jiNDo4eR3KHfhxPVeAuFaXjb2JKAwyPD8Ujs0h1ARoP0PvLz8Jr1VAL2jg8cwfHeyYNIazbvRU453kJ5Et7Rdh5eUkEPi5aIW+mhsXwUdk2m8ZOnzZnm5mo5V9t1Ui4Y7y9B0cB4FoobDWnWuho5Z6rzJM8f7ytF0fBIAYo7dGlS5SnrCWNbBc+f7CnjhSNDRSjuncySao8GO8pYKTrdM56Pkx36TFt1tS1V31aK/LHBIpT0jxXw8i5dLq+qt6QaG0qRNdFfjOLB0UJe1q3J45WtxkxLXYWcpu0sQsHwSCHKeify5Yp2bc1SIuKiNVZ21t60zyZaFWRT20hlFUWrApwRF5isIFkpcZVFEK0qyCqZizJjMomAQhJEy7mnCOAC4wKTVBJXsM4HNQ4yVvbdoWMCk1SyrLIwpUVJklrmCmlaMFEWRKvIrCqZq62CwqogSQQXCNOnWOmDp1iDf+s2VpwP0IAmtj7SNrCqMUjZsaJN7dsY02UNrY4d1iyvizQOrWgIFbpXtXp7tcR0Ibg2pl8XdWq5biTmdDjvXdXs79G6okMMqI/pNS6rihkfi6mLsPavaPIPddiiYrXB+v6Y+iDWuaLFx7dlVQ+F1scM66NORWsGY06FyN0xzT6erau6FMENKwbMkXXLJ0Zjq8PNPTEN/sr2Fe3qwKZVffKy0zFjmphTkfq+mNpA6gxw9jOYVzhFD89D17yNntQeQ3K7fjeyK7EftUU4Ym7PRoJmIBXJ/dpDSD8l7UJ5MQ5bW3JwXNeXjqSR8eNIazbvQn4Z9vPGPBzVd2cgaWwkCWnd+gMo3uUwY6WuqFt3DDnNtv0oLsIua+MJHJscTEHqgCYBWe2WeBRWYhevPoGDU72pSB6aSERmp/Eo8uuxH+W52GVsTUXC6FgiMnr0x5DXZM5ZSl3zoiXiFlpZj0RbWxFS9P05yBifSEZmq+UAyqpwjLeUINnYm4v0idETyOwxxNtN69OlSDJ35SNNM5yJzGFdInIbpP2oKMdxW0cBUgytDjNWfoDafCToB7JxYnQiHbm9xmQUN9gN4nhTZzbSx8cykNOvT0Vhm3QcJ09iv60pG0makRPIGtSloqDTkoSyWsSjNhdHpnrTlpSxsojHiHe/3behMcSr+Yp2VUTj+gljXFOsQRfXFmWdWNO0TOje0uQT2rBlUIprWDmlW9ESZZ1c1RLJhzY0Bfg1besUl9ev0+hXNkVbJle2RvCRdc2hqs5NfZ1PTjhijHhVH6WtVKgH1rX7+7Zs7qaYUxs1urWNkRhe0xasGFzb4e/dtaFTFX5607BpbV2cNLy+JUQxsKbT37N3fYdPQPPGPnlFzXr9xIbGcHFgbYe/R9/aLh9v7X+X0BhxEUffMIWKqRSCB1MqBbWgUApqUaESVKKoZCpRUDOVUlALSsbUgkIlqESFSlAJgoopFYKaqQSmFhRKphIVKqYSmZqpRFHFVI67HYJSEFVMKQpqpiS7vCqRVIJKFFVMqRBUglIhqAWlxFQipsVRKkQVUykEtaAUBLVgb699s6BSCmpagKihhYJLvA2XAlDzyLacTdbWqwvivKt2lPsuy992yrI6dWvX6ObMLfqOK/PWqGqvLg0OKdleQ3EntjWPbUrfOt69NWcdNVxdHBl4ckeVx/LcbY1T61O29vdvztpgbd5RGLnK4iBhKSNO27I1J05Zs6M0JLzkmjrF6txtnZNb0jePtG09sUqu214UHlh+dY3XyvwdraaNWZsHe7emrjOe3pYb6VWxo8J/eeE1TXx9ztbeka0ZmyYbtmUuF6rjiGjprNjslAHB/Bgr4/sR3zL1OlJL8TaqsrHH1JyCAxO9RxHfM/kejldI/0VRLnZZG9KwX9t9HIeHRvfjeL3pvziRj7fl2gzsm+pIxKGRocM41jH1LnLeCnOYsZLVod2P1Hrb28jJxmvW2kTsm+g/gqO9EweQ0mzejawS/JeXJ+FdbddRxA+MHUJSm2EvTpzC2yhKx3+NjUdxYHjkEBI6p/Yh47Q55QWi3y+VMeKiJeIWWtuMDGtnObL0A0XInZjMREGH+TiqapEmt1cgy9hfjJzJsTzk9xmSUXIaSWiqxAlzTylytCP5yB/RnUBxi+0YTlUhzdpdhixji8OMlV+goQQZ+qEC5I1N5qK435iJky08CbVlSDb1FCJ3YjwPRQP6LJR32tJQU4Pj1tZCnNCO5qFgWJeNsm7LCVQ1IIk3FCFFP5CD75F6D+SlQcRFbKzcuksbPOqtGIscF/1Gg62WgAkfyeqj85GsgWO+0IWNqr2Hl+mloDE/yeyv8ZJtfhpf2Rgy4qUajZhkASPBNlPghDc3++q8uSVg3Jc0oYauRyYd5NA+fLVVNAVOeiomQydZwGCoxRw65iXoA3QqweSv9RT0wRNKr+FwvS1kxJ+mgjVqweA3pRYNQZOeyvEwDQIHQ2zGsHFPcSpApxSNATo1U7z4D3r2zSVirLiEEJcGP+VQ+Bj59IVpLUH9wWZ92IA/TUYOealGw0dF74HwSat/X7DRGDoQwLURQ77KschRpedQ2CT36wudMgb3B9p04YN+wkTUiIfH8LIJ8h0I02ku9dX4aDCiiHHRd3CZRg7sCzHoQ3oD5MmwQW/laOSoynsoQoOA/jC9Mbg30DIZ1u8jjC8bUXsOR00K/oPhU5ag/iCzLqzPDxNhQx7qkchxhd/gMq0UOESL2tg8D07Rw/PSNcfW4qitNR+JU70nkDI2fhzpzebdKD6Jw7ypAAmG7iwkj4+kIr3LcOCM1/uYuTMHSZrBdKQNao8i67S0C+UliLe25SJB7zg/4vOozsGRqf4MpI6MJyOr23AcBaexHydzccDUkYHksdEUnOidSkBeixSPslLstjWcwLHJ4VSkD2iTkNtuOYaSGuxHdSYOTPUk4wWi59xjxLlgXoIevjgRj+Nt+ndw4iR2oSYfB82tGYif7E/E8T7NXiRXS++gtAD7rc2ZiNf1JOP48Fg8kptMbyOnGLvk+iwc0nel4tjo8HEkden3IP9dxxkreV26eJxotO1CQR7ettan4vDkQAIS+yePIKPVfAB55XibV6Rij64nEccHx48ircNwCDl12IXSLLxjbE5E/MjoUaR0TR1GdqM54wWiZ9xEnAvmRSNuajYWaNqrzEWjPSetJcODhbbStskT5po6U56uvdpcNNZVYSkZ7i+VSrvHsi0nT+uz9c3VlsKJrgpz8XBfmbV0YKTAWt6szTDW1ZjzNZ2VlqKJU76O0oh/4PUnrfmjfWXW0v6hEvPJ7rEia1XLVLahtsKSPdFVZisdHCyxlPeMFlsqO7R5plO1phOaljJbwfBgibW8d6TYXNk5WWipadRnT9WXW3NGewrxPVK+s1SMFfHXzhkRsCN1X1x96VnVTH59ZM3jNhUEpaRm3ENSKGQPMBVXCYKSlCQouAqktqlE2YMzFVcLTEVKJihICVJJKsY9ZFFl8yBSQykyJSlIUHClYmyPxeO5QMyrmxjM8PoUPbHaoiYlY0pZybhaUihlD5BaVomkJoXAlFAQqSWlIHtwQW1TC1BzpUgqUjKm5Ap7EyUPgoesEklFCpGJvlklIb8OBrtkaZn834nvBMxvay8Vi9ZYYRTldWp1Ew8vXtWlWVG6WjOwuiKGt2+oCfI6vaZBEVK+qk0fW7xqZHhleay1a11VuEfjunrPoOpVrdbI4lV9YytLV+h7V1dGii0b6/z9T61pwbKy1X1djgm/Z0TbmlXhVau7TLGlK4cHVxUtN7WvqgxRN6yr9wqtXtchLS9fOTi+qjhO17GqPJw1ran1C6jd0MaiK1f36VaVrpzoXVUcITWvqg7wOb2uSRlZua7HHFcFGvmHozJgFxxO0cPz0jVHV+OQrTkbR6Z60pAwMhaP5EbzOygoxX7ekIt4Q2c6jo8PJyK5Q78bGeXYhep8HDa1n8CxyYFkJA1oDiG9VnobJYXYb23JxJEpxxkr30TlCRyc6k1B4vDYcaR3GuKRU4tdKMnCbmNbCo6PjiQgrWfqCLKbpP0oKsLb1tOpODQ5lIiUfs1RZLVaDqGwErtQkYY9uq7jSyroYdEScSs9ps1AVrfhCIrrkICmk0i1dBchQzecg6whXRLyGuUjqKlEiq2zGBlTg3nIGpvMQG6H5QjKqpHAW0uRZuzPR+bEWBZy+4yJqDrgqHRSdqqyT5+O4nYpARUnEW9rzUe6diQbOcO6DBR1W1Jwshbx/HQBEvUDOcge1ZxAQa8pDWUtSEBNKY6YOnOQMT6Rifx+QzpK282lS4mIi9ahfVXdFQcDeiKMpvD+EKshqjtcGlvZ6evTsW6ILetYbjBG9IRaDRF9oZI2pjNQ1bemWxXWvlJjieoKt+gj+oJlXXRPCI2s6Pbyb187wiM7o8xTkT0Rvbc7Kp30n1/ptsZ0LOMTy/v82UT0gJ9yJK7P069z1bC0vHW5RRvXHSiMRQ/4KseWD/h49q8YZOHNq3SGuI5QYTSmz1c5Fj3o7TEcO6AO6Fg5ZoltjZJGr/jBEoq+cQkhLg0y87J5itzH5qGUvWWFWvLiotrmBfKweQrwljyVso+kVEneXFRbvSB42DwZvGweIveW1CrJW1aobd4QPKxeRF5WD4F729Rqh72XNg8GL5taIXtLKrXkwxUekheY5yyZVErZR1Z62LwheFo9iTxtHgK3nyKr1DZvLnravGZvdozz3UlYtERktDkk95pyWp2ws3Fie9JVY11Xp29mdTfnxgQVX1fqEZu285Ru6/Gr+nqvTN1mbbgxa41f2Y3FAdFZV1db1ydc1TZwZdKVupZrTqzzqLqlYNmyvOsqhTWpV7fWezhIWHZXhffqrGsbDduSr+ztuurYJmPtzsxY39IbS4JW5tx4mm9O3dE1uOP49onTO1NXKsuvKwiLzL+5Wrkh45q2yR1JVwy37ExYJ1denRMRXHRjhfe6zBuaTdsLnf0M5hVOGRDMSzrpsnLsstanYZ+u8zgODo/swZE606vIKsA7vDYDe/RtiTg4OngYR1qn3kRSMV7HyUzsNrUk48B43xHE903uQkKV7RXkZ+Nda2MK9modl076DEqT8b6u+ygOD44eREK7fg/SK/E68lPwhqH5GA4ODx3C8U7dXqTV295Fbi5esdYcw67xgcM42jO5HylN5t3ILsMbKE3Am9qOg25jZc6YF2Pl0xN5KOzRpaK8XsqwtVQjR99djvzJwWIUDk1morjJnCKfrkG2sesk8jQDJSgcHctDcachBZW1coalvQK5ur5SFIyNFKK4X3cCtUcclk5aXterycPJTlMGaqqRYmwvRe7EcCGKByfzUd5tyEZVvZRibSxFpnagCEXD4/ko653KRWWbNUOuq0CKvqsI+aNjBSjt0+ahokNfvZSIuIiNlev3kVUkWeQCZwqLp1X2NChFg6+Ve5pUZFXbGEGUlDKpDWqYfQyCh9GT2zwtApOmT/GQZE+DQqH3tXJPk1KwqK3q7vu1DjJW3nlwHN5GhcKsliBwQVaAq01KZvY2cW+9B7N4WUm0KWRGUFrU3OZpElRTPpLN23T2FJG42qQUTF5m7q33YMaoX7uNFVfAyNTy1nB5dEVHoKovpkft2xE9IIU0LR/XR7Uss4zHtIeIA3Hd3l5dUf0U2BI9YohoijRMRLeFYmhFp59nT0yfwr81asgS1hil1US3hkkjMR1+IQ5bzak5yDQS1RYo9Md0eft0rRhkwe3R46aIpoipseiWYD4Q3enj2RPXrwzqiBmzLmuJ1mqiG0OtQ9HtfqremF4P/44VwwhrjdZMRTWFm4ajWwJYnx8toVSBRds1b6MntAlI6dDvQU4VDqCuCEfN7dlI1AykIWVAexgZtdIenCxBvLU1Fwm6vgwkj4wnIL3FvBv5ZTjAG/NwTN9zAsljI8lI7zEcRMlux6WTFndPHUdOi3QAJUXYbW08geOaoVSkDWgSkd1uOYKiSuzmNZk4NNWXhpThiSRkdRmPoaAeB3AyD7uNbWlIHB1Lwoke/XHkN5tzXiD68lLpmhctEbfQ8hoctjXn4thUTzoSR8eOIKXR/B4Ky+0cO2roOoGE8eEkpHTq9yLzJPagpgDxpo4sJEwOpiBlUHsYGXXSuygtwkFrazaOOXBm5duomuZY0vB4Ik50GY4grw57UJaNPcb2NCSOjSYhvWfqGHKapYMoKca71vo0xE8OJSO1X3sc2W2WeBRVYQ+qMrBX152A75Fn/FIJeli0Y8Sdtfe8073ldKhX41Wtqui6zaOmlfUr9NpVTTHW0Q2nI8WOK+p9w+q290srT6/WaVc3LreMr2uMQv/m+iD/0zvaxdjajZNTq+vjTBNrGqMwtLE+XN22tafjKUelk56IUXn2bGrx92/c1sFWVG6Z1GysW46BDc0hyr6NLYE+bVvbVJHV24YMG2pW2YY2NYSLfevbAr26NrX5BNdv6ZVWV2yaGtt8OlLs3dgS6Nm9sd3XZ/K//6Cf/26JjBEXcYSvLPrZfBQUKHkp5ABJTTY/KL1tviT4Wn1F8rf5qHmA7CFLflzpbfMj0dfmK3A/m4+SB0peghwgq7xsflB4W/0E7mv1VcDf5u24+og2Hxl+Ni8VD5C8SArkKh+bH2O+Vh+R/Kw+Su5v81RKgVzNbP4k+lh9BeZn81HAz+allgNkD24LhNJ3+hQF/G3eKu5HRINzEsqRKyl8TLjE23ApALUOr89fY2ndWhylrtlU6RVctL7OFHtifdfImtx1U52bCmPF01vLAwLKN5ziUTnrWsbWZK0b615XsII3bi0N86ncVKNcVri+UbcqY11/39rcVebWTSWhsVYHCUvZkZMt6/KjhNpNJwOCy7eeppiC9R2T67LXDrevy14und5QFuxbsfWUOrpoU5txTe7agb51J1YYGtYXhqmrNlV7Lyvd2mxbmb+ub2R99pqJpnU5y+hUBBF5zUkuQeE6THTKgGB+0kkn45EwHaG9+0yE9pHJ/iQk9Gn2IaVaegelhdMR2tqzEdrmd5BTjF28PhuHz0RoJ3fp96DgPcdFaOd36eKR2WjbjYL8MxHaiUiaHaH9Dq9Mw15dTyISZkdo756O0E7CkZHRY0idjtA+8QJ5HpnDGFFGY4RHp4uMERctEbfQmiak2zrLkGkYLETOxOQJ5HdYjqKyFqm8/SROmPqLkK0Zz0VenzEJxXVIRGMFMiy9JcjWjuQhb2QqHUUt0hHUVCHV1l2KEw5MJ/0Z6kuQZhjKR+74ZA6K+k0nUN6MRJwqRaK5pwA5ExM5KBw0ZKKsU0pFdTWO2loLkKEdy0X+8FQWSrutGahqQCLqi5CkH8jGC0TPz8FqlpDp7e0qRFzExspt70+GD/oqRpaPigFD4SZz8KifZA6Y8JPMIcP+NBk5pPYdiNJJoUOBNlPguK9sDhrzlw1hQ96q4ehxFjQYZjGGjvjJpoAJP9kUMuIrjEdouz7vqHTSI1dKiqmwUW/laOQYBfctM5vCh30FbciEh2AIHvdSaJaNKn0GInXWZQOBpA0f8xR1QRoPhS503FM9EjGBkN5wq2HZiLeoDZlQK6aCJz0F9tKLwVnb+CVHaINJV9W3uYix4hJCXBp81NoQg+AzEWzmARMBsi140l8whem8PaZC9UqvyWAj/CYCbbbASX9mCtX6qPShUyovTYiR+U0EWaSACX9YgjW+CkPYlIenNtQg+miCLEbH3A9GFGpQ+miDzfCfDLDZAsf9yBii8VbqQ6c8fLShJsFvMshqC5zw56agSR+FIVTn4akLMyr8NCEWHjARIJuDJnwFQ4jG00MXalD5akPN8Ncy8o6dg0+bU0qDh8ssX+UUPTxf6aTH7OmkfZln0kn3oLgC8bypEAmG7mykzE4nPYDaIhw3d+YgWTOUjvQh7TFk1Uu77emk7blIdGA66QuoycHRqf4MpI2MpyCr25gwO530BFLGRlOR2adPRH6rFI+ysul0Us1wGjJmp5MeQE0WDk71JON75J08hzGiFT+jwPlu7aVi0RJxKz0xtg+HmqdeQ0ox3kRlFnaZmpKxf6I3Hod6Jt7B0ZPSf1CYg/esDanYp+06hkODI/twtN70H2Tk4U35VBr2TLUn4ODI4CEcaZ96G1lvOs5YyWzX7kXKadubyM7Cq9ZTx7FnvO8wjvRO7EdSk/l9ZBbjP7wsAW9ru+JxuH/0ABJbDbuRUYM3UZCG/xga4rFvePggjnfo9iKtzpz0PfLLngMRbXiJAtxEnHs6aYslX9dRZSuc6C2Xi0eGC3hJuy7dVlNnyTW0V0mFkz0npeLRwRKU9ExmySfrTVmm5hqpQNNdIRWNDpTy0sGxfF7eok+31NXYcnVdFXKh5rTD0kl/j4aTct7EQBkvGRwplsp7JwvlqhZjprmuQsrSdJeiZHi4RC7vHS+UKjuncq21tdb0qdYynj86VMLL+seKpMoubYFU02TOMjaUyVnjvYX4f7R8bA7CyhhbrXIbK3OOvrlhH2RinBhBYJLaBpVJIZi9bFBbBcGm4CBGJMiiaFZxm6eJqc0qktQSBJkRQWCyygaVWRRNnhL3sAqiVSGruhwWffP+fRPkYWVKiwKcEUHkTLQqYfWwwNOkFKwesixOCyapZK6yMKXRU5bPngISQAqrglk87NFCpojfvBhZFX7pwspi2qcVtfPc2kuFE4WYW+AIowivxhVtCKta0T8VW71SN7KyNpp61jUEebWsbFMGn1rRbYquXDExHntqua1vzekwz7Y1LV4B9XFdtojKFUOTcdUxxsGVdeGKznXNfv6NKzsovGblYJ/D0kk3dajCTq/sNy+vjhsbWVERZemOOx2kalvT6h1av6ZXjjoVO6pZWRGj7407FSq0r2zyCWhc1yVE1K4cMsRVx2kGVlQt4x0rGvy8m9e0q5bVrRmwxJwmwlyihRhdF2N1mfAdp+jheemaY2oQb2uZDnpIGh07itRG8/soLMdB3phvD3pIHB9ORmqnfi8yK7AXpwpwxGwPekhFyqAmHicWMOghC4en+tKQPB30cPRM0MPec4MecpulgygpwXvW+vRzgx6OoKgae1GVgX267kS8QPTTOUXfWLcqXCXowWlEfIyy5ro6qWZmCbRqHMbpEiSYO3LtS6ClDWqPfuQSaIXTlZoSDT1Z00ug9RriUbbHwUug5U0vgbbXvgTaUDoyBrXJyO2wHEPxuUugTaQgp9uYcOEl0BKnl0BTvj0HY0XCEdHXVYwVp40R7+cpc3HFWq+q234oqDPaYIjqWmaZiulYxofXtPn5tm0coMi2uClDdOcyy9TyrjB5ckV7kKp7Q6dqWcvqSXNMe6RZF90dJmliO8NocG2Hd0DzxiEe3Rpj0sW0R/fd5qh00hef67KsaI3kYys6g4TR2N4A1eCqbq+AtrWDUmxTnHlyVUewMBLX468cXtnj6929pk+IaFij1a9qiaCRFd3+ypHYPl/P/tW96qDWNSPmlY2x1pGrvv+i567PXPpdlBS7nvSrudzHiF6F9cLcXgJRrVKqlCq1Uq1WqlUqlVKlUqlUKuWZzSqlWqlSKVRKpVqpUk3/N/PVvlt59iylSqVUOy4IQD39K0qV8oyMqumfn/lbqVaq1Gf/tAumUinVSrVacbY5qmkwRoE3zGGsLdJj2xzkwf/4cJocyqnuOZVtYbTWN3/rSXl50pb60Q0pm0c6tp5YI9ftzF/mU7K9TBmRsaVGszZxc2/Ppoz1pvodOTFe5TuKfcJytlabViZtbu3fmLJR07wtK05RdXVhUFDB9koek7a1pcFR6aR0Y6UqJntbw9T6lE09HZsT1+hrt2RHeJbtKPWNyttx2rYmY1PnwObEDWOnt6RHs5PbiwJCC3bWsJWZ21rHN6dsHGzekhRnrdyaG+xftKNCHZd9ZZN+fSFImEsYH6eyLpXLhN84ZUDAZXyB0ueYThpVif22xkwc1nUn4+jI6EEk1JvfRF4x9sins3HQ0JGKI2NDx5DQrn8PaaV4F1W5OGBqS0f8RH8CEvo1+5FSI72BonzssTZn4JDOccbKc6hIxz5dTxKODY0dRWqH4SCyavAuijPwrrE1CUdHh48huVt3CJmN0h4UFuANa20y9k8MHkdiryYeGS2WA8irwLs4mYL3dZ1H8D0Krp6TQ/tlt0N7HmZWPqvJRUGvIRnlDUhDSzWyzL3lyNWNFKJgRJeB4hYpGadrkGntPomcqaFi5I9P5qKoy5yEylqkyR0VyDYMlCB/cjwfRQOGdNTGOyydtKq2X5+D8i5bGmqqkWTtKEGOdrQQhSO6XJT1WjJR1YAkuakUGfqhQhSMafJQ2m/KRmUbT8PpCiSbuguROzGZj5IBQw4qOs1VLxC9MAerWYZxgztVYO4O7Wv2KfUe3OZhVnHZS+9ts/pp1MrJEAN8td7c4mVUQvYwekrcW+PFpoI0orfG32b1m1LDOn2Kl2zx06jUE8FG7qf1IpOP3rvnPkc5tF//7Aj313oKRh+jKFg9TSqy+upUSm2gnvtP+MLkr1eIJi+zyGzeeg9m9NcJ3mOBVmuA1kNh8DGKgtXDrBQsvjqVUhtglAImfGhqxa9e9Hj/c3My+a5scZVUAZcQ4tIwaYnsC4M2diBQNRo97OE7EDmOoO7IKXN4T5ikW94frByLGfL2GYwcFwJ6IjWWsJ5wiz6yL1iYjB308xqOHlX590Vq5JDuCKMhojeUa6MH/IMclk7aG2jTRPYFKMaih3x8hmLGxeD+SJ0trCfcpI3sDaLxyEEfz+GYUXXQQLSOh/UuMxkiukP4ROSAn2okesTDfyB2koX0RRpMy3pCrZORvQGKMR+QuXAOA22QzuwcRXRBaZyBeUwnNexFThUO4nQxjpnbc+zppKln00lLccQ2k06aMjKegIwW8x4UlOMAb8zHcUNPpr2MenqP4ZAj00lri7unEpDbYk/Q22NtyrSnk6YPaBKR02E5gqIq7OE1WTg81ZuG1LPppA04iJP52GNsS0fi2FjymXTS3O9RWMuc/IguFBi7aIm4mSJOYo+1IQMHdF0JODw8sg9HT5teQ3Yh3uN1mdinb0/CodHBeBxtm3oLKSV4ExXZ2GtqScGhib6jONo3uQdJ1dJ/UJCD961NadjvwNo3X0Z5Cnbpuo/jyODoYSS16/fhRDXeRGEa3jI2H8fhkeF4JHbp9iOjQXofeXl4zXoqAXvGB47gWO/kQaQ1mfcipxxvoiwRb2s7DuEFEl6ZU6qAZq076GHuEdr3vdNxRU24T921jR7Lq7cPG9fWrNVp1tXFWYe31EQrWnfW+kZU7eyR1lSv12rW1a6wjGyqW04922uDA05d06JYUbV1bGrdqVWm0Q2nl/OBrbXLPJp2dLZ/yVHppNmRHl6d2xoCA+uubKdV5dvHNVuq43jflvpwZffWxiDf5iubVdEVVw4YNlestQ5sq41QdG9pCvZu3d7sG1J7RZdtfelW3ei2muVC99aGEM+OrS1+fiNv/IO+9M6lp5NKir/9IKDKRRzai7aY+xvDyz8lEFfJgoIrGBMYIwGkkERBUnFSSQomqyCIJDCBkcBF4iqZKSQl40pZFLmC7KcQV0iiIKs4KSWRMeN+syOKuf93ih5cbeNKcJUkiLKCkQKiwIgJXCCu5KSQlExWgSm4gjGRMRIYFJIgSEqyn6Ik+ymMRC4wWcWhtPkWldJ9t82lmHvkkalvu4u5zw2gzvG1pautXZtPRnnWb6j1Dj65ttm6PH9t3/jq4rWG3vXlscrmTTUBATVrGyiqaE3n5OrCtZP9a0rj0LapKsy3dkO9KrxsTZthZd6a4aHVJSusHRsqQ5fbHCVvUYSuY01plNi44VRgSPXmZjGmbE2vdm3h6vHuNUXLefPaqmC/U5saPaJPru8yrS5ePTK4Jj/O1Lq2PMzz9IY67/DKze18RemawfG1hau17WuKI4T6cEZR36FL5yFo1EAOs84+tjTOwDw4tLfRk9pjSGrX70J2JfahthDx5rYsHNcMpCCpX3MQaaekXSgvxmFrSzaO6XrTkDQyfgxpzeb3kVeKfbwhF0f13RlIHBtJQmq3fj+Kdjmu9k1ht+4Ysptt+1BUiPetDRk4OjmYjJQBzXFktZsPo6AC7/PqEzig601B8tBEAk50Go8gvx77UJ6L942tKTg+OpaI9G79UeQ2mbO/R4Flc0oV+AVdNeIiY0QnEjFljmFgqxqQbGsvRpq+PxcnxidSkd1mOYTyaiTy1lKkGnvzcWJyNBPZPYajKDiFI6gvQ4q5uwAZ2uFsZA3rkpHXJB1E5Ukk2jqLkGZw3MzKD1FXiCT9YA4yRydPIL/XmIqSRhxBVRGOmrpycGJ8PBO5/fo0FLdLiaiowEFbcy6StaOZyBnSpaOw05qCk6dxBHV5OKbvy8ALRF+Zg0Pbhr/SK7Bd8vnzCqcZK4+klG6em7HyyffGo/r8VAMrhhRBfZFGc+hgkNUUPBIoGcMHAmksps/Trzd2Ug7rD7EaQ4f9JVPoUCDXRfb7ePTHjbDQ3gizMWwoQDKEjPpz/bKBAGE0eqLrMUelkx7bJiu1EUM+qqHlIyy0K9poiBrwZ5rwEW9BFz7ioxyPGlL69yzXWqJ6QmgycshH1ISOeykmI0Y8vQaix+VlnZGWqegBP3Fi2ainQhs25qnAS3NbnZQLQ9fZKpa5hrHiNCH0922W5vbjXp42f1npbfWH6Gv1Y+Rv9VXyIJu3pxQgqbys/hB9rH4C87P6KhBg9fGQAmUPL2sAV/hY/EnwtfoKCLD6qHmQzdPLFsCVPlY/Jjtm4M6IAmW1z7SoAvlZfBTwt3qrpUDZw8cWCIWPxY8JfhZfEX5WH6UcIHl62oJkla81gKZPsfooeYDN00MKlNW+1kBS+FkZ+X5+DoHuoMaxSZNDGnwp0jgDXMY9n5tTbPFHpJOePJNOmoWUCXs66cEzq5M6K530+TPppKnT6aTHLyKdNPPcdNLj9nTS6jPppHNKnpKQqPJ1FT+i04j4OXXNXGdWJg7hWKv+LWSU433U5GK/uSUdhyf7EnCsd3I3kqqkt1CSj33WphM4pO1JwtGhsUNIbDS9hewivM9PZ+KgvjMFR0aHjyKxU78Lee84Lp00t1N7CBmNtveRn4s3radTcHBi4DgS+iYPI73VvA+5ZXiTV6Rgt677OI4Njscjtd1wANm1eB8lmXjT2JyAwyMjR5DcNXUQmQ3m9O9R5OAchLXhjflv7aViERsrG1t5rqmrCgXagTIUjY3nobjDkIqa0zzb0lGN/Km+chROjBSjpE93AuX1thO2lhrk6XtOonByuAQlw5pclLWaU+W6U8g2dVcgf6rRx1Ea8XdoPIkc3VApikfGi1DeN5WPqlZrhnS6Aif0PaUoGhsrQtmANh+VXeZs1NbyVFNbKfImR4tROqgpREW3IQ+nmqQT1sYynND2F+B7FDk0J42Y6+syU3xOM1YesKbjksc3YNar6m7cY1NYlLB6WkllVQhWJeeMuMC4yGxqG1ebRIXZg0seEkSJMQ6RuNImKMxKsnha4WGxnyJg+hSVLCvR/WmNg4yV3bfrmCDYVLKsNjOVSQ3JQ+JKm0AcIqCQmcKsEMwekuxpERRWJWQBXCAIgk3FJZWFqUxqsk2fIjMBUFiD/ji3dFKb8je/DqxYeZkbK6rGnjm9BIzCvdpjeyi0PnbYuLwh1jAR1xwpDK5pD/TqiutWBDXHDFoi6+O02pjGKHl4VWuoZ8/KLs+A1ph+Obw+dnwqpiHaMhrXEq7oW9Ph59ce1yeENsaNDzumcCkjWt+rDm2NG7ZFNcRoJ2NPR0iDMS1B6u6V3V4hbauGENEUMzkVWx9tGoppClH0xnX4+HesGVAsa44bNy9viDGMxtaH8b6YNn/vzpW9HmGtq0ZsUa1zlkpB3o7Jn70EOEUPcxmPCCfnmk56CkdsLXk4PtWbgaTR8aNIbbKnkx7ijfk4ZujKROL4SDJSO/X7kFWBvThViKPmjiwkTg6mInVQG48Tp6X3UFaMQ9a2HBx3oLHynTPppCkj40nI7Lank+5FWQ72GdvTkTQ2moyM3qnjyG2RDqGkBO9b6zNwZHI4BWn92oTZ6aQnsH+qO3GuXbMN/0ePmeAafkTnWc2fn4MrlcOylR4fj8fx6UKdu2YX6kzE8T7NXiRXS++gtAAHPqRQp3xOoc6kLv0eFLzrMGOlNr9LF48TTecW6kw4t1Dn2+cX6jQeQk4ddn1Ioc45E/H3FOQqxorTxoj3eR6eSxly61V12w6EtMZN6WPao8zalS2RfGBDc4Bf07YeFt20WmuIbY0ya+PaIuSx9S0hHu2bWtQRjRvGzHHNy03auLYIaXx1a7jQt6HVJ6hhywCPaVph0K5oielz2Oqkf/1Gh2V143JpdHVbiDC8qjNQ3b+uwyuoaWO/bVXdauPEupZQNryqM8izf22nn2f7hh4WXbthcmptYxQNrWkPVA2s7vb17lnXrQpt3DBkWnN6hXXomu//I7oqdImMEZ1WzN2zsGMln5P72CtCtSxA4eMd4eet8on0UXG/SC+f5QFmhW9EIPl6L/P39PCJ9BUF7iHA0yNSGRAVIJN3eKDa0zvCHwrvSC8Pm2+kyj860MZ8lwUpvLzDgyYcFokS7hUq+4YHGxXeYQFg3hFqL5t3JAuMCpAl/6gglad3aLAkeC9T2TwllSowwieCB0QHKXx9l4WYI3zC/Bi8lym9Ld4RCIzyJ0tAZLBJEESyToTSJUfPiPTEm+OussSp04ho2bJyjvFH7OXip/ZsXHb46wkBO3c9WTV159ce6ul8+Nu3GSsf/+4On5SvHIrcvOsrhfJN2u+2tt/83Ujzqc8/f40y96kDK1fsey5N/Yl3H28Yuf/r9442PvLCDSh+4v9tDD3+bPo4m1OO60eg9wurg9KfOh61Zv/TOfyTrz/e0vfZ5243VTz+vSu9s576yYqYo1/K8Lj27ce01998+P7273zuu9co85/4ydplSU+lBm3Z/VSx8d7/PNrb+ti7N6H4iR9sCk59KmnZ6nQdjbzyr0u/iyCN2R198/Dy7ksfnXBYtlykwc+oqLB96liJz8X5ipgjxojDy+niFI9A95qOouyI30U+PHFOi0Ja8XPaNpdB5nzCaRrRvCNGnsPgBOZpYjEFl0lgsoKYjUjBwAjTHxITmczko39tP/3QQYmYSIzAQGz2x5mj7ftIkuV5V4pcogtWCFaQpCCJaHqgLhBRY8On0j7hZyWRM2FGpjOi2kgxS1QGiPLcqoEF01fDJdfonJ1GRMzNgaXa0hq0Q1aeDh/pVt3gVzt2dYmFtsYNVMw+ZudEO5FAcRSgojCRIF3EdRmtCJj3lRY9bh1SniG3oi4yiI0OXVEV7ZmrvrFCf11ovUeclREJZZMCeUfTCm/GSQ6jkQ9cZ41f5bkbOK2Zg1iMdvi8+PCyuY3U5wtOI+LcvNlcePW2dbdzoTqmqyj8Qc/y3k8d1OGe2JFEfua6TPpsf7H11xpaRwGBtMbLwH66xvI/7zmzfiJkns1IgQL2nP0GVh0bRGN926vjfPaqP5s4/jn/Rq9YLoCLB56wsRfC5NXEGSn+u+yk17lqVDDdGhJ/TokQJvt8hi7Z9UCgAr3CMK9tvXQ4z33jdejS3TdEoBmzYvp/BgYidnboDgYImq29lHyvxMTuq8YU1RcRADnTC85nYz/0HjPC2QfAxZ7tk77l6zlXNF5pDq78QOL7BUQDu/RpUiJJ8ftfBJ90keSpRboWHxgkJhCBQSaROAkSkcDonN5XBFlkIkaMESPiBpIv4rUT5lik7AM4nylg9gYwkkjkEMlOJkaC7+TUP1+zH89t9MFwTeGDNq44x7eGu0qC/SIlIiMS7U+MiURMIBKJiEE876jZ35lI4kW9/PM+ZmIf+A7GiJhITCBi0wfI0V/7GQXMHCOQ4gJyiP/74hcPEEjpEuqQFi0RZ+4/m/3lAw8F5wR1MOYaC77b1d/ZfzNNAQWQ71MEIsYWRFiRnn3tmiiXuCeLOJ304gB5+nkygaSLsZqdKKrCWkBMJiKSJOIL4GgGtU/lDjrKg/8xsaSJyMhrNdnHVbJMMaEu8vJ/CKAKIRsnYhQUR3H+C/CD1DQlu8rb6byueSFeRO79XhJtJsYo+K+TN7rI9P6HgHH23CrvaBIYj9yfeU+o4917Ij31UqerjM2c5r6512+/JDr4Xs/2bjjAL+MAYcFm/lgAYcFs6x//7VycaPMIp+kIcewi51/nAAYGSQIBBFlyUsjbxxJWBoHAsCDCynS0I0cjusZdcV6qQFO34+81IyaKdntZFNkcysQsBM4Iy4gtiLCgBjo95uxmT8NpQwTTDbELMd3+IY4d1wT7wB8O/0HRNUIenKgRmbw4yLGEIdAVSouzhTgrjLPgpqHz4e/hMuabKzs03HAsGG1fZnMT0Q1ng9PuVk9XSRVwE/HyBaNtvipXSbB3E/HyBahp6ofLHVSJ7+PCTcTLF4xiVAcmLneHthsuAKWqQeNsGabhJuLlC4FuiLO6CgFcRQ43Fh4gm83HVaJv3ES8fMFpd/O9rhKk6Sbi5QvQEKX0uSO03XAyGClpe5CzpZiGm4iXM0BPBErurtkNZ0NFVmeLMAOnEdFlwj4uXzC6zuflUcVlPkZkfO7XcGNOABXpB3TOlmIaTiOiX3yR6Oaik2EjwVXGZs6rj7hxvYt4sC43gMHeG3OyEvh06UbByWOlBSUiGOzhb4DKtD3YrOBEc68j5MbHw5m8LJGuFGXFjFJ08jNYUCIyYvbfA0jFSSGeV7rGjYUAmHaUCUREwpY1HX0KCyPIfuFzKXA3D1hQInJhIJFERkTw6FHvNTBG3Bb2KYVbIy4kZMW7z/saQEQEohsZEXnrv7jrsuqaqeG5s98eJyJiWHmnn5uIC4sQ0q/35EREAuMgJreTjuxFYJz2JBaIiDOFC5RK22evtDAi4iQQce/48ofcPFxYiPT5f1Yc3CwLNF14V7BdX3EPEQHEyFl1WRaAiGAgyEwgCHTDfceefOBMAWEwaz7dQdxVkrwvE0DcXPHv19hMeUZQz8DmR4jABBCDJJAzFKPj3UhgHGAK0WwViCu+xd6TySbZYaWc5CuucFIhqMsXnL5G7XRmiR2Z9g08EyRBSPrCt3usNgWDM56IgzUiGEgSiTU0Wv9Eb+/gdFVIUvEnZsq6CFRNzyxzkXJUlw0Yo/A1mUc/bS/GBijb/qlaTyTGf0lPB9U3f3bVFpmEhZ+CdehyQhxc5tz0zkOriTGKboCEn9O3YeMcAOfoDgoag+wa67ReRrDhH3Sjxr7kFJeRTZ+FzHELxaxcpiSK+ZEeMl/o1XMd2jWDgQumQ594+rjPN576yoq+fuL0WGildtpfw+m1iU/4uniNriUICPTkigotEezWyp/oBQIRo/cb2v72xOcG/vxskcD5zPzLgknlOHBwCYnXKfxfyO+ChM9RLiQZn6N37EqQgz9K6Ze+ergblwjOYb2TfmN/ChKSxKgWSBy3UCUkDnPubeS9G5K8sDrRgRoRDLKY+kTJ6vIXb4iRQdNr3N1C/7YKBAKn0gO338nne1kTN/4XGMnK56mR7FqIuuUvrrEviwgCZMXNb33f49kf9wh8QU0WxxERDFyR8kXzK7lrOYcgzLgEHts80EtgIIFeok10jqtggXuDywcAcDY5hQl0+z2HTgqcMSh0b9Kqme3EmCDIMX993fPPn21eWCY6cozIxdTHJv7zjVDOzq5dw6TA5wb32Rc8QjN9Z/bNIgBuLjoAIALAzxTQB0nKVfI/bCJA9N/qq549SwPGSCTbw7sDqv69sKtSOYyIYLKY/AXT21+SzvUFMFqtfrFZAeLstZqdATMKEQAkLrh6eeHFCUZMYEzgEmF6Hk+gb/mdMBIRqIB+LMwuCcYgKOT73vJ9d68CC5jh5zAiMoj8b5o3npZFAbPJJfC7HpzsJYI4+Dp9I2h6wTkwgCnEmv+6NaIDAJJ+dt8fJwWRptUiY1j39bGjxLlYWapafu5MCgMTbA+/qf+LYSGDZh2nEYl+lvvdp2zCuXOXjEDP09+JgcZqrvgciSAigEskjB367RUpLpJlu9Qgp6T+bNurybIgcE4gkExX0K5JkdGB0S9cfZ7ByMBEuv+mU6/RAhZPdBQRAXby70FfJuEDc+iMlgX3TjCid2mVN4gBnJMgTr56+6O/JW83ER0CpiLvyW999r60Di4QOJFAN2/LbiBBu1/1HJ0/t8wgSF5fp7f6FzCxyoHa9zXb5zfjAxHojMkrv1IfT5zq6HvECeBMYOkv3vLNWs/bqLrTRaqkLTEwmf789rciM+7Z8pNmRkwG48uepVyi/JGgC6RsMIj0mZ2NEws4UHIYEQVjp/pZ4heM41hJL48qM088cx0YJyY25Dz0yPdNN7536gcUELBQDb+8wCTFvZ/7V+7/Xev397tveGtUwUimz6lebaUUyw/9L/CQGEG5nl5byCgcBznvbUilRyHxGe88l/EZyoEEcA5cxbosd9EfYJFl9P4wgijwj52wIocegeSeeZ53cFi3sWZYIaPyGWJ05TcSIXPTY/RHbdyafsgA+PTMyplTJBTT7eAL9jQcpBEZEdE2ulBgGyOZfoS/a3MjHyeVdv/VV/9F/0Be1ffjQMTIOg+vxtIbZgIkS3OBLBMTSOSEK19u23Nd9auPfq7Q5PE0Nb7e9USkzCRJkuRze2HGKGxl5nG2YL5EB4WBQcFfD/vm+TTkxBkRcTFGjB+0/DBqLPG/ZUrxsa9fL0LmbHoN7TnGHzk5B8ghYIQ5hcqBkQJEJIBkj5WrHkr6Z93h43eseuG69yngi0SkAAOxc8u6C7ZVT/9iYuFeaofFIxqLPpgCMZ26yPjVT795lAzfeJukbV/5gtKH85mcUoHm6tF2kWXq5xdcKG/wYIxfYkUCCPKIAkTEIIIzz0fu0bzcmJ6yZ4qIC6fWSkkgIqH/HNaBkbyQGU0O+ynB0/CBbd29eoGIiPuaSZR/RkFfuW1jNCCJZF/PllPxwx+/ONWZ8QW4QJLvb9fxpTY7I4sn756c08Qvgw8nImJEIkjy8fmLpe6fexiR8enWdbZ8+0GKD/B8AQc5juP8BVr19CwHqZXhmsPRgMyYAsyuxUCDR+f4q6Ls9c4STMbqnSSfxwJyTgqXqBPPspiBiHGRqyPXehuIpBzqO/8Qp8BxRLwAG9b5zTBRUWMimnjirsdiQVwgzLi9gzZ9XGc+sy7fnqgCEbNFPv9q7NE248LcuIWFku752zqxp/3SHhcE6cvd03OpBC6IpuZTb3b3Egnc+71oG+NEIPFbNedZrmwhBzkOIyK3MJxreTD69632lXG5eOBxIs+2ttzXvvodH4E4sycxinTzEelj2/GMfjbzxycE/O0zC3fzFhJRG21YHnNpyh5M9pftCXsgJghF/4wnbP+h4T/dpNwRx6fzSoM/aFvaFq59DiOi59ZTH6DUdGwNRPNbXn79X/5O8z/yf/b6um/f4gPIwvSAhH3MAR4Y7NM3YOCi9WToJ5diAA9IJkHAJRsrksyIAC6Q0NC967hx1YpHHg5O6F4dUvqPl2QQEZgonXMKFLX/8oxZOJ3oICIySfHCve9857yt09GGsiL3xMPP3lf4t9V3pHX8X0bG3Su+s56dnU36mGMVELO7DkECmTtHd38XS3CQSNM+hUsCmEDECSQaNa++30v+v/jCes6pnr574xWdpLCHopzLOcbJNnnv7XzBMiwdGelTej6nmF3fifQibb3zhs5GEh/8btMfVqe9dtWPEwcENh3swS4ZRExJpQt05xYZmEgK05FPrvljb+Q3a369HlCM/XP1E9s/n5jDLhCJDTCq+JAJWsfAUURk5K3Mqb5wKU423h79DcWXNG8RSTzwJykJz7E/P/Tpz6aRau6/u+RmVeYJTO5u/NK9n6n0/9SxxH/HQiZGL46s86d19DdZxAXmmgXsoqcX8HY6aowo8Js+u6//igtNlMiKVzpeDqWNQS9/6UpZAF+96oGvvtWUWRn/VMycf5bJdJOjb9mihIIeMsm0/rmvCwpwEhiIqukHRN96KyX93g/MRoFx8XSXuGUBJwcc2DV/nb3BP/iyAYqe11c/TPL1j1A7MWIMHNtePrT/plXv/WHO4jBb0OeWorEyV3CJ9EHP56V8VylKnDEGLhSkP3gdySHfog8GI4NxUfv5/p+sXkDnogOJuMYvJZn4B1tJ4/1RkSB6jv7BBSLGFATJ75GcvD8sW0h/weUEqD95y18z/3FjnEykEBgjEqU3sEolg1ZTaY94bsADGDi92XDD7xRYuHfagTkry/6lfKJJlM+vGMDo3/Q8gVHQ+pKDJDNiYEwkjsgfF31rwxz7AghTde6B4vlgRL85/P0tAAS7lxogXbrXs8REuuuGyg46n4eyIvXH9G1ayHxShxkrjPiT92pf4YJ8jn4HF/IOK1cTmLT8UeqdLsrHSBAIcszLf6Q5+guYpF+we7doAAavIAkkTDtpwTgljrywiTPiPv+PDp2TWk7EueKN30j337OgBd4dmE5K9PvN//4BE+TZLxYDNeie3ywLxGgDvTw0nRXBiJEgAnMtuMKkoOuWYvjN3MDACAp2Zq6AccXU63SjPSjvBt89p88mT4G4zMSXv1F2724/vpD30YFds8DXJ1zx4m2JCpoVdAnF1K6AJ4gxEvDoA73/mnUCzUcxNCZL7q75A2DEhFmvJ0DHiq/ZQQKIIeyL2lent3PinJigf+n/SZ/a7c8XdMULxxkrDIK84vDmnK/8e0AkLk8HM4CSSx7ZAgZGnL5HVTSLNozYnOfZISjcGvF/ACSa/0lfCOWMMcbpsYB36uxRPQoSBDa1+9rnw7/1euDC8tChMysQ5ZWpL1u//VRlpyCeKU98lB6dcdmHBBfkCfPaAUDUt7g14v8AAw0PrvuivW6xgE9sM/cQEQnU2FhX+ujtT7Vc8c7LQQvMQ0fG4DKCyCO/ter1Y1ctfwZe3xeJiCs7T25eQ4yImCBv/sLLb98ozmtwP7MOu9eb/GiAcWH34C+CJJHZoxDvyvv3fYyI0zOQZIad331UlIWFrunu2GBwCFy+5xN5/yj6DdGePrIR0cHObyy3F80lRt/YlaINmtcWQx3p7pn/B7ii6V+KFdO3iXH29H96RsI4W51r5f7b2TP3BwLCgo9vHEpERhAge9533/Hxllfron+5iZTalxQPzIwHGMVFNB5/el6JyCyDbo34PwAaGvnU3WccvNZlX/3Frv/HhT/vhG3NXWCQBbbw4doOTo9hRCI4e5BZvgZ1JONCw+gnPynPDAu5x4+feuOhoHkM8mBy8I1LcYpvXlsk0t/ox2ez1ETaLLz0+Sge9FUigHESsaCx2XY4PE+LgRFxrlgBkgVGL0vfUMoziYucbr+ypPzu+UyuZpCX5qLk89ckLqbk0pEVZkYEQKV5Ua8IGB6MIs6JmADmnBV/HJ8wOO2r5kQiF4qPUbZsFIggCwJxz9pmqrx7Hu0zcJmWovsGNH9rW4PqDMJf/k5EpFAys8yJRPnPh2YW7HTS7VuYzFV7jgCI6kzspZfO3fPOt+fPhQ+fX+5Rzv0yrgaBrj26at48bYyiV/lwiQiKoTEW56VgYNpoZ7dxIUelYPhvp9K+OGnDvis/bWZEsEY/p5o3jQgGm9K9/PNHA0yWiBiR5PW7Xz78trfEiEhUXEbL5DJiz83cC1vrhp9L871eMxigWoI1R8AgC/M2gGE0PbsgkIIe9JfU034c57ZxIYkIRvK0AuaqZYaZFJX5850yMMIStFXsC67P4+s6/QeBTNNltZ21KOkZLKxGPDPOEUgWSCGc3fExYb+ZF6hGyy7pch991bnCMZed5tPHv+gZ3wyb/nLZacSzrZ1JXrzUxoM5KGUUxDDflHGYsDOXd9y1FxALTMR5wswqGPP8DBgJDign5jBhXUKTzRcWcgWD+QM4Zd5/Z948V70Hp4qHb399vgtHA7Tv9gdb59ETSEREnKrvvvcJzVIJNVqcGpEE2/dP0ZPz/xB+m0iVd8bNb2gyhNEf99BP18yzsKCRdAozL5WueXFqRCIuOeQlkki41GqYHyUsJ4UDhBXprL236LFYGzI9UzPfEBxSZoPRGb/VfAKOuaxzsFiJ6KCh0WK66tLCoiWiG0sLbiK64RJwE9ENl4CbiG64BNxEdMMl4CaiGy4BNxHdcAm4ieiGS8BNRDdcAm4iuuEScBPRDZeAm4huuATcRHTDJeAmohsuATcR3XAJuInohktgkeasfADTsacMxMA/NGUfDM6qdnVBcaeF/qijnC/rwmBpEBEM3L4wtsAkQeQfkpoMxtkFanaDYUErHYCBz2KiwC5cJQUMnH1woYWZdP2FknaBsDSIyEgQiIjA9NxPao7zvDCrGATN8Lrzt4JxCAv5YBmROOvrh6XfTzfq3J1gJDMBC7eO8kJhSRAREFKSfQUw5lmnu7HnzR/+8YJJloCQ9I+y/ffzc2jAiDNhQSs3gdhb1WpArTJJTBA+fyW/YI1bLmQejf5q8DktAQOJRCTOf6qhk7EkiEigtF0/vsYkfLPrvVjj6sSE36guqOAYbYyrWHneUu1EwlTmi3++XhYv7rfmLiwXDzwXp5I9urTR/rC1ZmQFXzCRGtS9Gw8Hz35twMCFujcTw354h+8S65uXBhEF8ivdyElY3n9btKRY/iv9BZcqYJBWXv/24MZzHiEXut9pSjBrFk5YRjT07Rdlse1T2l23cOnY+7rgCx4nys+uekhx7msDiKk1K75m+cqt73gvnMQLgSVBRC5Wv/dlkgUySxJBun7F+8/z6XIzZ2qwTVsjRp9YOqc4F6PQBx7/7p0LKC1EanmIgNgV9SCIj1TWraCzEsFuiNi/cAlEs6WFkDf8I0EWw76+8bfOvuvziyXiR5y0eJAoECOBREafmyIie6lEIgJAjMFOSR4QQ4xmVfxi5H3l2uULWjiXWke2kyApw4kInJrfJRmAfUVMAOAzX6a9PGdr8XCh6PG0U2SjaNo378V0nIslQURG4W8uOzPOYhR9FQnEp9eYZAITiGPaD6LsL5/ec7ZaJV/oggnWDWGcMZKIiAl0tS8JTGAC7NIKgiDMeG3sal0QZip/gZr7D3xF8pDvf7BtYGnl7S+JrlmgTZvozFKvAtZtOPHvVV6tqr8u4xAP/iVk1Zb2qfDfEIhIhaIbUxLbPP+68UzXzISFfR0ZxXzhbEFRgZ7vpXfe8tB+81lORNrTLz1259MDv7jZY0ZlC99p0n7rCVlgRCTQfZ+q+66CCxb90nhyZ7EkmmOfMDnzjQTjVwdK1+Xcv/5nXKDomKNhn35M++w3XiUiMoZ+nR4YP/nMOudNrzDyXT/LIQ31un999+FV+De+LDOm/39lOV9eGf7obXs8Z46IevmBmGmNKCB8v+xJEJKyyeYs+R2DJUFEIjp30S5h6+pYr/ueffXpSC5f/6djq2+X/B/67d+8OBFEkTp12YFOnOYDA4RzutVin7+toN9/dfO1Mo/6722Gh66lzd8eWAUiIk507a9/Lk6viQTGVYwTUSc9dO3SGFbNYEk05tyFnhmROj41CJYnNAMERhZYOZFJJRARMZti4OmbAq1OrIx07irejAn0ctoKmb7q30UgilE+ea2Z1niIREQQRCqt/SmTp18zBoE44+LYS8rnPJbWNPRS0YjnAgpbYW3SgPGXKQInkZjASbBXl/UY/15NWQC50OriYAi+QZ+relvjTUQE+Q4SyGI3nwRD39hfXlbK4lkbnzGI8vPDx+62qpwt+bxiSWjE88GFk098ruovX6dHP+DiEKjbKOtmuRedD0CIv/+56utVNgKIkZHOPBYR3/5/R6tmK28QmP7xA/H3SkvsyS2x5hARAULlg8mZb26+wXPWFPJMnBhdnxH9xT6Ruw4TuZD4uZCGH33RX6bzQxkEijxy45eqFLOlleifB44/cGaxpKWCpUJEEDgnIpBMoINDgcFEQ5La8kQOSWTXi5yIyEw7Qo+0fMEozDxbEGQCgeSF9A+DiBOIEwcXcz5PP/XjnIj+2EoyeZF9JxFZ2VfDXph4laa98QSQrPzp3qP3WhUp1W6HtiuCERMEUogiiUQkkExEf7BJPLGDFKQUiJRKBRGRL9XSzm8XpBDOrA7BRBIVShIX8FaAgQRSkgcJDNRmVIOEknFPym4kQZFKIqnsq5QpfK+kB2956yVxOlSMMYgnd//fp7hITX1uh7YrAsxcpkgppq//0LQ9jJ6qznn+e7XM+0+eX/rMeB6N5t508m9SetQ2RU8FlbRai+iLmi9PMxFMe9LrP9rfilgXs2AqhoEZT/kNUq0v2yzSZ5KP14rWf/G/UMCdxgrpwLe2U4ehLxaipsZaFur9SO7LN260R1gCQtWjE6//XRBMNz23ZJQIES0dIhLZGoy+fxBsFbYVYXxdWvLJvC1ZuUVjvw2omvyrXH/t+NMBDVPbqDHir7aakFs/Y5Ks05FiYIZatuGPcp01OGbBVAyIfv83D5vqh4abchgPeufd34985/57X/79t70y7/XUv7/d+Cb/1pNPB7zxQ+8vPP5OOg3el792xm7+badnGpEo7/R2Gbt/XuCcMTsg3Od1SL7kMGMw65X1tPcxSXHhvXw6MQUfa0EzQLgvhfxqVvB51TVcGL6qj5XtnBXwCCY3QmAE7r2CESehy7hGSX3KcJrqUsjBEbzDapG2qUaHFLK0sV8vspXq6dAc1jMlCETEA8OEE3dS+KnwSxdWUvzhZ699zUXMnqWiEcHApwOmRAZGMhgJHExgnBMxAZxo5gvjs9ZEnTmRQRAW7KVkJG4+K7rA5TjiEkWRJPpuZkQkrCYiotBQIqIV06fYP2JmTpvfVbecjqVCREZMnPXFnhQiEtF0Nguz6w37F2HmqHNPXLjOAQyYVtmMEQRwYgripCBwBibYI9cYOANjAKMZDU+Mz7w/zrvXDsFSIeLiwsw6kdNfpr8JRNNvxfTe6S905nPWQsNLTSMuKctrngECYA+vned1Ih0lLAhnpV5ccBPxQwEGMMgMYGAzLmZXhX1RaLvje95XnF4IuIn4oWAgJjMRjIhJsuDSzxYMxCSZERGDwF1oAvNi4SbihwEA/Tz0J60Ekunfd4wwl55RA9G3Y2+sZJw4q72ukDjB9YcTs3EeEXEGzhbsIoGZsZH9g2Z94OL2zdp8zoUZhDf8v/7nJ2VGRAO5+4mDwF1zhUcQ2Hf7P1X2hTaBE/39pNb+IPkiGivOJiJAkKcxxyYsEJOnR+dnP8DpDLvo3I/Z/1/4lHN0HoMw0Pfl//tR6W6SxNa3VKuIkUwuqhYZhNrGIw9RazPJQub7y2KIIDBhJnVxMWA2ERkjQaFQKBQKUcH4pZteIHB7OqTDpQcxLhAJ9g9GJHLGuH3zmX2MSOCMcYFfYDNh1imzGwH6R1xQ9wkSiWhw4ur7IJA4NeiaQ0UQvXI705F3IBGB7tomK6zxt/xoQJgfJoLA5flQUR/R2Z5z7zll/OHVf7/417/+/Y9NAuGSuiGAIEE8x1PmIHDK4b1VQq5ppFQo0OpyhJJuW5JwqkE4wbprhFzrULmQr5ssFEoGzWnCySYhVWg9JeRIAxVCvn68SCgeN2QL5R1IEuprhRO8r1LImz1lKBhUG2iiaufjEOlPZCMCHf/MtZWuqROF8fDPkSc9cD1XUj7ZSDB88cBK3QPHBczHi8OICaIdggh+qToGBM75h2g4xblHFvwBCPLjhENB336IX0obGBFTSDX5X1c7VncIdMNNPZG9sldX2JAc0Buks4UN+NoGI/s8eH9ED1f3hvVzv+6QSSlkwM88FNHvRX2RPYKqP7wP3t0hIzy4N8CgCx/wlvsj+xRCf0QfvHrDBh7MMJ8Jyvf6PegN2iBwIiP9kJjmX0lN+uodrtjXMQr6DUlv0QriCuMheobYs+ygLKZ+1esOPg+xEWCWKvgwo5URC1ij4pdWYhKMMwEM7IJVA88xVgT5d/GgdzubWnqey3oiTbiUlx+gAz/4f1cdUM7fbb4gGEX4dWzs84g7vXFMWl+/yaLb1LjOc/jKtujQzs09vjGNG4exrm6j3rC+fr1ibFvLiqCebV1BUS0bBxWr6zZqzOtPb5QnNjWt8u2/sn1ZRPvmfo8VDZs04b5n2kEkCUW7xe8TF8oaVJuJ+z138utrv+ySfgYQSSw9MfCrRFTYG7SOypJ1OqKrNN+T50dcS82B67b9tbqg/MhVXzp5SbwgMFlo+clvf/PTpgsPGDAbNiQQpUDiEv5Jn5LA7aqUcw7Y/zuzgWN6Ez/zxb5FRuqX6h7dNl0548LgMu79LKSPOOKjwWHZTFGV2G9rzMRhXXcyjo6MHkBCvflN5BZjt3w6GwcNHak4MjZ0DAnt+veQVop3UZWLA6a2dMRP9CcgoV+zHyk10usoyscea3MGDulavcm/A/YKINyGv9OGfljxV1LXQuI2/HAd+McWWsZQNLFySJfa2gtDQgZR+NCMsFb8iP4A2YqfUHAL/kwelcCg93rrRzwGG/6PXoPtYhok4TRtn4Qs408UVQj54z85Dhm91/yiqOD3MT+VLiDUOUTkNhwnSoKNW7GPFPmQZEnm4LIkg4NLkizLXJbBZS7LHPY9Mp/+MvsyP9noaCJupUcnU5DRZTiI/FM4gvpSJFk685GqHcpExqD2GLLrpYOoKkeCrb0AKVP9WcgYnUhBVpv5AIorcIQ3FyHZ0JuD9PGxdGT1Go7i5N7Qs0SUobmb/g82G/5DnzKCcxt+uPYjm3VhLAgRZfReTbthk/BjesaMU+tCGoBBr422+SAih4RKuh02mw3WnXTftP6Z0Udn/+Yf0FBnLy5jbOdLkDhuocILPPpzNDeb+UeMiCROJIgCIyaIAjFioigIAglMgkBMIDAwQRQExti5tWQAsjrcUgF16G+ov1Lou7NhfXDzHQ2hcfW3tAkbq24Y0e+su0oavq1hs1/bXY1R0U23tXisP/WJPtOOUzsNY59o2OrRfXfjyoimO5r8V5++qUfeVnXt5MR1p7ez3k/Wr1pvmf0Lw6VERCI10VWe0nRcgisOEYkI1FZOFuJi7Wt0nVraWly9GiQIlnkR117tRCZRFKHYTMnHmSzLMhFk2Z70I3NwWeYgWZbtrnTYFZR8xuAF0bEKnzFBJpH+foHxzQWib+xUmqLPbSdTw+t+f1KNF79703e5MPT7/qsfry6ZemaH6a+agVu/xiHof3P6qseP6ybuukeN6QEoAyO2IPG2FrOvgdvMZAiymcgocQMZVZ5TMAlk4FYTGYIkExkCJCMzeot6MnpgClYTGbjNSAZ/yUhGP8HAjAKfgpmTnttMZJRmi83sFcUkRc1rIXfZS+swk9HLRZloB6cBzebbSEBgELi4S/9z5SVZnB8OME9ibJo3gr3ImsAYSAQxzhRg4IzhTClpPqv+XzyeffXrnJ7JmrgAPy4wllWQQMrE5x7Z5UdD7791xErVbx3JJU6Np4799Ouan5oefPel8W8se+5lAdQ+0ff75+/5zgNf+5TmbB3ChbnljLaEFlxdyVan7Gye3J561XjP1ZlbxPqbC2KDSq896Rl3YufpqS3JVw0MXJm+3dZ8Q+4a/4obSwOic3eekjYkXdUxfGXqlVNt12Sv96y5uTgiovDaanFtxs6ORvXs3wjbTioS6BVL1Fa7N8q3+20XDb9itHILeZKS/53iVnLGwCEOvBr72Dw+D4FkWRakSrrrAdL++9W3xqnxH2+MMpk1//OVBOz9+7/3CZqX/vW3TIEAyn3xlbykv770hp6dTZf81/bbriKBrBe+/HmjhgSiTbfceOMtcQ9rIHNow1aaOfLos5AlFAiqVKBzBe2HhMc2cHAbXgppgw3H6fFZo3huw/cdPkbcQjGnEG9rycXxqd4MJI2OH0Vqk/l9FJXjIG/MxzFDVyYSx0eSkdqp34esCuzFqUIcNXdkIWFyMBWpg9p4nKiT3kNpEQ5Z23JwXD/bWIGEfepn6xO/up5uN4OD2/DT0L6ZnRePBRkjQkbD6vUnqt4Opachcw4Z1psjayDPl7FSTTv1kPn4y0JIOtASR+pqHA6gJ2HDMX/yeuTT8V+jX3/x06kPqI9AlvArkdY8+P6fxafNZwSQ0TEJznE7PXYBk+8CRPzUD77zwjeKIMmQMRoYa+bIoochS8ih+yDJuEbsgQm/3wRwG367EVzi5gfUBWd5tSBE3EoPj2Ugs0N7BIU1UoLUUI5UfUchMib6c5DVP5GE3NPmeF59EinGtiKkT/bmImt4NAM5rfp4lFTwBEtzMdK03XnIHBnORE6PNhEVB0LOEJGD22ztv//Tz/Y/SlmQOLgNP/c85ZpE5OAW1L7wf79JupZOTQv73trTH23efiwiVjK690+/+u0GeqwIEufGq6kRaBCuAGQ0BtO3gNa19AIwtTxsArKEo/QIl3Ccnpy22zmHzGVZRu1yKr7Ao7/AGPHrd8oimH3Fh1lB9SCBFMQEyLKZBDLbFa4gc0GQ1A8nFtw4vylH/xujptU9sWxiU88yGtjY66PqXj/MItvXaPmK7lhZs743Uhza0hMg924YUi7rXDtOsZ0rzNKa3mjF6JaeUOrbOOAZ1r1+jC1vX2mQV/csp/EN3aEG6UxPwUAKrPyZLJYl2YeLjMjDlLF1oZt5MQADqbDlRS6MaUgkYoBi35/2b5J7oxXzNa8A5dVXm4SbvLZ4cIGYfQij5ioikOfUqp+RdfW2lodJFkQrJyKC6oeMC/ff//6yP4MYEQMEzkgW9vf+4hoIH+3QtsNCkiTLF/B+24sBsxkr6uwVGOnp4otTgWAPNJjDdDYRaMwY0xmJ8bXdwR4Dq/o9/bvjhhDaEqMxRrdH2SZXdYYrh9f0+fr0xg2y4La4cXNkW5RJG9cZLoyu6Qn07ls1qArqjB2VlrXETOlj2iP4+KrugJAzRGScnXrmGNnI9qLhjk1kn9Yyq26y3wUXA+Os4Js/6CcrvdX02RgSAOHQb17dqhn/y9SHPgPO+XQ8N8dFzNkJdOOvbrnn7pt2KmWBpsNNiE/X0JAClkFBFrKRyKaXgJG8YknkwtdpcEZGRoy44pU//Pa3dHHGikgKhUKcVeftI+88OBGRJ0kX+XxAkIgJJIjEBEiXTEWBrgo+eHOybd1rnyjuuebNG7pP3bT7Slv+PQdj/Y/flqhc8c5N2cM7/nNDY8P17++cKr5j3zqflDuO+0fvuylzast/bqxoue7Na4bLb9mzSTxxT3x4+OFb0+X1b99UUXKmVj8Y7Xvn0VKlWJMU+kYYFxgjIm9rN7lOHbFZN5XRrlePWMlj7O+r3vMFg9D+TP83V+zYWur1IcdzLggCiaQmJjD5osLPGclc5rJgDxVmM54+ImLE7ek0IsFe8htnqdarncmOBOOi5r8v/EK+kJI+h4hgZA+4OyuWwDgnBU0XjQSd2T3NICgELium9tGZfG9Mc5NfIBoOBHCmMPYN6UwG/XC/RUHyJapFTgWDjyV8Wqh5LvnmmOwvp8VdkfjFAuGT+z7fPPLw0c+aGp5Ouis8/+tpmzanP5nrc/Phx6onPnXoc2NtjyXe61329dRr1p34clb4dQmPnzTft/eRnu7PHb2fqp5JvuZm/dl7MXqMntpG9A/jt2M5A8mU/sD79JsHc13QbgbrOUL/t0KiX43+2EtmYPQXvbGht2vY40PcczITRgaG/7SXXnllsn9cIVxM6CJIFETxrIY6NygGRDS7iq1gGSAiEqiwfKYmPeOi5pH7XpQgXiAJ8RxBGUhBJM5657lVEESqtB+mIJGImEBKIlLao2tU/c3rOKVmPfUMibOKUquVJICdrzvAOJjQWpZ2XCAzRXHpqZt3ruacXUpsFaPN4aX3Vi7bmH3Hac9r8j8xaLyz+Cptw8Olq6wVD5QvDyy8q8bvqpybO+Vbi6+ebH6gdJOl8qGyuNDSe6pDtmXf1qi4Mf/a0cG7S7Yaaz5THsvLH6iO2FTwyfZ2D8PM9eXQ5763fh9ON7/yDW5vCbNeca1l3PX0IRHjMf/6Zd9r6vxTu75oj2gL+7wnEfFvix/wI4KBC8JI/L/6uYGosuon1vXfjrkDIPY/clTPJSojnO+FtobGnX3iorlmKxFV0YN32GdNQFzQPHztH7jCVrH9gyNXxTm/JOq7iboNXtN1YRhCfvh6o/foS6RtixVpiHS9UdYeEw3EqU6/r26JUxGptHe/tqXgscf/M1N8HMQ6jT17O196aGq98tyfA+OM9e56t43EWKmHlnlM/Pe/65/8UjjjlxTlZ7Z56tTc5D2lJKOXXhCnvI1cqfW02Dx0aln2tG8WofcyQKnzNNvUOg8b99SpYPKeUjCDl4EUU14mSaX1sMqeOhU3e+nFsytWMUaf93hRL60+GiMLDEQi3Xvv9D12JKcuCYzw2Jp/poY+/7dgWWBgJPxuZtf5Yy8wTsLkwVdOU4ifl7ZXtdLCG77sf++3rvSQhY8KqhHonMKgsDE10Yj4AHFGgr2AlRwaMFukKeKK4VeCnqezMx3Pqr/ezFWTb750IUU9yyki4TskivTjMyY95/gHW/nb32yl7wD8GqLVtnpfgR4C7ifBtwEW/Nn7p0+Ja/6sP+Ow4jL+c83vX/jBD0KePteDw8Ft6P1VGNEXfvJv01eJvmmu/82jRLG/7YP0MWdwOSxbaHUjUm0dpcjQD+Qja3wyHbntlnicrEEybytDurGvEFmTY9nI7TUmoKgWx9FwEmnmniJkakdykTOiS0VBs3QY1RVItnUVI8N41o/IwTmMer2ZS/aJdA7ZJkmSTf64s80L4L7h4DJseiNkiYPb4wIkSZIk+XyPHYcM7d/WUewvf1At999Mwqtc89oLEUTflHBuxMA5J0koprBCyGdmkvET+jOq1tNNVllGA22XZAkPLO8G168MHQe3IYHWN2B4R2jFzMPlMjL9A4L8/IPoExfw7Z1DRI7mzIKCzNYZ6Tk4t+VWcnRmjoPzyrzcYq7Pzc+pBery8vP0sOF3G6HLaJ7dBg5jFzhQOnTer3EZI7eS112ZBqDej2izEdAl3eRB94x+XCZyWLbRk5p4JLTp38GJk9iNmnwcNLeewJHJ/iQk9Gn2IaVaegelhThgbc5EvLYnGceHx44gucn8DnKKsYvXZ+OwvisVx0aHjyO5S78HBe+FzfIjyhI4uDwTezQzke+CRAQHl2TgLPH4hYXlkKF/jOhH3eASjpBIt5rA5Zb/F6LYcRzSh7SNY+KnX9q5+c73ztCac7yw41t/OXj19d/rRcXT125+aBDfUFNMRv+tRLe0woqjtP6JR9dszDlzURlD2+z62fu5/+nQ/qAEXAaXbBwXuv+c2/C7tWbOuW02DzmHZLNJ553CObe8eTV9JolzyYzn6JnPCAkwS1xKvI/uGf+YTOSwbKGV9UiytRcjVd+fi4zxiRRktVoOoqwax3lrCVKNvXnImBw9gawewxHk1+AI6suQbO7OR7p2OAtZw7pk5DVKB1BZjgRbZyFSDeeEgYHLsswvIfDrXCzMzMp02MFHy8ohw/h58vojZKtVNl1HP7+G4mG2yWjZTv5HPuwpcMgarVUyTM3WUNwyYYbNPCnBMonmZODkb//4qgGHfvu7A+A2HPbtReor4GfIzTmyfveXv/zlr7/LOaNZZ4GdY/gwDiKaZTyAgZMwvaAxQCQQJ2ICcRAJTFL8/d06koTZy8zaV284fx15MJty7+P02Nse4CRW3WIutV7vUbZFJoGZvxh/576gswXLLwJg1p21t+/VBI95KcYjJkTfsWCLJWDC12b11frIlsBxH9KFjqm8R8MMUuC4r2Tx03rJVv9JX9kUPOqlHFumYf6jQTZzwKS3bPHVecEcOO7DNCHG9oc1/tWOrwY2H5DFS6gGBmZ+6uAtr8cpuCgp9j/29Vf/+cK2Im9wEnsfrPHb9eDFPgUwECPgwrHaIC4e/GpbCBc+7IgP4vzkKVEUxdmLLxATRUaCyIgxQRRFxkRRFIgEURQJipf+3f5oj4LOLa+HmsYAAIAASURBVOXC7EFj53giGVcO/oeeekstkcDonal3r7z2EdMokUCSx1ufyXhi4uNXtVZj3GdCUgx76UweIx4mvfeYUtL5jos04TPBxREfjUU17GkweI2qbTqfMQUmfSdIGPPWWFXDXlMGzxG1Rec9quQa33GBjftMSopR76kp1zNE5hEA0z178I4DawQSobC85v1lenrrqcPERUFafuBK3R9tF+bhmX7zjOXMwOyV56dLnHAZxCVJAmRJkokReXADcYnO8hCAPDNwxQWFu2Rwjt/c8/n7Oy5m+lXG0E30hBEyuIxav0+YgEK2pRkyhwzDZ+mTox9nEpfDsoWWV+OQrTkHR6d60pAwOhaP5EbzOygow37ekIsjhs4MHB8fTkRyp363fSBZnY/DpvYTODY5kIzkAc0hpNdKb6OkEPutrVk4MnVO0MM8YWG65ou6a1b8gQKbYePgMuLpa7DidbpNA5lDQuc2+oZtzgMRAOAyqr9Gtwx/nBs5FyJ+HNEk/IduN3IJnMv4Jr0CK2yfp19A4hwSNDfRGx8nBoLDso2e0CYgtcOwF7lVOIi6Yhwzd+QgUTOQhtQB7WFk1Ep7UVGCI9bWPCTo+jKQMjKeiIwW8x4UTIfoHDf0ZCJ5bDQFGT2GQyjdHbqUiSijexX9lsuccw7Tdcoa2DC0jQ5C4hw2NESwS8oC+OAPSfip77plmR+nyXPUiLIkSRdhRnKO8Rh2FDZwLuO0d2ABJAm5fiH9kDmHhPdou/5jvIwcli20tl5Kn2ot4ZkT3QXIHh4+gdxm3TH5ZJUt1dhSiszJrkJkjwzkIrdrMgmFNZZEc305Tmg7ipA92peH3IGxdBQ0GI7aqk7KqVPtxcicrPdZ2kT8Pd0NzsG5hCP0Zchcwqt0vd3AlvAjevxCdsTHBucwaTRa28cxQOcyLGeMmCBc1BU4vdnzp0/JIoiIXjPcdyMEATevGesg+7pen95es5fkj+fVDvQaip0Qg/qidVJ4f4TVGD0UptCsGPL3Ho0dUwX2R2vksN5IkzlyKIx0cYNBnmMrRj39BpdPspDeKL0loj9cnooZClZNrBzx9R2OnRCD+qMMmiU8RgSEvvfpm8QZiETzPzy+SUSMHt9S/B7jRMToiYD4ImEeQroZIw9/fz/Fx5mVn6N9yBhj7H/+HiD2vLHiUWJEjAunDtC37BOVD9Mf7FNFsu+P6LUBBf8Y5gqj6IDWdd2KqNp1w+bVp9eaJtc3xCkGt7aE+3ds6PIIr183YIurXafTrqlfScObmqN9uzZ1+oU1r+unmNq14/o1dautY+sbYzx7t7YFhbRu6FVG168fH3R0FqwTwTgda3nwNnt5DEosiFhDjJjk9016Z1IEEZM2fdX8b4s4T6Uh+MesvDO//cWHwIYT9AgkzsFl/D/6DiQOcI7HKcW+FeZbKe/iOy8Oy2YKL8P71vo07NV2HsPB4ZHdiK8zvYKsArzDazOwR9+WgAOjg4cQ3zr1BhKL8DpOZmK3qTkJ+8f74hHfN/k+Eqps/0ZeNt6xNv5/9v47MLIsLQ+Hz723snLOarWkDuo4Mz1hhw3sssQNBJtkYDHY5kfwZwwYPjA2BoOxMRg+DAu7s5M7t3LOKpVKOecsVVLlnKtufL4/St3TszuwPTNSd0//9PyhcKX3nHPvfeqc857zPu/pxu3Q3jPsrEgifov8JXgJkMB+numAKAEiAi+QRggSJBGWsowP5WEcIR4LESUBHeQXIEqQRCyrs6cgQJIgYui+eFrE10jPo7srEtgr5F8FD+Wko0uHctLk++Wka+KHlZPO3H6GnRURO7KyeYgSJAH15NcgSoAkifg6+SwHSZJEhGvJa9/urhyFG/0IOCoiPqRild4vu5ckSYLwsnoXoiRJAn6N/NJ7sv2fILrDD+Ms+d5H312RwF4mz+2HZ33G1ci8y7IcW3Da5+ILBt9YZH0jMuM3rkbn3ebl6ILTtphYsLgnY0uboYng3lpszmNeiSw4rUuxRbtzNr605x8Nb65FZ3zmleicdzHjmSWiJGKHvJpyVZB8VbaaCg+QRLivkOvgIUngfpp8DeKDrUFJkiSIqX/7gFwKR4oj2UPAeyM8AagHP99PRSgR0S/PI4SiJGa5WfGrlJSKqpTI78h+Zjl1vlc2HfyQmSwgChBEiYcggJdEURIkUZAESRIkQZJ4SRDBS6IAXpJSf4MgHppIggBBkkSJF0VREsSUiQDhQ/pLnyRQhKjoHEIIKJG0T5YXHh5NQAsFv0G+GZKBUKL8F4mGPAjYBkWAVL6aw4MQABxXgPqREJEihE6Buu9Kv/8XolBIAiEATd5y/+yn7idkofGZn3Adnikn4cMd/0ORi0UzL63Ka7XXjNGrumthx0tjl+W7n52pzF98ZSXt9OiL28nLQ9fcnuf1VyXD90yeyV35nqW8yskXt1CnvXbgf274+bj55YnzaRufmy8tnX1lQ35m5EXr3rN1CPLDACHd5HeJRAhk8b/PvV4oUYeZjsnPXJxoS0U682TJJSM0TREqdWAgRdtmKCl1bhJNUfTxCdaPoluVRHS/8sqnXr36m3FIkoS/e+7VVz517asRSBKi//7qq6986hVZnhuiJGJVnT73YBYiiRgmP55aXNyhnnv0dad/dmdl6qGdlfb3dlZmUiE6/8TOyr1nfmdFkvA5MgchtanyI++9BEnEP5LPJyBBQDMhpz/zyqtXeyBIIra+9OKnPn02528hSQIGPv3Kpz71qU+1HsmS93fiaM5ZoYj3UwoQKF1VoKhw7AsyUEIuQwgod9b306CkrZS0i3wj8avX8NBW9ud+snH4B6SPsGRAkZcrB39SW/1i649PZPxAx5e3o/+i7wuu+V8afDE58jPaupLun9Dnf771x5eFr/R80bby8wOvRPQ/r71cPvgvR8o/3fIT04ovdfywyfyT/d8TnPhl7VVJ+9MjNS93/sTCnjr2oVvySQGonxhlCQGhub8lP0zIg4BVQv7l67q+HxMZQihy7ctRmmILCUUonP2pBbUkU/wwAUWTV37MLid80ReOSbLzWFLbgiKXTMYCCczCF7j+z4rvRVWIjP57f/aORIHernt++pGlj6C4l1Y+c49wDBEZkZGIjFMKojomZ2IZLNQJOcUpeBqQCTKRKOMKkkyP0aqYWhLUSYaIjEiDyFmlKKhjMlksnRc1CTnFKTiV6UdCxxR9M/nKRz968APxoaNvJPrg9FdbQETZ3X/1778uUe9FWAmyv//N50bTITGdX/3Vbx5xOx8RR+OsgBwGVqSSUb/vF0EQBJEVGDkhFLke/hcP8xC09LmfvaulJULktPChPhMg/mi+OZv3l1jTaFeJXa6yFrn5DGN+MJprykkGig4yKE+JXam0F7ukNFOBL55jyo0HCw4yJW+pTS13FDtptaXQy2YZ8sPhfHMW7yu2qjOOKx8sxTxp9R8ISYpOQiBjX0v7tw91QRQY8ktXlpqJREiMxIkoCsKh0jT1Ig9/efBSj6l9jwES2Fp6AALW8xTvzz4giRinntsDj2byi4+e8i0V9OBvRNtu9C30z+A6lkZwL7nbj8aAtR2tB4Fb6FwQ3sKkHne4rQE0hiydaHV6G9G5mXgT2nFcF9eGUB81dqPF42pFhzF6E/p3Co9ljlhGyNePem71EdYRt0jtLgQ0k195/5ayJOB18sUwEHuJ/NUxzQG/Gx4PEUX8Jflx8PgN8qt431KUJIH7WfJH4PATZPRD7axcJlUraOV3R9EZsQ6ix+trR/928hYm59AkbY+hI27Wotvv7kWfKVaP4QXcw8oE2pLGYXQFnX3oc4ZaMbQu3MTMFJq5/RF0RI/JWSkj5GXuw0oMvgs+/M4K+F8mfwkh8ap8+f17B5IIx1XSAClarfkwURRHicezxSdAS34aWEvPnoBwP+Xs/ZgPrSrPBPOZOvOjfxYlsFfIV106ccTg6+KnluN9sc05Tuvfn+J0bsuYqLe6B4Sx9XBXYnmeGwruTXM6t3lc0NsdOnFsN9DFzSwk+yI70/yw1zTB6R22UXHM7O1nF5vyjslrJsMfI9XPP/FMP2z0DY+/Jj8VRSP5FQjS+8Hj6+RVAXrNj8WP+PPyqHgsiVxAk2uf65gj34x+6VUegCgSiVCEoiiK0NIXftT3f0nj7o9W8h9ulhzncwJZJF4QTFNECsIKdTAvRtJ9uUkh258lJfMCGbJYYUilCuVH6TR/bkLI8mWLbG4gg44XBDXKcEFElhbIi0uZvmyOy/FnkkR+UJN2PHNEENL9xJNvgyZfrmxYJH8r/7XDh/8AhJH+/e9N/jX5VvwXDjOSPnY8lqdDESnzNxLX5+/J/jOhZRTFMISBIAqCIIiiQH6dtP/hnyo+RT7Uwd0gluiVuYuU/aWl6qyd5zdzSpeuGMiZqcvuyMXZy5zz+aUz6YYXNwqL1q7sK6pnL9viF6cvR72X58/JzS+tVhRsPr+TfmrxsoU/P3k54L84Wwfr8ysV1dyHaMKHeQDkB8iTPheDoqRzv0h++48m/90LwkPnpoiiKEqSQM6TP/ux+uq6D/cWjhCPpd+VJMReIsXkXy7OzWz85bfWl/5Lz2/WvXjt2rVr16698NIFmlDk+9kPMSak5KS+u2jajryGnim8hQUtbiW2u3HPf9CCJkvgXbTNCa9hXIcb3EYv7obMbWh0eu6idT3xGgb0eEtc6cftiKEDDW5nI1oNkbcx/OaxOSvf96HCRB8BHykwdjObUOTc1UvfiavFhCZy7RNyVR7XHFGSeLTez0nyAaBlpO1DSgUuk5pDOWnvAzmpdpetx8wi2r9DTtryQE7anTSPPpCTdh7KSWc/SE56VEgR8b8cdRjLR9GsCBgqpSmVTCb/DjAKhiY/F39cwTbfgcd1Vhso4be/Ti6fjTCESh0onNKsgpLotMUd8p/+8rvH1z5cGvfSyg9dd1dashTWWrss31wZSRYfFLDxQkeeECmz5FGu0xZ1tqnaLxRbipOxIlueEC2x5UmBSku6xlLjpAtN5fF4yUE+Hy2250qh8oNsmfOUz/AzgeNZ0KanX3wK5KSQmHd/ifzB/zf8HY9akqf9+Mi1MRWe1FHPR7PF992fAAXZ3+Af0v9/Fd/+3EAJW79Ifv8vPvxp14wUlcfSlGF5QslEGC4pixQJcUU0T4rJYzlMRB6X0WFZUpRHSvmEIpovxRWxHBKVx1V0WJ5kmAjDJ+TRAikuj+UgJo9nyMOyRPK45swQCXnix/iBosiXvn/wb8/9kvRtB9RJtOt/bjP/XvXddM14kLX1yJfnP3pn+uCcjUcJnpQgStJvkyvbEDlOEFJzZEHgOCR+SU5+/zDq7dGrZi+T02to5/fG0BW1DqHX6+vAwE7yDqbm0SLtTKAzbhlGj9/ThwFzrBG6RTRgdRIdSdMIeoLOAQw4Q+0Y3hBuY3YaLbxBj67jGprLCTX15JdvUpkeAl8izN9DFFj+MD+OwHEirK8S2duppbV/2lqCKAiprB+PIpn7UPjoRJQkiJIkQpIgPQKNJIgS9xuk6k+sAiRJ5A/TGYnWXyfk9z4kDw+dlVAbug3Rmxiex12sjqMlua9Fe9Deg257qAF9K8JNzE6iidsdRlvY2ocut68NfTvJm9BP4660OYLWmHkAnV53F/rMsXpMHpuclJ590tE3998CnG8Vyn9mJPFekhgRwz/xIvnpCemfT1kiSamY7g+dheqR8JGJ+FCzHq1dEkQp8fWLpPC/vcPjMJlO8lt/WEBe+Vbiw95cSk66IfbH9qYwFLCMYdjtHsDITqRVml0UexK7MxgMmscx7HHoMGIOdmJ8metg12cwEDZOQOu1j2DE4evH2Ga8RVicQ2/MMInB4MbxyEnLCPlvT95ZOXwLPIYKCPn5v965H4t9+0/KCfmFOL5LLydBxPJ//982iBK8f2U54qf00Z0VgF78hbyblRJFhf7X1y5K3/VYXFCQmJ3/58Agv0h+6UfCVEZ9vWxV0HzvP5z+5zPzfWBR3Esrn7krSYSSCEVAU6KcJ/KkjE6qBUnJ0zQvk0AoAkakGVYOXpWklEkFERTCAxNBIUDOMg+ZiArjl48l+uaajbz1y9/9CX0ofKTcN4fJUm1vfNNNThURWiRExHb8VNXvfj5dYP75twDQ4zf+3f+xt2dL9Ndu/sxdEEoEc1TOzUd+5AA93/gLp35qnxbI4P/+FpEenBL/T4ECRQu1upl/OL+0/FvnXn7p3B+tLV75i7vdlcKH5WEKBWrDqQOSu3nKFSvZLIsFqnaKiOOMIUttrrLIsrdP2ZNF6xWhYOV2seiq2ctTWWrMqoy9UzaxYOOUN1S+WZr0VO3mM7YzxvR0Y5WVytuq8rqOx3mjCH35yfsqqaaApknZf9f/zS9ZZmemZmdnlxeL/3pS92WNJPtuDghF/uGFF79n9AYRySvETCgi0TKIqaTZHx8ftSuVIH5fM/4D+QFJwAT5NfCSlEpF912MJAmu/V/53A/lFfzwZ3991wPpo8w5JLCXSPEMbnEb/bgbNrWj0eW5g5a1xDehHcO74uoA7kT3O9HgcTShZS/yFrom8QbmhnA7sdONer+tBS3WwC10LvLfwOgw3uW2enD3GOWk00+Ds3L48CCIEmL7hl//Yj75HfueDdKjOB8Cml5H8tfJ/wYv4D9dAQTMtQU/7PT+n8JHJaIkYfN3RPaL5PsEiPjiL0KQJIjh78JECZIkplIAffmnwUsAL3z4zJeHQQ8/F+pGvzF2D/olNGF9Ch2sUY/ukGMgJScdWhPuvV9O2vewnLTpgZy01+fpw+AzLyd932sQeRECupTpBoiSID7KSxBw7x7WSNUaRB7/69MQMXgx51/eSH7XrIyPhI88FIHa+xrdNUR+ixEpIvIEFNu6RP/5Pz9joQgFSiZJFIgkEQKJkoF8mJXsh+ony47PjV0LbH1l4lxi9kuTp7PHfnAh7+LA9+7Q36N/yWf/wfHL0cWvTp4Wpn9oruSc9gsr6pe0n7InvjB+JbL61cnT/PSXpyuyRr+4nPlc/2cM4mf1z4c2fnj8nCJ5FKPM0w6KUEQGUWCm2c9mE4mmKTzCS6DJVyUyRSougiJE+ZuEHrINMZv/4ev3Th3FnPqjFkHR5CuXiEC+8kVCUURdRGT7v/+Hf+F4BMNUtsXDQmjy0WfwcppVcUSWUPKSIqmQRFVSTvFqVsawKo6SJVU85AmlKCqTCgjqpJzm1BzNsCqeyBNKQVQmFBBUSTnNqVmGYVU8JU+oBP6pmMc9BlCEYhiiIj+fIzD0o3UFFFFpyF3ySwSQOXqqyOK/2ivK+uyPTv9C6KMdaf9+fHRnhUiMoCV1GoGiSO1vElL6OztffOT+hHpwqthHf5Lni+Zf3JDX6q+ZY1f118KuFycuK/Y/M3eqYPnltbTTE9f22Mu6F7ze58auwPTqzNm8tVdX8iqnr+2QOt0LtsBz+ueTBy9NnUvb/uxiSen8y1vys+PX7IZnV076QQD5ENFGIBK1ukeuEBCyV/UyMXn+rEtOXtIsBI+mLR8ZItyagg2IAvq/lIAkifiBn3nEGfkRHAp5iZTM4ha/0Y97YVMHmlyeO2hdS7yG4XFcl1YHcTdq6EKjx9GM1r3I2+iexJuY0+JOYrcHDX5bK1ptgdvoXBS+iVEdbnBbvbgXPiZnpYyQLwqSmNoBePgLRIgfcFn6py9LqVynosR/9DniIXj8D3Le/qEia18nJWsQJPzb/w6MqRWjELkrsiNZUvwYOysirpNLSUg8vvEaBEgCvv8xEvEK+anAALTmWAsmVtGOrVn0Jk3jGAg5ddA6Q10Y2RCasTyPHs4wgf6IfQRar78fI4ZkM6YX0S7uTqEvZtVjyO8dwog11omFh04nPTKkiPjHEKXDTdH3vn/bl3/y8gf9jUffERDxJ6KP7mlISP4k+S0IEuK/aIOIW3cgoEuddXAUD+xjTTP7yO8pRSILvXOGkMctUgM5iF7dOU85Xt09lbn/6k5Wyc5LJqp67TlP9OL2Bd790m5NmvHTuwWFey8bFVUbL9jjdRsXY74XdmvlB5/eLcvbe3UvrXz7mlU4u3Y5ELi6fZbYX94pqzqewFhCSC2x71OrXHiX2oolNqm9oLBOmVzUEmU1UEuCf5fajMe3qN0wt04ZfVilDg6oecm9S60lY1vUToTdoAx+cY2yOKglyr5HLXMh28efRlDkx9KER/5vkMQeURCBI82+EkKRn/tZSGQi8c3yI0ip+PEitHNIGpEk8vZvfkF6AnG94ViGS8MFs10K4svyUowr08+pbBmReLpTw4azXCoEsj007c3yCQpHRjChcaQlIplOtRDM9sgpb5afKFxZgaTalh6NpjvVfDDbLVMf220Y2YA/FvSHAtGgzx8MB4O+UMwf9PuDPn/U7w/64yF/IBAJ+nyhiD/oD0T8gZAvEPDHgv7goUkg4AtF/cGAP+D3Rf3+YDB+BM36MGXQQvYfkCRhlM61v6ckCqII+f6dL/8sjmTL6CP3pZKITfpFTkTvF5OpyIfHOjRfJV8LtqPHEL2dEuilgh4Oc2h3H+bQvoXZSTRzu7oHObTbH+TQvvf+HNp9lljDMQY9UCuTlkgHdDtCA6YmcZvbGkJ70NmLPkewEzoD24KJBdyWlobQFLH2odfl74LWFG/D2AYaMKfH7cReHzq93m4MHkQ7oN/GtY89NP85ef3RDg5PPXUJ7G+QP37njRf/PHXCkyTie6t2cCQr2h8nDEzCn5D/Zv7T/2CGiMdOxMvk1Apa+F09OiIHA+j2+trQt528iYlZNEpbo2iPmYfQ5XN3o9cUuwftPO5iZRytSaMWnUFHH3odoRYMrQk3MDOJJm5Ph/ZjlJP+FhaH0Ryx9aPH7evCkDnehtE13MWsDvcShn50ez3dGDiItGNkR2jC9BRu8hsDaA24etBnD3VAt8+2YnIJd7E4iPqwefgfH/scUULs5uXcP6vn7k9T33x5F991P+2R8PGSuUt/9+t//h9WHiTae7zOyo+6ddAb/N3C1EqiL741L2iDhmlhxHMwLultngFpbCPanVxZELTh/WlB57VMiKNOpw5je8EufnaR7YvuzojDPvOEoHfaR6Uxi7+fO0Y56eiyyasTp/ci/dzCPNcV3pmQht32UXH8wD0iTBmDQ8LcaqIrtjYhDngPRqUxm2tEmDT5h4XZnVhfcmmG7wrsj2LE4dKLkyafTpjZwh8fQY/4Fx9OoSGJiAXv+04i/vbCOo5Ir838yUcf1CmCT33ps18qJIcnVVE3ND/5qPMF6rb8pz/G3IISX3eV/bhCpBWCkqIUkoLQjKiQiJJVUoJaYBS8GpRSUlC0TFJIlJxXSpKak8t4zX0TKAgtE5WAklVSgkagFbwKssTdpOrXco42PAFU7LUI+co5XtCIlIpTEiglOUMUkgJEwSuIqOYZOa8GUQkKGkrIaSIX5QQqVsHwGpFSckoKKknOEKUkJ0TBy2lew9Oq6F+bSfqvp3/0xkr0qPZnX5AeXcRLgSKSQoXUca0S887N5jPAH1TnHoG38jGcFQoUJUoQU3kcCZEIQERyXLlRvg0g1vDZpWrJfmmtVLNft52Wt3rWKJbPnXWHaxdrkq7zqxUK48Wt7JzNswa6dOGMLVIzfybiObNSSR9c2ijM2qnbUxatnDlgq2bP+H21i6dFW916Qfmj+5AfEgslcduZ5VK5oW4rJ3/zkklesXLGFa+Zrw3ZzyyUE9PZjbzMnUsGddnqeTtfvVgb8J6Zq+TMZ1YK1Lt1O+lF65es5NTyGV/47EJ17ODMYjHl+q9H0KwPd78UKBoSJSOEosCE/rC45Y/+6mt7pUeyYHJkI5Ak4kv/+hGnvkfirPyi7zYatiPfSAXWzA/hRmKrC3f8liY0WPxvo2VWOAys2ejB7aCpBQ0O9220rCW+gf4RvCEu9+JWZL8N99yOejTvR97C0BvHIyctJ9TawH7oNrrX+DegHcI/csttuOWzNqLpwH8HnVvJ6xicwD9KU+14K2RsQoPNcxcdu7Gb6F/CGxjtxTdiG02443LdQ5shfAu9K/ieIxiav/khnJVvu6vgVwhNCEPeBn8ET+moiCjC+Bu/XFj5K1/bf5QncyTOSup00nH0RG3DD59OuoA2aWcS3fGDEfT7HzqdtOm900mD75eTzqCdNxyvnPT3sDKKjqhdiwGPvx8jB/FuTGyiCQtjaE6YtOj3eQcwbIv2YHxfaMfcHO7xW8PoCroHoXWEezFmZLsws4omrOjQEjkY+V9Ploj7f/G3f//1r//D36wdiRb6qOSkoLj/MVIoxsjfnXuEWAyA/rKm4aMn4gPFvbTyw29b6zbz1btX95Ulm+f98artyli4aq+U99duF9OWi9vp+ZuXHXzVVlU0UrVbygVqdkrgPL+dnbF9xcSUb5wNRU9vl7OB03slkufMToHCeMFm+EX/8chJSW8No7KfNWSl7140k1PLdaHw2c1SuM7s5ckcZ4xZGnOdUV68dsGdOLNWJbjP7uYzjlpTlvrgnDE9e/uCja9ePhvzn98qYuxnDVkq61mT+tQ3fusjRGg/BEH2P//LN39VYJ6KQI+jikimiOJPD398XDleKCJSIohASRIlUpJECQQSJRCIdOoyKIFIoAUKIiUQiJREHphQlEBBpEUCkRIBIWUiHl9aEEpkiEiLEiVSEqFECiIlEiJSEohIiaBS7U1dhkiLh00VKQkP7u7QRAQRKZGO3n5MD/oDAQpi6ieaPgrn7qhYA4KURPTYEjl+R4Xb/le017D/+bFzOYufmc2r1H9qTbrY+8qB/9rgSwnzp/WX0lc/P11SOvnqsvzc4Ct7oWv9LwWsL+uuyLY+P3G6aPazi+m1ule2k8/1vOxyvjT4vLj7mbHqOvaYGksGz0X3Xh4+p175zHRZ5eTn11QXda+Ywy/1XfMZXh64QK+9Ol5ROPP55aw6/acN3AuDL7rtL/de4TZfGTmdOf+Zufza8c/v0M8Nv+zwvdz/QnT7lcEz8t0/fywP+p8ARShZCvTRbO4e3VzoQ5zDcTTOSqARrd+RqLMpYG1HmzV4C10LwluYHP1nE3U2PEjU2XmciTrLCbWqM4Yb0b/JX4d+BG9ya91o8Nvb0WENNKFvN3kHumm8Kc314FbY3I42h68ZvfuxemhXcB2TQ3grvt2BJre7Bd2mSAOG1vDlJzlHPGo8pmNyvw1H4qyc3UR/Yn8aQyHrGIY93gGM7MZaMbeEXm53BoNhyziGfS4dRizhToyvCJ3CxiwGoqYJaP0OPUacgX6MbSVbpMV59CaMkxgMbx6bnPS/YnUCfSG7HjqXdxjjlsggprf4DnFpEp1Rkx7DHo8OY9bQIKb3k71YWEBrYnsU/X6XDqP2wBAmjfEBzK+LnfzqGLqCB2O//ywR8XHlvvn2bvgInJUv3Emo4goqkZ4kqoQSvJKjiURLMpGSsQqJ18QYRVwjiOokQwkykQKRcQoRyrj80ERBcUqeolLZ4OWsQuJVkuFHg8ckJ238fJSGnFWAUycoVVQNXpOkGU4uEkIYXg5RlWBksTRO1CTkNKfkCSPQEk0gZxWEVSeJKqoGr+YohpOLhAIjUDmdP/cMOStPOnvkx0AmYym2i2m7he5ozl5ezF9kzBJdZWYVc1BipdT7Rc541k5+MFBgyObcJaY02lZqZZSmIgeXuVvgC+Xt5cS9xcZ0OMosCoWlxC6l7xd6PcdzTC5FSImdSjOVuJPZe/lBf/5OVtJZZFLTtjIrozGVuvksQ6E/nLebHXMX7afBVnIgV1jKnVKmodgXy9nLDXsLd9N5e7FJIT8os5N0Y4mHl/31k34DR4on0g8fydD8gQf+vIPRadyVNkbQHDP1o83n6kCXIXoLA7NP8MCfMkL+PeYHUB856EaHy9uOflOsCboV3MDUEG7G93rQ7nF3oNcSaYF2W7iHiQm8za31ojHg7EC3LdiKoV22EWMLuIn5PtwKG3S9z9LQ/Ikl4hXyC6Eu9BljdzGyhEasT6I9aRhJyUn7HKEWDK4JdzE/jVZ+T4+uiG0QvR5/FwZ3k3cxPotGaXsMHbEDLXp8nl4MWmJNmD4+OenKtCXSCf2u0IjpKdzhtrXoDLr6MeAIdUFnZNswuYg70vIwmiPWfvS5Az0YNsc7ML6JRsyP4m5ifwDdXl8PtAfRToxt4WsnRPy4OJIe8cJWfMS/N5cYc5um2XGHXc9N7Ph7E4vLcV1odz456jHOJMcd1kl+wuQZTE6vRAYjm/Os3muYSYw7LZPshM01wk5tBXtjywsJXcAwmxz1Lh/P6aRlhPyZuDbN6twHk+yk1T6enDZ5Rtm5rfBAdHkmOeg1TPITNvt4ctrkHk3O7Qd1icWleG9ge5Ibcdon2Cmzaywxu+/TJxc2ooPhtSl2yG2e+tVniYif4DmiRhHLSTKaSBaHjEgmhOxoOsPmxVTKeHZCpo5ksyQ9kimJmZF0is+NaRTJnIRCHc1h6bRIJi9lRjLAZ8fSZMncuEoVz0kymmiWwB7bxD03KU+L5fBURiRTFLPC6RSXHVMrErkJhSaWw9HpkSxRyoykEy47qmESOXGVKp7HMunRbB4Z0UzwWZE0ms2OqZXxnFRJUsmXn/QbOEp8YolIkercxctb9KnxS5Zo3cSlsOvyzDmZ4cXFspzVqxvq8ulL+8lzo5e83gtTdZL5+fnTWRsvrGaVzF/ak2rHLtkDFyYuJqxXZmvUuy+tFBQtXdmWnZ68bDcej5yUIuTTW2lVc1fM3PmJC17XxbGznOHSbHn6xgvruZULLxips1MXXIFLo3Ux46WpSsXWleX84qUX95S1M1fssUvjdSHrpbHTZOfyQlHO6gtb6dWzzx9IlX/ypN/BkeKJ9MNHIictnMTb3Go3boYMzbjjdF1Hw3Li7zAwgjek5V5cj+624o7bfhcNO5Fvom0U38B0P96Nb7Xjtu+gAfUH/nfQMsf/XwwP4k1uoxM3gscnJ/1FTLbj7ZCpEffs7jto3Y1eR88cvgFdJ74Z22rCHZfjLpoNoRvoWuXfgFaLv+MWmvGO13YPjebALXRuJN/B4CS+gYkWvBbc6Wx9lobmTywRr5CfDvZDa443Y/xQTtrDmscxEHYNY8gZ7sTIptiMpXl088YJ9EccIxjyBvqhM7ApOam0O4W+uE2PQb93CDprvOPY5KTlhCzNW6N9mNgX2jE3iyZ+V4++kFuLYVd4AONmthuzK2iS1kfREbUPQ+sJDmL0INGL6R20Y2kKzQnjMPp9/kHobbE+TO3g//MsEfETu6D94uq1hkxbYSJZ4Mjj4sXWAsF/ypKeZq51k0JLaTxeZM/j7qd2z5bbq62KPHNlhC225nPRIkeuEC2x5RLvqQN1pqnGKxWbS9hIibXI8v3hY1rQ/vovH/Dl5gIpWGrPpIPFrgyZr8KuyrBUeYQyQxkbrrBm0f5SZ7rMX+ZMUzkqXXT+/qlovMKcR/vKHOkyf4lbo/RUOBVZ5lM+rtxQIgb/rOFkQftpQIJTh5RSPC0sp6JpUUoW0cREeVCd5FQhpZBMC8tJLD1CM5G0GOQhTYJXBVVcUhNSSIn0CENH02KULKyJi8qAmmVVIYWYSAvLFMf2uQwqhYQ6JCOxtCjDRNLjUITVSUEZVHEJdUiOWFqUoaNpMSIPaxKiMqTmkuqgUoxpwjIqmh6lZJG0hKQMq1lOFVQKcU1ILtD/7km/gSPFE+mHj2Ro/vnUOuI96JfQiPUpdCSND68jDq2J9zA/jbbDdcShD1hH7IwdaNHr8/Ri8CDWfJxp6VamLZGuB+uIdx9eR+zGyOE64l1pZRjNEdvAQ+uIE5toxPzYd6wj7hyJnPSpGZo/sUS8TMoXUc9vadEcsfSgze1tRNdm8m3op3BH2tChKWbsQ5vP1Y5OQ/Qm+mdwA4sP76x02oP1hzsro7jL7Qwe/87KvcOdlTb0mWJNGF7BdUwN4mZ8rxttHnc7eiyRZmi3hDsYH8db3FoPGvzODnRbgy0Y3GUbMDqPG5jrxa2wceD1EyJ+XBxJj/hjHh30xkCXNL3K9iW35iVt2Dgt6Xy2cejt3gGMbcS7uJUFcShqmJF0voMJjLrcIxjbD3eJs0t8X3x3FsMByyT0bucoxg8C/eLS8clJJ1bMfh2m92N9wsK80BXdnYDO6xjFuM07giljeEiaX2W7EuuT6PdbxzDm8IxIk+bgsDS3k+jjlmfErpBhDCMutx6TFr9Omt3Bf32WiPiJdVZeWvn83aQiKadYNUspWDnFKwRCQIGWKBmrkARVgpElVaKk5GhKYABC0YJcJPKkjGLVHJSsnOKUAqEkQmiJZliFJCiI4avHFX3T8H0RmshYBXglSykSSggqnjA8AxCKEmWQFEmGSap4SZ2U0ZxSAC1RoAiRcXLwSg7K7zT5mu7EWXnyALEHTq0Vc7bqzRyZoWpXkbZRYeTyFytdgfKV0rijaiOfMlXvaNQ7lQYpd6XCFipZKgu5KtYKxIPqrQzVXtU+k71WcRArWqzwestXijhb1VZG/rHJSZdzo9aKtVzKWLWrSd+uNiNvvcIZKV0uDdgrVvIEU+V2umq32ijL3aiyJ4tXKnyeyoXChLliPUO2X7WvyN6qtgqFaxWeYPlyceSgYiVbdP/hk34HR4on0g8fUYR2E9r2om9jYAY3sDSC+lSEtq0DbdbgbXQt3p/+bQ+iMWTpQpsrNZF8C8MTuCGtDaEhaupB62GE9i2MHmOE9ogp3IiBTf4GRkfwFrfeg4aAvR0dtkAT+neTdzEyg7ekuV7cCps70ObwtaDXEGvA8GoqROcwQtvTgm5TpBFD63j1WRqaP7FEvEyq19DB742jO2rTos/r78LgLnsPUwtolXYm0BU/0KHP7+lPBdaMLKERa1PoTJr06A26BjHoCndAtyHcxdwM2njDKLqPUU76u1jRoz1qH8KAx98H3UG8CxMbqcCapoRJiz6ftx/Dtmg3xvaENszO4i6/pUVn0D2AIUe4B6NGthPTK2jEig7NEYvuL58lIn6C54g/8pb5ykph2vrL28rylcueeM1aTSR4ZuMU576wWsbsv7CWWbT8woFQu3ImHDqzXsn6zq+Xw3plLTdr9aU9pmrpYiB8dvV0wnd2s1xyXFwvUu08ZzL+su+Y5KT9FUq1+dJ2dtbGcwZSPXfFH7q4XAnbxc0C+cHFnZz0vSu7ytKF5+3xCwtnOMel9WKZ5cJujsZ4eTc9b+2qhT8zeynivbxSxlgubeWqTRf3Naf/7nefoTniYzqd9DggEZkoo6AQZTTkEs1IcomSiXIQuSSniEKS0ZJcYiDJQctEOSiZKCNELsooKCSGlhSgGUmO+yYyCnKRYY7tcynKCeSSjIZCYoikAC0T5anmpNoklxhaUkgMk2qqnCB1WWRoSSHRjKRIXSZyUU5BITHycMOTfgNHiU+ws7LrvzZyVTJ8eqIma/lT8zll49fWxfMDL1h9V4efT5hfHqvTrH96trh4+sVVpmb4hf3g1aEXgrYX9Bdk25+eOlUw/8py2unRazuJS/3Pu5zPDV8W916ZPHX22OSkwzXR/Rf0NcrVV+aKy2Y+vaE8N3rNEnl+8Dmf8QXtWWrjxamy/PlPr2acHX/FwF3VPed2vNB/gdu6NlaZufTKYu7pyU/vUpf0Lzh8Lwxdiey8MHya2fuzJ/0OjvYZPQkcjbPivZ/7ZgKvY24QNxJbnfdz3wTeQsus8I8Y1eJdbr07lfum3uG+jea1xD+ibwSvi8u9uBnZb8M9Vyr3zZvHnfvmFrrW+DegHcQ/sA9y31hSuW/ePcx90/ZQ7pv23dhN9C/idYz24h9jG02443TdQ6shfAu9y/j+Z2mO+Ikl4mVyZgt9nGEagxHbGIZ9/gGM7CdbMbeMHmFvBgMx6zi0fo8OIwexTkysSh3S5hz6E5YJDAVdIxhxhfowts01Y2kePaxpEoOx7WOTk/4XrE2gN+LQQ+fxazFujQ1gZlvswNIkOuJmPbQ+3zDG7JFBTBv4HiwuooXdGUV/0KOD3hkawqQp2Y/5dXSIa2PoDFvH/vBZIuIn2Fn5vpvhXK9G5i8K0hm+HI7NCqYJfFokTeCz/BlSpMCrSPMUxIUcX4aYzAyrJD4jlC4mc3xqua8oSGV5s4VkdlAtsekRjcRmB9JIOC9u/MnAMS1oN7/CyhLZAQ0TzA9Sme48Lpnn11CxrIicTmaGVXQsNyDTeApifJ4nk0RzQwomlhFT0PHskEoeyAsj25UrJPICKiaaFZEz8awIU9D4b54hZ+UTO0ckJJ1x5fsktTU3mMy0ZSejeY50BApdKpmnwEtUjrwAm27NicVyHBlCKN+pob0FHkbpzPcLadaccCzLlsmF8hxplL/Qo1C4C3zQ2HNDweN5HhQhBT5a7cwPcRm27Ggkx5rOB/KdKsZb4JGpnQUBMcOeG4lnWzOSgVyHmvgK3HKFu9CPdGdemM20ZSVCudY00ZfvUsjcBT5K48wPSvTXn/QbOFI8kX74qHJot35wDu2mh3No96Dv4RzabUnjMDqDzj70OkKtGFoXbqZyaO8fdw7tpWG0PJxDu/3hHNoD6PJ6elI5tPW778+h3Yt+e6jz23JoR0xjJ3LSj40jOlWgDd2G6C0ML+Du4akCWrQH7b3otgUb0L8i3MTsJJq4XR3awtY+dLl97ejbSd6Efhp3pc0RtMbMA+j0errQZ47WY/LG8YWBjZvDbRje5u9hYhw3uM0BtAWdPei1Bzug3WebMDaPm9LiIOojBz3odvk7MGiKt2J0HfcwO4Kbid1etHu8nei3RFsxsomfPQIivnZCxCOQkyZGgntz7KjHPM2POR16YXw30JtcXE4Mh/fm2VGvaYYbc9kmxAmTb4CbXo0NRDcXOL3fOMOOuayT/ITdPcJPbYV7EsuL7HDQOMvpfSvHJyeV1qZ5ndc6yU/YnOPctNk3ys9tRwbiyzPcgN84KYw7HOPctNkzys3th4aTS0uJntD2pDDicozzUwfuMXbWENBzixuxgejaFD/oMU/9xhEQ8R+eFiJ+jGTuHwsfO5n7t9y1vyDIKUouKmhJJTEKQUVRSshllIKS0bQMcoooRLlMTGV1Z4iSyBhaTuQUpZDktKSWGIWgookScnnKRC7JFd6b7HEkc/9WhHztLKuk5DQth4yGUpLJRSWhVJJcBiUlk1FySkYThSSTSSrQKlHBQEVkcqKgZQwtIzJaUkqMXFRRUEkyGVFQMpmUr7z7cZO567X8j2qO9m4/Kj6xzgpFyjQrZ7ZQPFVrDldPnwk6z8ydgvHicn7a+tlNecFc7X701GStx1M9e4oz1y0Vq7fqNjS5S7V7XNlkrc1XPX06Zj0zXyrbvbialbV6dpcUz56xmeTH1Fjy3I6iePGMOVE1XeN21k5UJA21i/nKzbqN9MKl80axcrbG6audPB021s4V0dtnVzNzVi7uMxXzZ2yRmulqv7V2slTcrV3KTl+r21GULZ4/4Av/9Aja9cNZ4lPBw0+us3KJlM7hNrc5gPrD00nvom0t+S0Mj6cCa+5FDV1o8jib0boXfRs9k3gL84enkzamTicN3kbXIv9NjOlwg9vqQ/0xnk76K5jpwa2wpR0tTk8TugzRuxhcxFsY78Pb8Z12NLldzeg0hevRvyHcgF6P17jlDtzxO1rQfhBsQN928g50s3gLM514J7TX3/aYT546VnxiiXiF/GyoD0PmWBPGV9CGzVn0sKYx9IedWgw5wx3QbYhNWJpDF2+YQF/ErsOgN9AH3T7bhKkFtEm7k+iNW0cw4PcOYtgaa8f83WOTky7PWaN9GN8X2jA3g0Z+V4/elJw01I8xE9uFmRU0Smv6VMb3IU9gAHpLogfT22jD0iSaEkYt+n3+AYzYYr2Y3MGvP0te8yd2QfvF1asN+XuV0Vi5sYQNV+2ViM5zu5mZO5etVOlOdThWuV+SjFQaikVf7U6e0njRoCjZOudLntotT4QrDUVi4PR+IWU/t5ees3XRIVVsV8XDp/YqrN93XHLS//MbRrZmq1z01BjyKM9pc7bSdtaoydk5bxdOr1cnArX7ebT7tDlL4awxZ6YZzx3QpWvngtHa7RLKWWvMljtPH2RorGcsyrztc65kzXoV7/+bmycL2k8DRCg4ORGVnIzmlTzN8EqekrEKUVJwciIqOBktKHmG5hUCJeMUAuScHJKCkxFByadMZJxChIxVSJKCkxNByTGyY/tccnKICk5GCUqeZjilQMk4hQg5K4eQuszJGF4p0DJOKULOKSAqWDkR3jNRiUTOpZoKQcnJJNUvPuk3cKR4Iv3wkQzNPxfsRr8xVn94hMoUOlmjHj0h5yD6HaHWlJx0YQbt/P4ouiO2IfR7/N0Y2kvew8QcmqTtcXTFDobR5/P0Yegg1oLZY5STzhxEujG6JzRjZgr3+O1hdAVdAxh0hnowYmTbMbWEe9KKDi0R2yD63YFe6MyJTkxsoRkLY7iX2B9Ej9fXh2FrrAvjJ3LSI8CROCvFM7jJbfThbtjUjgaX+zZaVhPfgHYM70qrA7gT3e9Eg8fRiOa9yJvomsAbmB3CrcRON+p91hY0WwM30bHA/yP0w3iX2+rB3dDxOSv/FtNduBE2t6LJ4WlAx370NvoX8DpGe/BGfLsNDW5XI9pN4bvoWxfexcgIvsEtteGmz96EVkvgHnq2krcwPI03MN2ON0N73TdOiPhxcSQ94k/4dNCbQ12YXuN7+e0FDEVN09AFHGPQOwL9GN9MdoqrixiMG2cwHLSNQ+/26jBmiHZiblnsZfdmMRw6mMSIx63HmDXUh2OUk04vW4LDmDYk+qTFBakzvjeBYb9zFGN2vw7T5ugg5teETnZ9Av1B2yhGXb4RTFrCWsztsr3Cygw6I8ZR6NzeEUxYQ8OY3cV/fpaI+Al2Vj59DzxNiTQoUAyn4iVlXE4n0jiokjKaUwiEEFqUiZQ8oQCnidPKhEoSVByVMiEyTilIygQji6fxojopozkFrzR9KXRMzsqNr/iImqVlrEIgFCiJARRJGcWqWajjCopT82AERiKEyDiFJKiStDymEQQNS8tYhYj3TOikmpU0cTnD/UbfibPyNMATLt3L5z2nDFmMtdwi1xhK7VzOZqk/XLRbmPSVG3Ioe6VZpTKX2qSsnVJ3tGC7MOYv3c+VnKeM6YqDciuTsV/qTOZtFgeDJbt5vLvckJYtHldrt7Pj7tK9LMpWblFpTKfsJHu/1Bsv3C4Me0p3skV7qUmjtFTamCxDuYfN3y0OBoo3c1hn6X6a7KD8QJ5hPOUS8/ZKA5Gi7fyYs3QnUwj97pN+A0eKJ9IPH02Edqgd3YboTQwv4N6DoIeOoL0X3fZQA/pXhFsPgh7aw9b+9wc93JM2R9AWMw+gy+vuQp85Vo/Jm8fmrKxOmMPtGN4R7mFiHDcfDnpoh3afbcb4PG5KS4NoOAx66Pz2oIe9w6CHAUu0DSNbeOVZGpo/sUS8TKpW0cbvjqIzah1Cj9fXgYGd5G1MzqNZ2h5HR9wyjB6/uxf95lgDhhdQj9VJtCeNOnQHnf3od4baoF0XbmF2Ci38vh6dxxgG9jtY0qE1ahtAn9vfA60l3oHxddRjTo+GhHEQPT5vL4as0U6M7gotmJnBbW5zCO1Bdx8G7OEujBjYdkwtox5LWjRGLMN//SwR8RM7R3xp5UtvGZ9bKkpfe2VTVbH0nCt+ZvlMOHhu9TTrvrRczuy+tJJZvPiiRaxdOhcKnls9nfRcXKmE5fnlvOzlV3aZ0wtXfOHzSzUJ7/m1Ssl2ZaVYvfWC0fBvjktOOlim1BivbmZnr13bI7XTz/kDl5eqRNvltSK55fJmXvrO89vK8tlrttiluXOc/cpqCWO5tJWXtnd1J71g+Xkzf27qStjz3FI5Y768mac2Xt5Jq/6b33+G5oifYDmpQGWwGTIpm0uTCdm8AlymKEtLZoJOZ9NpZLFpCiGbV4l8lihP4zIlOj2ZQSGTTZeL2bya4rMFuYbNkug0NoOQDDZdJmVxGvWxHU/KpYtSJquRi9m8mnDZojyNywSdnsygkcGmycQsTi3ncwQl4bIkOj3VpjRGzOLUCj5bUMq5HEl2eDmdljJZjSrQ8qTfwFHiE+usgOx7L46f4w3PT1doVq8sZhRMXdzgT2svHHjP6y/ELFcmqxWbz8/n5c5dXCMVIxf2Aud1F/zWC+M1ZOeFmZLsxSsrqtKJCzuxM0MXnI660bPc3pXp4tPcMTWW6Moj+xfGK2TrV+ZzC+Zf2GROT1wwhy7ozntMF0aqxM2LM4XZC8+vqU9NXTEmz+nPu+wXhmoT2xcmijXLV5YySmee35XOjl1weC/ozoV3L4yWU8aPH33zNOGJTAiOxlnx30XTTuRb6JnCW1jQ4nZiuxv3/ActaLIE3kXbvPAtjOtwg9vsxd2QuQ1NTs9dtK0nXsPAKN6SVvpxJ2LoQKPb2YhWQ+QdDL91fLlvhgyhu+hd59+CTovXuJUO3PHbmtFy4L+H7u3kTWgn8Zo004l3Q6YWNNm9Dejci93G4DLewng/XotttuCey92AdmPkDvpX8YVnaY74iSXiZVK7hV7eOIWBmH0UWn+gHyP7bDPmltEl7c2gP24dw1DAOwzdQbwD4ytox+Ys+pKWCQyF3Dro3OFejG0LTamM76ZJDMSPz1n5Q6xNoCfmHMGwN6DFmDXR/yCwpj1p0WPI7xvGqD02gCmD0I3FBTTzu6PoDXmGMeKMDGLSzPVhfh3tWBtFR9Q2+t+eJSJ+gp2VL77rLT/IUtiqHbK8g/JYosiWx8ULnHl8rMSaSzynDtRZlqqAUGwtYGOFzmwhXuTIFUPlBxkqa7WTLrCUJmPF9hwhVuDKliKltmzaXeE3/Zz/mJyV1iuSIlDqTFfaT7lIobEiHiu3ZlOBElcaEyx2p8u95Q5FtulUkC0zF0rBMkc6EyjyaBS+MpdaY6v0SMWGMjZSYc1ifKUutcJf4lGU3Pz1Z8hZ+cTOEQnRyEI5EaLyZcWFdH86n8wMpJFYTkghC2eHaaU/Oyam+TJZNtOfJsVzAmpZOCfEKIPZUUnjy0xyGf50IZEd0NCR3JBCEcqOELU/KxE7tpeSE2FUgeyYmObPYJOZXo0YzQoomXBOWKYM5sSg8WeyXIYvjY9l+VVUODskVwRzo5Q6kJUQ0v3pfCLTp0EkO6iQhXMijDqYHSPkW0/6DRwpnkg/fDTriO/JSQcfyElvpQJrtsbQHjdr0X24jlifWvW+LyftCjr70PcdctKOY1xH/O0HctJet68bQ+bYt8lJu72eHgxaox2HctJp3OI2Bh+Sk47ss22YXMI9LA2hPmIa63mWhuZPLBGvkq99e6LOex+cqPMWt9WPhsNEnU3o3Ey+Be3DiTpbDhN13oT+OBN1GsONGNgUbmB0BG9yax+cqHO2GzfC5ja0OXzN6DXE6lOJOie/M1HnGv7Fs0TET+wc8cXVC43lixcCofNLtQnPpcXTkvGlhfzc+U/v0jVzV73h84tnYt6Ly1WC45WJioy5zy8oT8+8ZI/XzZ+PeC8uneYdV5cqmN2XlrOKZr/HIJ6bvRz0X1w4a/9c5JiCHv7s97fiV2bPsbbnlsoY89W1Qs3utfX04rmXDdylySsR1/MLlZT56mq5ZuN7FnPyF17aoWrHX3IHnp+phfn5lSKl4epmTtbWtS1V2dyLltjViYtJ19uvPUNzxE/sgrZENr5StlIXCJ9brkm6L66U0+YrW9mZO5fNdPnqBW/szEptzHdhpSpy5W+LqfDZ7V8QStcvuNia5bORwPmVKsF+ebVEYbiym567dckqnUqVdJrEyDF9Mv9HrytRu1KTdF1aKactVzby0nav7qkLNy46+KrVsxH/hZUK2C4cvHGx3JFV+A9//CkTVb52LhA5u3JasF9eK1YYr2xlZ21fMcpL1us8iZrVmnig9Em/gyPFE+mHjyQe8ds/QxShCKEJ9e1X/xN2x/FrhCHf+ck/NHkINMk++qHZVUEYOlXfB7SAenCZIjn35tEV3VISQihCHzbwO0zuX6ZJ8TMzNH9SvWYpRr49YgsEhEjf1qPRDPmxcepyx0uM+AHZYA9NHi6XcMKRd4oiTyQpVd8HtAAPLlOEvXq+7UvrmypCExDpsIHfYXL/Mo6r+34C+IQOzVD9m794lHPzpJBIIl8SqK/eo0UxU/bdkxpQiX9ZccRrWhQp/KnX07/rJjYoMULAa74ivLyZJMhiHqGxbM4ntSP5DnwyiUiB/O7Pf3ceQu75EVdq9PtMjpu++XLsu783qUh1xDk4KDB/+VuPULHK+OUQRR0OvZkdNcnvbgNZLnkqXI2Pj08mEUFBduq780Wi1ffvTxAJVVEkMo9QMqijzn0DZfWjNFZ4qHVMeekjusMnRHyCoEB9x2zwAwAiPph+UYTwRPrubw3UEfOQUKDwCI2VaOmh/4FEHiki7chb+6TwySRiarj9rpDem+0BhFCEfqRO5qjf7KM19tvqfdTGPis94jMz2f0nQB2+KbmMfOTl88fW1gcrTNTT39ijxjNORICklnmWQoTnn3RrvgsElqRGZ0hEOLbTKZ9SPONEpLOZ73uBUIQE0pRfPf9UD2MUKftxeQ5DCEVkObIfrXiqG3v0+ITOER8NFMnuZvNzQYP83GeThdlP9fI9BeU//hFTTmhCqsaFsqNeRHra8YwTkamkJIkGBVJJjnxd5mgBCmlnQBGKEMXpo19EetrxNPcRHxsggERoUKCIJJGn+9VSoIiE1JYfnvbGHj2e8R6RolLf7v/wNOO9Rn4CGnvkeKZ7xBN8cnBCxBM8FTgh4gmeCpwQ8QRPBU6IeIKnAidEPMFTgRMinuCpwAkRT/BU4ISIJ3gqcELEEzwVOCHiCZ4KnBDxBE8FToh4gqcCJ0Q8wVOBEyKe4KnACRFP8FTghIgneCpwQsQTPBU4IeIJngqcEPEETwVOiHiCpwInRDzBU4ETIp7gqcAJEU/wVOCEiCd4KnBCxBM8FTgh4gmeCpwQ8QRPBY47CdPhYX//b8tt9ckFKIigGTzuJFDHTcT7Z3id8PATAopQMoLH328cMxFBKEEiREaf9IifEIASbu9d+clnrkcE9Wf3Mrk3r0nf9aidEzwVEGV3/jX58k8+9o7j+BN1GrcZMfyY7+oEHwNOQm2tX5Qec5d4/F4zQ5gT3/yTBBlB0eM/0+D4KQIiPkOnuf6/ACCkIPNxd4gnfdUJPgDixy/iw+KEiCd4KnBCxBM8FTgh4gmeCpwQ8QRPBU6IeIKnAidEPMFTgRMinuCpwAkRT/BU4ISIJ3gqcELEEzwVOCHiCZ4KPDEinsRBnOBhPDEiPtMnlp/gQ+Px8IG6r6I6/ALau/UiIYSAPHz5oS8f9vJHMHkaS/rAvx1XSfcHJXxbSU8Ej4eI0gMVVeoLiEx+/9eHLj/85cNefkZKoh5jSQ8L26hvK/Gx43EQUbxUTkSJEWQSZDxDRDlPi9m1MSKJMgmMwACMwBBJxjNElIkULcgkMML9v903oXm5SN67zAipy5TwHZelDzQhUspEoD6gJEkm0KnKeXmqlVLKRKS/zeTB30S5QFOCTCTM+0xE2ftN3iubvn937zN5cDllcv8RHTaHep+JJD98RA9dFmSHl++b0ML9ZyjjZPjnTDgZTwiB8LAJDxn3RIj4WOaIP+zgd2fpLt4ySvWEvV1Ur5HtkM+Y5B305jzdJZrG6Z64c4Dqs0cb6ZFNqoVeW6A7pf1Juifp0FF9vmAHNbgrNNJzy3QHtTtNd3NWPd0X9vVTgwfJRnpslW6hN2fpLsEyRvdF3UPUoCvaRuk20EAvzdGdonGc7o07h+lBf6iX0hr4BnpqgW6hdifpnqRdRw8E/f2U1pZspUdX6AZ6dYrq5A/0dH/YO0gPuWPdlH4HDfTcDN0imkap3phbSw95w33UiJlvoScX6Hpqc4zqSjiG6UF/cIDW2dguamKDrqeXxulW/kBH9QX9g/SwM95LjxvQQs/N0g3i3gjVE/EM0kPuaC89ahE6qZlluoFaG6HaEg4tNeAL99N6K9dNT+3QLfTyBN3AmbRUXyA4QOscyR56ch8d9MIC3SBtaan2iGeA0jrjvfS4Seii5zboFnpNTzXGbQPUgCfaR49ahG56ZpvuoFdm6UZuv5/q9AcGSCnxj8in90gnvbRCt2B7mGoKx/qeCBEJjhWSiH9NyG9h0B7pxvQu+rG5iiHRMIcf/PnIGIa9gT7o97kerK5jUNpfhDZpnYYu7BvGyEG8E3Ob6MfuEoY4ywx0UfcYRpyRXoxvi93YWMEgb5rDcMw5AX0gqMWYke3A4hr6JMM8tAn7FEaCPj3GbPEeTK2jG9sLGGKt09CFPWMY80QGMbkrtGNlCf28ZQbDUdc4Rn0hHSbNbDfmltEt7c1CG3dMQh8I6DHhSAxgZgvt2JjDQNI2iZGQbxTj7ugwpo1CNxYX0M2bpjAc8YxhzBPWYdrK9mNhDe3S9jQGYq5xjPqCI5i0J7SY20U3VmfQnTwYx0jAr8eEMzaMWZPQj+VltPP7ExgKe0cx7o7oMGPhhrC0hW5sTqIn5hjFqDesw7Q1qcXCPvqxvoCOpGkUWn9wBJP2uBbzRnEQq2voEXbH0Bdyj2DcGRvGrJkfwvI2huK1f4WOmFUHnScyjJkDdgjz7n8g5CsQpeMlxnfgmGenAP1L75L/+LucJKpjaRzSApl8IterKLz1H774LgmlC7wmphIkTSSDFTJ9aVSoMCBLC2TzbEZYLQrqmIaX0oPpYizPp1QF8uJiVjBN4DUxpSimRdJ5LsuvZoKFQTrDn82zmSG1yGtiGkHICKZLsVy/XOPLTwhZQY3EpsUUENIiaSKb5VfLAgUhKtOfJSaywkpwmrhK4jOCaSSSF5ClefOSfHZQTZLpUQWEtIhGSub4lQp/fgRZ/kwpkRVWElYTV4LLDKZR4bwgne7NY9ncgJqKZ0TlFJceVZFEdlCh9OVHxRxfBollR+QUq4krCZsZUtPh3BCV6cnh2ZyQko5nxGQUlxZTUfHsoFzly4vzub50OpodkTGJtLiCYjPDKiaUG0aWJ0dI5AUVslhGjGHYtJiSiWWHGI03L8Hm+dKYaHaUkcXTEjImkRlRyoM5USnbnS3F8kJyRSQzTssS6XG5LJYdptO8OUk2z6+RhfOd3/sHX+M4RpbIjMoVwZyYkONOy/uDb5GvdEjUM6lZ8RcRttyXqwiXBtLS/CUhhargkpvO9xSLXJm3QB4r92VoAiUhZZanJEbyPMW8UOItpBMVvhx1qDSozvCVROhcd0lSLPQUkmS5N08ZKQ+kpQdKwrIcd3FcyvcUimyJN18eq/BnpoVKw8osT0mU5LmLOL7Yk0/HK3y56lB5UJ3hK4nSue5iVij0FCBZ6stVRioD6RmB0og821MSF/PdhSJb4s2TRcv9WenB8rAq21ccJ/nuYp4r9uRR8VJ/tjpcGdRk+UtjdK6nKMkXuvOlRLE3RxEpD2ZkBsojilxvSUIscBeKyWJPLhMt9WemByvDyhxfaZzke4p4rsidT8VKfFnqUHkwLdtfEWPyPMWcUOTOR7zEmy2PlAbSMwKVUUWetzQpFXoKxWSJO4eJFPszNMHysDrXV56g8j1FAlfsziXREl+WKlQaVGf5K2KyAm8JLxR58kmsxJMlD5cE0tID5RFFnq8siUJPoZQoducwoRJfujpQFOekYHmSLvIWC1yJJ5eOlngyVf7Hy8D7eBxD82+jxRy6A+0qGrE4ixZhc0K48P8EetHu9Dage5O7h5l5NEsb42hLGLXoCLja0bkfvYWRRTRgbRKt7J4O7SFbH7qswXvoXxbvYn4KLfzOCNojBwPo8vha0budvIHxWTRIW6Noi5kH0elzd6PXFL2LoXncwfI4WpMGLTqDjl70OkItGFwTrmN6Ao3c3jA6wrZ+9Lj8nRjYS97ByBTuiOsjaIseDKDb4+lC/0GsCbolXMe8Hk0J0yA6/a4e9NnC7dBu8XcwPoY73PYQ2lMVBDqgNSQbMTaL69KKFs0RWx+63b4uDJpjbdCv4Q5mdLibMPSjy+vpxsBBpB0jO0IjpiZxg9voR0vA1Y0+e6gDw3tsCyaWcAeLA7gXsfSgxxnohNaYaMXYBhowN4abiZ1utHl8nakKRreEZszM4S6/1ov6gL0T/dZIO0Z2uRZMraAlduavcDNi7ECHI9SO4f1kK0Ytrz2RofmxEPE3u/klHe4mdnpwz2u/g/qN5F8/X7KNm1jQ4w671Y/6kKUFDcbAm+hakN7F7Chu8+uDuBcxdqLR6bmFlpXkG9BP4Ja0MoS7sf1uNPocjWjZjbyBvmm8g8Vh3Enu9KIhYG1Dy0HgBjoWhDcwMYJb3GYf6kPmDjQ7PfVo30i8jqExvCOuDuBu1NiJJo+zGe3G6HX0TON1zA7hdnyvG40+eyvarMG76F7mX8fIMN7ltnpQHzhoQ6vd14iuneS7GBzDt6TFPtwJmzvQ7HQ3odMYvYP+ebyOiX68G987rKDDHKpH3wb/DkZ0eJ1b7cI9v60VbdZAA3p2krcxPIXXpdkuXA+bW9Hi8Daiez92F0MreAcTA3gjvtWGBre7CZ3GyD0MrAu3MDqGN/jFNtz02ZrQbgnVo2+LvYORebyL2R68EdpvQpMt0IDencRdDC/jFqZ0eDOx1oTbLlc92sif9mNoVbyN8Wm8Kyx14C1X+NPPLhF/C6MH3mF+YSc2mtheT06E9xfx1R8PzIoTTpdenNoL69iNjeR4ZG+FnQiYF/hJr2NSnDL5tfzSZmI0trfCTgRNi9ykzzYnTtm8I8LMdlSX2FrlxkPGJW7SdzAvTLldE8KMITTErqwnRyOGJW7Sb5nnpz2OGXHmwK/j5zfiuvjOMj8RNC9wUx77rDDj9I4Lc7uRweT6CjcaMi/yU17bHD/jdE2Lc6agjltcTQ5H9xaFSZ91jp92OqeFOZt/jF/Yig3GN5f4sYB1jp92OWb4WZt3SlgwhHXs8hKrCxvnhSmPfZaftbun+HlLcJRb3kgMRnfm+TGffVaYcbimufkD/yS/tBfVJdYWOF3APCtOO13T/NyBb5JfNIVH2dW15GB4b1YY97imhTmbd4pbNAUnuJXtuC62OcuP+KzT4qzdO8UtmAMT3PJ+dDS5scwNBQ3T4oTTMyXMW/yT7LIhPM6ubSZ1kZ1pQe+xT4pzVv8kt2QITbCru7EJb8VfYdBnnhQn7f5JftEUnEguuv/3EyEi8yfHPPRTrcvkU6/yDK8QaEpQsDRJqpKQMR3+n6SSDMUqOYoWFBxNeGWSYmJqTlAm5FRSxVI0Lz80oZKqpKSIKSVWnaBpVskTmlfwFM0pWchiKk5QxQ9NOLlI0byCo+iEkpUUUYXEaRIUk1TxhOEVPE1xCpbIYiqeU8dlVELNEhmrEMEcmnCCMqoAq05SDKsUIOPlAkVzCk6Sx5Qip47TTELNQcbJRcJwCp7IkkqeV0XlhFUniSyp5CHj5QJhOAUHeUwhcuoEwyRUPOSsXEz9TZZQCLwqJqOSahbypFKQ5LxcJDJWwYuKmEJKquO0LKHiJTknlyDjFALkCbnAqWIyOqHmJEVCKYoKXi5CxikEQRGTI6FJUPK4ShAVrAySjJMLkCXlIquOMYcmClGU8zJRknPylElSnSDyuDrxzVcvC5Qk5+SiJE/IJVYdJxk9k+Tsz+GZdFaweDZhvzBfzuyeXc7KXKxdl06/s3EQrZ05F3afn6umjOeX89NWa9dlBdO1+4nT02d93jNztcLBxcUS1dbZNU3uQu0OXzF1xhGsnjmTsJ2fr1Tsnl/Jzlqu3SIlk7WWcM3UmZDzzHwVMVxcLkhfP7upKJyrNcROT57xeqpnq3nL+cVSzdb5jbT8xdo9vmKy1uavmaqJW88slMt3L67m5Kyc3aVKZ2stodqJM0FHzVwFZTi/XJi1XrelLF6oNSVOT9S6nTXTp1nTmaVizebFjfSCpTMGsXK6xu6rnaiJWmrmS2W759dy8lfr9piyuRpruHaiNmCtnS7H/tnlvMz1izuq0sWz5uTp6Rq3s3aiijXULhSqN89vZBQvnTdKp2ZrnP4zE9URU+1sMbN9djU7b+XiHlMxf8YerZ2qCVprJ8vE3dql3Iz189uqsoXzB2zNbLXXfWbyVGKvdq5AuXF2Q1O4dNGE6rkz7sDZqZqoqXaqiN6sXcnIXTm/z1TNn3fGzs5Uh+xnpsvEzdqF7PSVmn0/v3rZyp6ZPeP3nJk5xe7VTueplh8vAx+Q5DEMzb+NZlPwFoZWUI+FaTQJm2N47leDPWhzeu+hc527g6lZNErrY2hJGAbRFnC2omMvegO6BdRjZRzN7J4WbSFbDzoOgnfQuyTexvwkmvhtHVojB33o8Hib0bOVfBdjM6iXNvVoiZkG0OFzdaLbGL2NwTncwtIompOGIbQHHN3odoSa0L8qvIOpcdRzu1q0hWy96HL52tG/m7wF3SRuSWvDaIla+tHp8XSizxJrgHYR72BuBA2JVAXd6LWFWjG0KdzCmB63uO1BtAXtPeh2BNoxaEjWY3QG70jLQ2iMWHvR5fJ1YMAUa8HIKm5hWovb8f1edHg9neg7iLRCty3UY3IC73LrfWgKOLvQawu1QbvHNmN8Ebew0I87EXPX/QoSLRhdRz1mR3E9sd2FFo+vA/3mWAv0W0Ijpmdxm1/txl2/rR29B5FW6Ha4Zkwuoyl29q9wPWJoR5s91ArtXrIZevO3nt054n8c5tcn0JY0aNHud7WiYzfa+qNlJjRjdQqt3N4I2sO2HnRagncwuCo1YGkGLfzOKNqjlkF0un3N6Nlkb2NqDs3S5hja4yYtOv3uLvQYYrehW0Q91ibQmjQMozPo6EOPPdSEgVXhNuam0MLtjaAjbB1Aj9vXgf6d5G2MzaBe3NKjPWYZRLfX041+S6wBwwu4haUxtCZMWnQFnL3os4faod0QbmFqAvXc3jA6QvZ+9DoDnRg65NgtaVWHtqh1AD0ebzcGLbFWjKzg1iFbB9Hlc/dgwBrpgG4nxbFb3NYg2oPOXvQ5gp0YNrAtGF/ALWnpkK09Ln8XhkzxNoxtoB5zetxO7PWh0+vtxuBBtB36HaEZMzO4za/1oSng6Ea/LdyBkT2uFZMrqMeSFncipm50O4OdGDYk2zCxjmYsTOJOcrsLLR5PO3rpPxvF2JbYgtkFNAjrA7jriX3x2V3Q/q3/vZKnsNXaFTnWsjCfby+IMv4fe+l1d5k5H+5qc1rmQZVfKrAWxdh8R0EyWWQt5IKV5kyVtcbJ5B+UxpKFtvwkW2Av4GKl5lzaWX2gyrGcCvJF1sJEosCZy8eLrQVCoNKSnmaudZNCS0kiXmTP5eOFjlwxUmbJlturrfJ8c2WYLTnI56NFjhwxWmLLJd5TB+pMU41XLDEXs9ESW44YLXLkIFR+kKm0VdvpQlNFNFF2kCtGipxZCJfas2lPpU2Zbajx86XmIiFUas9CuNiZRfsrrGkaa5ULJcbyRLTcmo1QsTOTCpY5MhTOUw4mb786lCw3F0jBUnsmHSx2pcu9FXZ1+kGVRygzlLHhCmsW7S9xpcn9pc50laPSRefvn4rGKs15tK/MkS7zl7g1Sk+FU5FpOeXjyg0lYqDSli73lbjVSm+ZW5Vmr3SjaK8yHjllyZF5yp1qpa/Yq1K7y92ybHNFKH7KUATfKbtG6Sn1KNWeUq8i3ZX98u/8x8VKNlhlyVK5yl1KtafEVfx///yZXdCmFEShhIaSqaGhGQ00CuFCDa2EhsiV0FByFTQ0o5bUDJ0GlZykEYWSaIhcBQ39ngmVRpSKw/+mZCpoGEYjqWV0OtQKkkbuX1bTjBpqhtZArSDpUCoP/5uW3b8so9KISknSKLkSakqmklImMloDlYKkU4qHSpLUMloNtZykQ6kiaamSUhWooZJRGqiUJP1+UyUNw6QuSyoFSScK9UNtUjG0WlLKSRpRKpH+8E2roZRTGqJUkHRKqULae3cgozWHD0SFNEqmhppmNIf1yogGSiXSKIX6sE2p/6Y0UCpIGlGopHRKppbeK0kpJ5pUSXI1NHTqDpT3K4eGUqiRRss0j5eB9/H4hubWpEGLNr+zFR07wv+qqjagKTU07+rQHrZ1o/MgNTTXY2kaLfy2Hm1RywA63d5mdG+ytzF5ODS3xU1D6PS7OtFtiN6CbgH3sDqO1uT+MDqC9l5020ON6F8RbmFuEs2pCqz96D4cmm9hdDo1kWyLWQZTS8mp6d8CbmJpFC0J0xA6D4fmNgxtCLcweTiR7AjZ+1JD8/3p301pdRitEWs/uj3eLgxYYi0YWcFNzI2gPmEaSA3N/dZI++HQPI6b3OYg2oLOHvTZgx0YNrDNGF/ATWlpEA2HQ3MnhkzxVoxuoB6zetxK7PWiw+vtwoAl2g79ttCE6Rnc5td60RRwdKHfFm6Hbo9reTA03w6butDlCHZAa0i2YnwdzZifwJ3EVheaD4dm/YOhuV5Y78edJzU0PyZnpdEYvI6BZdzF/BQahA0tfvDfBrrQ7PDcQfsaexOTM6iX1vRojO/3oyXgbEbbbvQdaOdxB8tjaGR3B9ESsnah7SB4C92L4g3MTqCB39KiOWLpQZvb24iujeTb0E/hjrShQ1PM2Ic2r6sdnYboTfTP4AYW9WhI7A+gNWDvRKc9WI++FeFNTIziLrcziJaQtRsdTl8renaSN6Adx3VpVYumiLkX7W53O3rM0XsYmsebmB3GvYSxD20+Zwe6raFmDGzwN6DX4Qa32Y+WgL0LnfZAK/r3k3cxMo03xcUB3IscdKPD5W1DnzHWiOEVXMfkIG7E97rR5nG3o8cSacbQlnAX4+N4i1vrQYPf2YEua7AFg7tsA0bncQNzvbgVNnWg0+FvRb8h3ni4RzOCt+NbHWhye1vRa4o2Qbch1GNqGjf45U7c9ltb0W0JN0O7zTVgfBH1sbN/hbfD+y1osQebMbibbITO9Cw7K4vc/jJ0SessRoJeHfSWyMxPn3GKWml3BTrWMoeRqGsceke4F9O74gC2VzHMmRYwEnNMY9QX0GLcwPZiZR1awbCIkbhtBqNB7yjGrbFezG1iAHvL0CUP5qAPuycw7g4PYWqX78H6CoY5yzz0EecUxn1BPSbNyR4srmFAMB5WMBbwj2PSERvE7KbUg+1FDCdsMxgNeiYw4Y7oMLPP92BlCQOcZRb6sHsSE97QKKYPkgNYWEO3sDsHXdQ5hXGffwzTjvgw5nfEHqzPYyBhm8JowDeOKWdUjzkzP4DlZfRwxmmMhLwTmHSHRzFrTQ5jaRM94vYMBqPOCYx7g6OYscVHsGgQB7C+gJ6EZQJ6f2AM047YCBZMvBara+jl9iYwFPKMYdIV0WPewg5jZQcD0vYMeqO2MYx5wnrMHiR1WNoXtdhYRl/SOAqt3z+CcdWfr2DRIAxjfRMD/N4U+nzsv3iGnZU/cqjoRDpLlKyM4mUigTzwS/m3ooqEUuQ1cUaRUEu8iqMokSZEYmhexUIZl9OJdBYqVkbxMgmEIpAJtCyhlDhNnFEkVOBVPKFEGhQohlfykiomZ+JpvKROMjQvF0EI9ZAJrYo/MCHkvklcxsTSeUmdZBhWIYIiRJKJtDyhAKtJUKq4knBqntBCqhZOKYqqOCOLpfOiJskwnFwEBUqSSUSeUILVJIg6ZQJGpFINU4iiKs7Io2mCqEkysuT9WiQiT8qpZMqE4lSCxAg0ATmsJUHLYxpR0CRpOZuqBTRSJmpW0sQVNKsWJJlAS4RQtCCHoErQiqha4jUsLWflkkiDkpj7JpyYMhEFuUADhDCCXCLC9/zer9jTJF7DEWVSLokMCF/wP/722XVWch3KHGOlTyo1VsUTp80VJFQRLlW6Ku2abHOlmxQZT0W4SlOlGKkxFyvdVbaMTGulS5ZvqAwK5cZKLnraVCrz1Vhz0hyVTkWuqdInlhhPxeOVpjIqWHNQoHZV2dOyLRUeUrh/KpysMFaIoSpzscpTY8vMsla6mQJjZZAtM1SwkUpTicxXc5Cb4ahyKvPMFT6xZL8yFq0wlpJAlaVA46xxpuceVHhJkaEyFK8wlAuhSnOh0lNjz8q2VXnkBaaKEFe+V86GK0xFjKfKmpvhqHGr8y2VAbHUUBmLVBpK4K88yNc4a5zpeQdVPqrYWBFNVOyXCYEKc77cU2XPyrHWeOVF5soQX2YoTwYrDYW0p/IgO8NR49IUWqqCUpmxIh49tVcseSssuWpHlTMt31rjZ0pNldFkpaGM91ca8+WuSltGlrXaqygxnw4L5cZyLlS5X0i5Kw+y0u1VLnXRQU0I5cbKZKzKWCx5Kk05KkelPS33oNrPlJtPx5KnTEXpTK4xT+6otKZnWqs8imJTTVSoerwMvI/HMjRr+bVxtCQNQ2jzO1vQvpP81suVBjRiZRIt7O4w2sK2brRbgrcxsCLdw+I0mvntEbRGLf3ocHub0LXB3sLkLJqkjVG0xo2D6PC7OtBtiN7E8ALuYnUcLcl9LdqD9h502YIN6FsRbmJ2Ek3crg5tYWsfuty+dvTtJG9idBp3pc0RtEbNA+j0urvQZ47VQzuPm1gcRXPCOIQOv7MHvfZQK4bWhRuYGMM9bleL9pC9Fz3OQAcG95P3oJ/GDWl1GC2Rg350ub2dGLDEmqFbxg3M6nAvYexPxQD1WcNtGN4R7mFiHDe4zQG0Bpw96LUH26HdZ5sxNo+b0uIg6iMHPeh2+TswaIq3YnQddzE7gpvx3V60e7ydGLBE2zCyLTRheho3+bVeNAYcnYcV7HLNmFjGPSwO4VbY1IlOR7AdWkOiBePraML8OG4ltjrR5PG0oYf+sxGMborNmJ3HPWGtD3fc0e97dueIv407hsCb6FnEDcyM446wqhPO/4qnHfV293U0r7BvY2wSt6WVYdyN7/Wgwe+oR9N25HUMzOAGFkdwJ7ndh4bgQRuazIF30D4vvoXpUdzmNwZQHzZ1osnluYu2teS3MDyOG9LaEO5FDV1o8jqa0bofeRs9U3gL81rcSez2oNFva0WrLXAbXUv8NzGqww1uqxf1QUt7Ku6lcyvxFvr1eEtc7se9iKkTzS5XMzpM0Vvom8U3MTWIm/H9LjR6HS1otwTr0bvGv4XhIbzFbXSnYoBabf4G9Owmb0I7gW+K8z24Fba0o8XpaUKXIXoXg4t4E+N9eDu+044mt6sZnaZwPfo3hBvQ6/Eat9yBO35HC9oPgg3o207egW4Wb2GmC++EjC1otfkb0bMXvwvtCm5gUotvxTdacM/laUSXIXoPQ2vCbYxP4G1+sRXv+g4a0W4O16N/k7uD0Xncjtb+FV4P7zagwRqsR+928i6GDE8mDOzxRGj/el6QrdyqjkRq107xtisr+bnj/41p02yf87CVW9XhaPVmVcJbt1oi3722rSnauOTiKjdrgvGqrVOJwNn1cliuruXkbDxnoSrXzwTiVVun4qHazQreeXE9P23rhV1l2doFX/z0xulouHq7gvOe2yhhjFc30wvXrtrE0+s14XDNVjnnO7tVCvvFjZzMzecNTOVqXSBas3Eq4a/dKZVc57cKlPtXdlSlK1ecbO3a6XigdqtM8JzbLmIOLm1l5K49b8bplXOR4NmNcsF9dqeItl3Yzk3bubIvq1i67I2dXTvFu89tFRPn+Z18penSrrpw9aqVO7N8JuE9v1lCHOd28xUHdXtZmVtXjKRq8VIgVLdWDsf57QKZ7fxeTprhokFeunzZGT+/XM276rYKGdu5/Ry1+cJ+es7mJStfs1gX8V9YL2Gsdbs5KkudISNr95KJLl+66A1fWD4t2S9s5ykt540ZGYYLJlXB+kVH8szCuYT70kah0ly3n5luOm/S5O5cPJBOLdUFfZdXyhnL1eUf+M//ovBAk71fdyArXqvzRM8vVGX/6q0nMUd8LNE3r34vB4pAxjM0pxSIgmUytG9X/5QgyiRCS7RI04KCp2WcAqKSkzGCQgItMhJFJJlAM7xCIApWRgsqgZIJMolQIi3SlKAQKBmngKjiGFpQSGBERiKUKBMohlOIULIymleKRC4wIJRESxQtyEVKxiqIoORpmSCXJEagQVESI1IMpxAlBSdj7puAESmJpnmFSOSsnAgqnpbxckAm0CCUyIiUjFOKkpJj3jOh79dC5Kyc4pU8JeflkO6bSETGKSRJwTEyTikSOS+DxIi0RDGCXIKClRFeKVByXk4kmUADtMhIRMbLISo5RsYpJMgFmkiMQIPQglyCnGMoXikQBScnolykAVqkJSLj5BAVHCXnFBIUKa0gJRFGYCApWBnNqQ5NlPHXXv0UKzGAjFMQQcHTMlau0s0/s9E3VPm8rEhXtxU/M3LR7b44Wicu/eb//XWyemFWkzdat8JWDV848J3TX4iar46flq1fmsnOmq5bksqG6vaCZ3UXAraLY2fI9tWpwvSFC4uyopG6zUitts7pPD96ltu/OlmuXrk0n1YwUbfGVg3WmT3ndHVR06XxKvna1dmcnJm6VZTrzu/6zmnr/AfnR6uxdXWmKGvh0rKydKxuO1I7cN5uOzdSy+1emixLW766mF40VbfJnR4+b3KeGzoXNtSNV8rWrs7m5s1cWqMq9ecN/vP9572m8yOnpc1L04XZC1dXVGUTdXuxWu0528F5bU1iu26iRLN0dTGjZOrStlA9cv7Adb7/XGj3/Gg5s3ppLqdg9rkN+tRYnTFYN3TOvX9+uFJYr5vOz1q4uqqqnLi0nzg7cs5hqxuojm/WjRepFy8tppdMXd0Va0fP2zx12nPBrTpdGbVcN5eZP3t1k6kZu2QJXdCd9ZnqhiqF1brJvMy5S6vKUxNXjcnz+vNue91wdXy9Tl+gXLiwqCmeurojnhu96PBd1J35g+8pHSklC3UzGbnTlzbp6vGrB6HnHi8D7+NxzBF/c4hfG0NzYn8QLT5nM9p2Y7cxvYAGLE+gmd3VojVs7UKbJXgT/cvSXSxMoYnfGkFr1NyHdpe3AZ0b7E1MzKBB2hhFS9w4gHa/qx1d+9EbqVXvlTE0J/eHUnEvXbZgPfqWhRuYmUAjtzOM1vBBLzrdKT3B9Qer3i1Rcz86vO5O9Jqj9zA4h+tY0KMpYRxEu9/RhR57qAUD68J1TIzhLrc7hLagrQddTn87BvZTeoJDFcBBLzrd3g70m2NN0C3jOmaGcTdu7Dus4CDcCu12Sk9wPaUCcHSjxx5sw9A+24jROVyX7q96dzl97RgwxpuhX0/pCW7Ed7vR5vF2oM8cbYFuS2jA1BRu8KvdqA84OtBz6Kw0YWIZd7A4iBthYwc6HME2DO0nmjG2hgbMjeNWYqsDjW5PGwYtsRboN8RGzMzjrrDWi1vu6BeeZWel8yDchNENtGN1AZ3C7iS6Ygc69Lj9bRjY5poxv4ROaXsa3QmzHr1Bdw/6jbEGTKygDZuz6GKNY+gNO4bQbw+3QLsmNmN5Dp38/jh6orZh9Pv8XRjaZe9hegFt0s4kuuMHI+gPeAYwZIk1Q7+EJqxNoytp1qMv6BrCoCvciZFN4S7mZ9DOG0bRG3ZoMegJ9B3uuc2hSdoaR3fMpsOAzzeAYVu8A2OruIvlCbQnLDr0BzyD0DrCPRjdEZowPYUmfk+P3pBrCEOuUB/0ZrYdU4u4K62PoiNq12LA4+/HyEG8CxObaMLCGJoTJi36fd4BDNuiPRjfF9owN4d7/NYwOoPuQWgd4V6MGdkuzKyiCSs6tEStAxh0BfugNye6MbWNNixNoT6xN4hur78PuoN4DyZ3xU4sLKJZ2BhCa9DRB6092oPxfa4Lc+tow+oYGqLmXvQ6wz0YNbJdmLT94zPsrPwnURDTQllJKdObzUeLnGlKb3GIZHuzWD4jlMaLGYFsls1zZdC+Uq88w5Of5LL8GTyfHs7ghCxvlhgpcqk0nqKIlOPN5LnMYJogZASy+GSeO03mLfUxmZ58ls32pwtsRjhd4HK8GQgXehRp7uKokOvNFJJZQY3IZwYyxXi+W6PwlASobHeukMjxp0nJjHCaxOZ4M0iwyCvLcBXFuXxPhpTICqnAZgXTEcv3qFTu4pCU684R47kBNUlkhDUkketLowNFPjrLWZhk871pJJYdUlLJrGAaFc33KtTu4rCY58qRovl+FR3LjKjoWK5fI/MXBkiOo4BLFHg1dDQ7rKATWSE1HSnwydJcRVGuwJ1FIvkBBRPLjCiZWG5ApfAVBqVcRz4fL/SpZOGcsJyJZ4dUsnB+gEl3FsaTRa5MOlQQUMiimVG5PJoTUiq9BWExz54nRot8SkUoJ8LIY1kRhSKUH6QynfnJeLErgwnlh2SKcFZULo/khhQqb36Uz7dn5f7eG8/sgjaJ58mkoniWiitMaNKSBawiM5YvMjmxfJoUxvKUfFEiXZMsYFUZ8QJBlh3LJyQ/nicXi+OZGraIVafHC3h5VjRfonNjeYxUGM9RccVJTXqigFNkxfJFOjeWSyE/lqMQShIZaclCVpUZLxBkObE8QvJjOXKxKJ6dxhaz6oxEgSDPiuVLVG4sl5YK4tkqviSZnp4o5BVZ8fsl5cWzFXxRIjM9WcypMuP5IpMdzSckL5YjEwvjWWq2hNVkJgp4WXYsD1ReNJcW82NZSr44mZGRKOYVWbF8ic6N5lJifjxLIRQkMjVsCafOShSKTE4sL1WSUBDPVLPFybTMeJEgz4nlgcqL5TBiQSxTyRUm0jOSJbwqJ14g0bmxXFrKj2Ur+IJ4hoYt5jTZ8UJJlhvLI8hPlZSh4gpZTWaiWFDkxgpA8mI5jFAQy1RyBcm0tGQRp8qJFYHOOyxJzhck0jXJQk6dlSiWZPnxfBr58Ww5XxBPVyceLwPv4/EMzS3m0G1oV9GAxRk0C1t6tMbMA2hzeuvRtcHdxfQcmqSNMbQmjENoDzjb0LkXvZmSk65OoIXdG0Z7yNaLTmvwLvqWxTuYn0IzvzOCtshBP7o8vhb0biWvY3wGDdKWHq0x0yA6fe4u9BijdzA0h9tYHkNLwjCEjoCjBz2OUDMG1oR3MT2BBi5VQV9qKXlgN3kHuincltZ1qWX1Lo+nC/2WWBOGF/Eu5vVoPIzQ7kGvLdwG7aZwG+OjuP1ATtrjCHRgyJBswNgs3pWWtWiKWPvQ7U6pPVugX8VtzAzjTny/D51eTxf6DyJt0O0IDZiaxHVuvR/NgVQIeHtKTjq+iNtYGMDdiKU7taw+9J6cdBQ3EjvdaPX4OjBgjrVBvyU0Y2YWd/jVHtzz2zrQl6qAa8HUMhqwrMOtiKED7fZQG7T7yRaMWr757M4Rf7OfX9WjMbHXjyafowHN27HrGJnHPSyNoYHdGUJT2NqBFnPwOnqXpFuYn0A9vzmMpqi5B60u7z20r7PvYmwa96T1ETTGDX1o9aX0BO+kVADLejQk9wbQErR1ot0avIPuJeEdTI3hHrc9hObwQTfaXd5mdG8l30mpANa1aIqaetHmcbWjyxS9jYFZvI15HeoThj60+B0d6LQFG9G3yr99qAIYQHPQ1oUOh78FfbvJWxiewNvS8iAaIpZutLs8begxRRswtIi3MT2EW3FDD1q9rnZ0W8JNGNxK6Qne5jZ60RRwdKDLFmjBwF6yHvpZvC3N9+FO2NKZigHqM8QboTvUE7wT3+lEi9vThl5zpAnDm8I9TEzgXX6lC3f99jZ0HYSaMbTDNmBsEbcw3493w4Y2tNkDLRjYSzRCv4p7KT3BRivq3e6WVAyQbl2sx9Qsbgsr3bjujnzu2SXib0NvCw5hfpcbEbbXxdGEcRnjEdscxt1eHSb341ppY1McTRpWMBY5mMdEwD2OSUt4AEvb/Ai3t4qxqGUBE0HnDCYdgWHM7CS1wtYaRuPmRYyH7LOY9PrGMG2M9Usr6+JI0riE8bB1DpM+9xSmbWEt5jb5IW53GWPRg3lMBlzTmHYHRzG7l+gX1lekkbhlARNBxyymPL5JzFpiWiyuCUPJ/cMKprzeKcw6wnosbLN9/NYS9BHbHCZ97mnMOIPjmDcmhsSVZUkbN81hIuCaxrTLP4l5a2wEyxtCX3J3HvqQcwZTbt8k5mzhMSztsUPC+gK0kYMZTHq9U5i1h8axaE6MSKtrYn98fwajfs8UZpzBCSxYYmNY2eG13NYstCH7FKZdgQnMH0TGsGxgR4TNZQxETVMY9/gnMWcLj2PJmBiV1jdFbWJvGjq/c+KwAlN8TFrb5Uf4nUUMhg7GMeEMjmPBEhuTFj1/8+w6K7/1R04Vxap5KDmG4mWQCEUIw8spViEK6gStYBWEV/KEkggN0JSo4IgiIaeSGh5KjqYfmAgMk1RI/KEJpxJASYQioClByRFFQkYfmjCcDBJFHjahlKyc4lQCaDFVi6DkoUgyTEItiqpDE0IDjMgwSYUkqBKUMqlIxcWI92t52ISScTJIFCVRtEjLkgpwKhaqbzdRiJIiycjiKRM5K4NEERBGomRJBXglC3VCTnMqUZQJFAG5b0LL4yrpPRNKIoxEyVg5YVWc9MBEJA+ZMLK4ShLUHFFwTKoWGpSMlVGckpPUCRnDqURBft9ELkkKlpLHVeDVHFGyDBEpShIK//T/PrPOCrZqee/5zXKFpXYnK2ur2kCXrNa42Kq1s4ngufUqme3sdl76bs2+smC12sadWq0Nh2vXqyVX3VaJ2li7n5a3UW2WyldqfNHTqzW859xGhdJydjc7Z7vaxJSs1DgT1StnYoHa9VOMvW67IGO/1qgsWq+2saeWa4LB02tVkvPcVmm66awhPX+r+kAqX672hKtXqll37UaZ0lK3l5O7W2thSteqnfHTS7Ux3+n1Ctp2drsoe/+cSVW8Ue3gTy3XBPzVq6dER+1WcZqpzpBRuF1rJxWr1d5Q9XJV0lW9XqqwnNvLzd89dyArW6/2JKqXayLu6tVy6qB2Jz9rr86sLtmsdfFVq9VBf81ypWCr3izSGM8aMou3zjnIqbXT/nDt0umko3qtWG6u3cvJ26mzKso3ar3JmtXqqLt6pYxYqrdyM/fOmdVlm+fcYvXq6bC/ZrlSOKheL1AZag0Zhdt1DrpqvTYYrV09nXTUrBTJjdU7mbk7Z62KUxvn/Gzt6umEt2aljJiqN3My9mrNqtLNOrdYs1YbDdSuVgjW6rV89c7jZeADkjyWoTklJ11FPRZm0CRs6tEaM/c/cFbupJyV+3LS9oCz7SE56erEw3JSa/Auepfvy0l3dGiLWPrQ6fG2vF9O2nooJ+1Cz6Gc9DaWR9GcSMlJe1Jy0oFV4d2UnHRPi7aQtRddLn87+neTtw/lpLr3y0kbMfyoctKeQzlpw6PLSfstkdZDPcHkPyUnvf1+OemQ8QPlpAPmWCv0W0LTAznpvUM5adsDOWk9loZxM2JoP3RWUnLSZzn3TQ+/rMO9xG4v6r32u2jcir4N7SxuY3EUd9mtfjSEDlrRaAq8he5F6TrmxnCH3xhCfcTUhSan5zZaV5NvQT+J29KqFvdi+z1o8jma0LobfRP9M3gXizrcTe70oTFgbUerNXATnQvCm5jU4w63NYCGkKUTLU5vAzo2k29CO453pbVB1EeNXWj2uFrQYYzeQO803sCsFnfi+z1o8tnb0G4N1qNnhX8Deh2uc1u9aAha29Fm9zWhezd5HUPjeENa7MfdiLkTLS53M7qM0bsYWMAbmBzA9fh+F5o9zlZ0WsIN6N/kr0OvwxvcWjfq/fY2tFsDjejbSd6BbhpvSHPduBk2t6HV4W1Cz37sHrSHeoI349vtaHS7m9FlitRjcEO4jbFxvMkvteOW39aCDkuoAf1b7F3oF3Adc714K7TfjBZboBF9u4l70C3jNqZH8HZivRl3XO5GdBti9dCuiXcwMY3rwnIn3naFP/MMzxH/z0KhwnL+QJFvOhUQCi0lUbbYUhKPV+wXwnl2PyPLVOuRikxlEbbooDgRLzOVcL7q/Wy16bxNVmA8FU6WmIvjiRJLMRup3M9nbGeNmlxjjY8vNZXE48UHhVy03FQkemoMmWmG8w6q2FAZjZeaC7lo6UGBEDplzFEcnDUrCvZrgslyYzEbKT3IF0MV5nzKVW3WZO2dc4tlhvJEpNycL4TLrHnwV5ky1eazB0zx3ulIvMJUIITKrLkIVFpyGUeNRZm3c9bLV+yX8sEKcx4C5dYcxnPanJ5mOmNH+U5VLFJlzIe/3JZF+04dZClt1VZ5wfaZQOLUfonor7TkUL4KW6bCdfpAnWWodQkVO5Vs8LQpl/JW2DPknkpbusZabaeKt2oi0dP7hZTn1EGm3FNhT1c5q+yKnP0ab7Jqp5z3V5uz5O4Ke5rKdcqhTrdUu6TSrdOxcPV+vtxZZU1Xuiqc6nTbaYcsb/90IHZ6pxSeGku6ylnpVGmclS5Flvm0ly/brmT9tYZcpaPKrkpzVNhL/v5Pn8Qc8TGdKkBTFENomqIpmiY0RTP3f6JowtAUQ2hCMRRNUwxFpS6nfnnvyuFPFENTDMXQFE0OC6EYOvU3hjAUxVA0dWhHU6n6KJqiaELTFEMomqQKSZV0v1iaUDShD3/9tsppmqLpB5dTt0EYin5QEmEOm0hTDEWDMBTNEIYiNEXTNJO6F4amGIpmHpTJPLiN+7fIUPcbTx/eHfXQs2AOK3/QMMI8aCpDUwyhKIqhaHLYMPpBcTQ5bAFFUwwtMam/ve8W6VTDUndAE5p+MsncH4uzIg1fjey/qK2mF57TZ2fprkwKFT1Xtv11/Ve95hcGz0urL+iL0savTMpKei6vhM/3XrHZrvRfTG69NFypnH1uPK1g6MpcvKbrssF1oe9yeO+FoVrZ4rXx3Bz9lVmxsuvypvdCz2WP6crgWWntZX1J5uRz0/LS/svLoXOdl60HF/vPJzev6U5pZq9NZRTpLi8lazov7dkv9lwM7lwdOi1beHk8L2/0uQWc6ru85b7Yecm1d6m/Vly5pi/Nmbw2qygfurwWPt95yWy81HMuvn5VV66ZfXkqs2Tk6ipX23Np33ax40Jg8/LgKWbh2nh+0di1Rer04KUd76WOi46dS33V4tJz+sLsiZfnlJXaq5vRup6LFuOlzjPR1cvaEvX0tanM8pFr6/yZ/otGx6XOOt/65f5yeu658ZzC0ZeX6dqhq/uByz0XXDuXO0/zC1dG8jMnrs0pq4df2I5d7LtoN1/uOhNevDxYrJp6biqtbOSldaFu8IrZdbmnLrB+ubuczFwZyyoYvbZMnx16wRC80l/n2bvcXcXOXNHmZow/Nyc7pX1pN3a5/7Lj4Ervmdjilb5C5cgTIeJjclaaTMGbD+e+GUFLzNSH1sPcN7cPc9+MovlB7pv2vej1lGT5A3Pf3ML8JBpTuW8sh7lvujeTh6veqQoG0P5e7pvZVO6bpsT+4P3cN8HG9+e+aX3grPQd5r65KaZy3/Sh0+PpQO+h+PltzOnQkDD1o93n6rrvrPA3H6x6twbt3Q/lvtHP4J0HkuVOl68D/aZY8wNn5dZ7uW8skRYMbwv3MDmBdx44Kz2HzkoTxhZSa9V3IuYudDkCbRg0JJoPnRX9A2elPZX7ZmTzA3PfDO9wTZhcxj0sanEjYmhL5b4ZevZz30zzO/PoZy0TGAh6+jFkindgdgO92FpEP2eawmDUqcOQPdyO8S2pCxtL6BcMMxiM28cw5Av0QrfHtWNxBb3S3hwGEtYJaINeLXSWeBum1tCJ7Xn0s5ZJDIXdeuhc4R6MboltWFlAL5+qYBQ6X2AIo0a2DbPL6JT2ZjAQt49jOOAbht4e78bkGtqwPou+pHUC2pBnBHpXZAATu0IrFufRxZsmMRhx6THiCQ1h3MJ2YXYZrdL2FPpjjlHofIFhjNnjfZjeRCtWptGdPBiDNuDTYdQZHcSUUejCwjxa+f1xDIQ9I9C7w0OYtLB9mFtDm7Qxju6oYwQ6b1CLCWtiALO76MTKNNqSJj2G/P5hjNljg5gxCL1YWkIbv6NHT8g9DL0zOohpE9ePhS10YWMC7VHrMIYPKxjA/C56sbaA9qRBiz6ffwjj1sQA5vbFPqysoUvYGUWHL/mVZ9hZ+eODNCqWHSeamErilaxMgpxT8pQyopaSmWG5MpouCJq4HIKcl4tEkdBwQlpEwURyHpgweGCCRGaEUUfSBT4tLocgFxjpgYksnJ2U0mJKwqlYGpBzChGqqAqJzAitiaRJXFqCoXi5wEhQJtQCnxaRyw9NqKSapYl0aKKk4u834WWQlAmVxKVFZYpQFiumxxR0ykTGyyGqYwoqnhkl6WEN2PQETfMKnib3TRhlKJMX0mMKJqFmKVq8b0LHMuJSRlhDkulJiuEOTZSETYvRqmAmz2fE5LKEmiO0IOdlRFTH5LJoRkLMCKupZHqSyFm5QFGHJnFKFcwQucyoTBFXc4Th5byM4jVxmSyanhQywyo6kcFCzip4ihYVrJxOpMeJJpguJTNjMkVczUHGy5OF//NvntkFbZIdUOa4yqN0obOcFyrcJUy8yp2rDpT7NVnu8jCT7ypPiqWuUpKschcoQ5W+jAxveVCe5yyPo9hZKrGV7mJFtMqbne4rD6pyXOURUugs5fkyVzETP+3J0wQrA5psT3mYzneWJ8USZwlJVLoL1eEqX2amrzwkz3OWx6ViZ6nAlrsK5dHT3pyMQGVQlesuj5EiRynHlTkLqVilJy8tWBVIy/GUR5gCZ1mSL3UWI17uzleFTvszs3yVYUW+qzwuFjtKxGS5q0AWqfRmZ/pPB9W5nvIYKXKWcmypo5CKlXty04JVgfRcb2WUKXSVsUKpoxixcneuIlTpz8rynQ4rC9zlCanEWSIkyp35TLjcm53urwpp8j2VcarYWcqzZc5CKlruzlEHK/3pud7TUXmRq5wTSp1FiJa7chXBcl9mpvd0RFXkrmSlEmeJmCh35stCZd6sNH9lUJ3vOZ2gS1xlAlvmLKQj5e4cdaDcn5bjqYrJi12VnFDqKiKxcmeuIljuS8/0VYaVhe4qFuWPl4H38TiG5t8e57dm0J0069Ebcnejz5hoxswaOrA+hy7OMIbeiGMIffZwM/QbaMPqArqEvUn0xGy6VMzr4C7fdBg9O4XuhEWPvoBnAIOWeCPGV9CKzRl0saYx9IWcQxh0hTug25AaH0TP9kbswxg4jHltxNQC2qTdSXTHrSMY8HsHMGyLt2N0BY1Yn7ofPesegtYR6YF+R2zA3AzaeOMoesNOLYbcwT7ozWwbJhfQgK2xw+hZr38AI9Z4NyY20IClCbQlDw6jZ4ft92NeZ2fRwO+NpKJntc5QH8aMXBdmVtGINT3aow4tBjyBfugtD2JeJ9GYNGnR7/P1Q2eN9WByLxXz2iRuadEZ8gxA64j0YtxwP+Z1bRRNqejZUB9GTcluzGyhA8tzaGb3BtDlC/Rh5CDejakdsROLy2iTtnRo8SV/iJAvQ3omUxdf+rffzM54+8ea4ufe+IFx06fe+Mze3Pe/cdE/+CNvFMlv/dgNnHrjR7T2F9743Nry9735nHv4h96sEpq/8o6y4PUf7fBd/tYXFjY/88bL1rEfeutMovtLb2dnvPuj9+JnX/vB8f1XX391f+YH37wY7v/S2yWyhq/eliq+8ZV++7XXPru++IU3nvMNfentCrR95YYq/62vtvguf+OL8+ufe/2abfSH3z7DdX35enb6na80xmu//iMje6++9inD5A+8dSHW+5V3C5VNX75Hyl//crf1xX/43Nr8971x2Tf45XcqmdYv31Hn3/hSh+/i3/3A9NrnXnvBrvvht2vEjh+9mfX/b+/cXqKI4jg+l52d2bmcM7N2RxCMUozKIAPDsNJs1XV77c8yWAwxKzUs0zQLLSMrCiMipIgo6EI9FAa1M3PmPjuz08MKRaDig9Ma5/M0nOE3X36/+XI4wznDD451T7q1/Zn5D835LVnHcwAAAo5JREFUo++fdgzutWd7hrcJE9kJovpyZu7boXPHX71o69//817XUHVi6swYu320c0ZrON+28Lo1f/jrg8ylmnA6NwqqrmVvubsvnnr06Uhvy7uFjv46+3Z2ZIs4npuMaoZP319q7GtdfN6eP/DjTvfQDuZGbozdNdp5V2u4cPLZm5bepi/zXQM10VR2VNx6NTfj7Blqf/K5qa/57eNMvt6c7hlRpLHczVLtcObhUuPAsZeLJ3oPfp/NDu5kr/eMJ6qvdM9Z5Dyx72zsP0/FsUakGQFxlAUsikPALYkF6AVABcWipPOEA8wEY0An4jXoBqAA/SLQxJILEEtbwCZTOvACqQB9H6pS6AE9RdrAolkEvFBUge/DAgg8qAmRCwyGMYFN8LpU9IEqBR5UxZILf4t7gaSJy8OyxhM2NBjGlNyI16XAA6pYcpSCGDlwWZxDUrEoaULJUQoCYStairKgSbOG5IWiJoaurPKElVZ50pJRsiyOxMADOh/ZisqTZlrjaFM2Kc4Q/UDS+ciR1RRlptUUbcoGwxjAjXgklBMz02qKMhWUZAxok5whlktkyTpHG4rOJgzFLGcuIKFcIkPR2QRKIyZpQJvgkRD6EuIoU9bZBErrySRSTIpDkh8KiI8ciJIJQ0FMUk8bCRZBZ1kcsbQpIyappxFD2lH9TG3ci8RYjBiuokSu8r20Ysi681mtB+xmC9mI0vzNdC6g4zXixu+skAQVLV+scJ9cJXY9w2uGrO9xFRuyEaX5EyroyZVi9uGGz4gE+XEJN6vfZIRVdVHcbZv/XctyTKVSbnP/nx16iMgStvqmg6Rif2l4RsRUBPHsrGAwa4CNiKkIsBExFQE2IqYiwEbEVATYiJiK4Beb+JKpWPtqIwAAACV0RVh0ZGF0ZTpjcmVhdGUAMjAyNC0wMS0zMFQyMTo1NTozMSswMDowMFc7WFcAAAAldEVYdGRhdGU6bW9kaWZ5ADIwMjQtMDEtMzBUMjE6NTU6MzErMDA6MDAmZuDrAAAALHRFWHRTb2Z0d2FyZQBZYW5kZXguRGlzayAoaHR0cDovL2Rpc2sueWFuZGV4LnJ1KVzqC+YAAAAASUVORK5CYII=" } }, "cell_type": "markdown", "id": "01f0a585", "metadata": {}, "source": [ "## Ex 2. Quadruple-Tank Process\n", "\n", "![rsz_2024-01-30_22-36-17.png](attachment:rsz_2024-01-30_22-36-17.png)\n", "\n", "Let us consider the Quadruple-Tank Process. A schematic diagram of the process is shown in the Figure above. The\n", "target is to control the level in the lower two tanks with two pumps. The process inputs are $v_1$ and $v_2$ (input voltages to the pumps) and the outputs are $y_1$ and $y_2$ (voltages from level measurement devices). Mass balances and Bernoulli’s law yield\n", "\n", "$$\n", "\\dfrac{dh_1}{dt} = -\\dfrac{a_1}{A_1}\\sqrt{2gh_1} + \\dfrac{a_3}{A_1}\\sqrt{2gh_3} + \\dfrac{\\gamma_1k_1}{A_1}v_1 = f_1(h_1,h_2,h_3,h_4,v_1,v_2)\n", "$$\n", "\n", "$$\n", "\\dfrac{dh_2}{dt} = -\\dfrac{a_2}{A_2}\\sqrt{2gh_2} + \\dfrac{a_4}{A_2}\\sqrt{2gh_4} + \\dfrac{\\gamma_2k_2}{A_2}v_2 = f_2(h_1,h_2,h_3,h_4,v_1,v_2)\n", "$$\n", "\n", "$$\n", "\\dfrac{dh_3}{dt} = -\\dfrac{a_3}{A_3}\\sqrt{2gh_3} + \\dfrac{(1-\\gamma_2)k_2}{A_3}v_2 = f_3(h_1,h_2,h_3,h_4,v_1,v_2)\n", "$$\n", "\n", "$$\n", "\\dfrac{dh_4}{dt} = -\\dfrac{a_4}{A_4}\\sqrt{2gh_4} + \\dfrac{(1-\\gamma_1)k_1}{A_4}v_1 = f_4(h_1,h_2,h_3,h_4,v_1,v_2)\n", "$$\n", "\n", "where\n", "\n", "$A_i$ is a cross-section of Tank i\n", "\n", "$a_i$ is a cross-section of outlet hole of Tank i\n", "\n", "$h_i$ is a water level.\n", "\n", "The voltage applied to Pump $i$ is $v_i$ and the corresponding flow\n", "is $k_iv_i$. The parameters $\\gamma_1,\\gamma_2\\in (0,1)$ are determined from how the valves are set prior to experiment. The flow to Tank 1\n", "is $\\gamma_1k_1v_1$ and the flow to Tank 4 is $(1-\\gamma_1)k_1v_1$ and similarly\n", "for Tank 2 and Tank 3. The acceleration of gravity is denoted $g$.\n", "The measured level signals are $k_c h_1$ and $k_c h_2$. The parameter\n", "values of the laboratory process are given in the following table\n", "\n", " A_1, A_3 [cm^2] 28\n", " A_2, A_4 [cm^2] 32\n", " a_1, a_3 [cm^2] 0.071\n", " a_2, a_4 [cm^2] 0.057\n", " k_c [V/cm] 0.50\n", " g [cm/s^2] 9.81\n", " k_1 [cm^3/Vs] 3.33\n", " k_2 [cm^3/Vs] 3.35\n", " gamma_1 0.70\n", " gamma_2 0.60\n", " \n", "Check the following paper for more details on the model. \n", "https://www.diva-portal.org/smash/get/diva2:495784/FULLTEXT01.pdf\n", "\n", "## TODO\n", "1. Linearise the system around the operating point \n", "$$(h_1^0,h_2^0,h_3^0,h_4^0, v_1^0, v_2^0) = (12.4,12.7,1.8,1.4,3.00,3.00).$$\n", "Pass to shifted variables $x_i = h_i-h_i^0, u_i = v_i - v_i^0.$\n", "\n", "2. Is the linear system controllable? Is the linear system observable? Use the Kalman rank test to answer this question.\n", "\n", "3. Imagine that one of the pumps is broken and there is no flow through it. Does the system remain controllable?\n", "\n", "4. Let us measure the signals $x_3, x_4$ instead of measuring the signals $x_1$ and $x_2,$ I .e matrix\n", " $$C= \\begin{pmatrix} 0&0&1&0\\\\ 0&0&0&1 \\end{pmatrix}$$\n", " instead of\n", " $$C= \\begin{pmatrix} 1&0&0&0\\\\ 0&1&0&0 \\end{pmatrix}.$$\n", " Is such a system observable?" ] }, { "attachments": { "2024-01-23_13-32-20.png": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAg4AAAHuCAAAAADSfNv6AAAAIGNIUk0AAHomAACAhAAA+gAAAIDoAAB1MAAA6mAAADqYAAAXcJy6UTwAAAACYktHRAD/h4/MvwAAAAd0SU1FB+gBFwwuFamtYXoAAC8CSURBVHja7Z13mFXF+ce/M3Pu3UZnpbOAVClSpFiootKb9KKJsT4aY35qjDEmmsSoaNTExMQYY+x0kK4gSBMVRIr0LohIX8rusveeM+/vj92Fu7u3lz1zz53Pk+eJt+xhZs7nTnlnzgwjaDQlcLsToFEJrYPGB62Dxgetg8YHrYPGB62Dxgetg8YHrYPGB62Dxgetg8YHrYPGB62Dxgetg8YHrYPGB62Dxgetg8YHrYPGB62Dxgetg8YHrYPGB62DxgfD7gTEAQKY/xeaCGEOW1hP2oVYcEDt4ClkLKv4v4kVemWGy+4kJS1J33eQONy2UYOvIAGAWH73Oi33FL3QRE7S68Bl01anc98vMkBi+dd5TVvrFiNakl4HEO4EFl4wijpBU4CfwNI6REny68DRrwEOfAYJSHF0CWoOdkCm7CL5S45ZVUcAUwGAsOgk+te1kj9TduGIkhsPLDkmJBg+BCbanZpkxgE6CFzXFScXgyTf/jla9nFCnuzCCUVnYQIwHUxiViFGpJu6Ixk1TtCBYXgVrNzLhZwJMdYRWbILJ5Qdtxr1Q/5csNVb0L2DlJa0LIfF3isKJ+gAYBIwkzAVGA8YggvBdGAyGhwxhUWsoN0+trFdk0M1NzXIX7zsTM2bhjHpENMrlLJTWJSM08PMyhg1mZbmH8JNDbaM2YWsvNd6Tq+ttg9qBtLLFBmxpKwuGMYaWD4b+Ckm7Hr4aO6+UavutTtNIZOsIqXvvuTfnOmr9q/KP8R6rcrGyaZ7p40buBCAt82ejR3UzQixw+tGqlg/lC4xwsGdSMbqQWISTp3CrTiAYfDC4+qOfQpnhHBmg5LJK60DgzvN7hRFBcOQGsTYeDx87na4YGA/atidpqCIDLtT4Jey9Smp6GwY2bDqjIDs3pHcldMBL1+2suE1ag+i1RwIK11kEVEHGA8LBHhd39+F31XRqx4ixyE6kPDMQvZwcDB4XQf7HPzl3VLYnagkxBE6kOnB0p0YUNfigOXacMPeB15RdCSnOE7QgZiRdvJJ4G4AkGJWtx/+/A9IrUMUJP/CemLnnnB75n2PQT2kgOSvPoT3JklHeF7xJL8ODFXnHwZQ9a8ALPHWQ5UX9lA3AKU4Dig3ibYArlzczOJSbLvbPb+HB0QyOUfMNpP8tQMYXlt+ttnNGZYA8HuZ8Vi+APj5l4dYao0tVAxKl8UJOlCTOwFIAeJ5u9PlBg6AF+bana5y6bSY8nWxA3QAIwuMc4Ah4wtZXOaUDrUqh4uFVQGTq22EE3QAu5QLXsnutATAEnMmj7qlkwGYQuFGwxE6+HC5A6laobu37Xq90039WxhQuJdbTgdK1lms8hlRC8YvHp2/7K/X9+9bF4Bld3L8Y5R/w2kVhhIICICQ/92BeU16DbiuWmXVKq8iSt97Ap3xnFarC2Yv5JJxmRm1KucCAJPs/NYdU64aUFvN6qFsVSAXnytQU1xbIPfm6jmeOBQIuTcQCAQwKU9/efTMSLuz5pfSOjCIsXcrFr2xFclfbh+XxaOWmLkcDCBiqFz/2pGVVtudNb/ojkIIRHwCBayo7wC4s7vecktT7FZzNZS/kYXdaVIIAsWnQAhgELxq274DO3BI7rE7Z/4ppwNTbsBuM/EqDo+scWXPQd2yAJOrFxUpRjcWFQNDpQF3XF8LsBg3FF03C61DRcExcBAgiavdT9c6VBSMrDh1SxOI1qHCYElQ1sr7qqlItA4aH7QOGh+0DhoftA4aH7QOGh+0DhoftA4aH7QONqFmwauZKudj5tudAr9oHeyAod5gJee4kyCO7kAYXXGFko9s6trBFhipuR2Jrh3sgSlpg64dNL5oHUKg5q84UWgdQuBR83GpBKF1CApDs+xUqiB0VzIoHCNS6ieTQlnVhEbXDjZAxacKqdcKaR0qGJLERLEJZIGrFYDQOlQkZAkmAHjO5TNeNUMYACyVtjTTOlQckoSBsxs3b95x6EcJVGpw5dVXX9NcgCRXpYrQOlQUZBnInT1vZS6AKq2rwPph785FQLubx3YVUGVPDa1DBWEaxqHX/ncC2aO6tW1VK00AnrwD2zav2PDty71/PlIQKTHGK3tS3vwf9e4vCUAydvqlv+anTZzUpczOlwcXvbkRXX49EqYKv0wlnHQ8FmfvX/0sPbH3v30qSdOSVIQ0TTS+/5uP+64fNWK/ocK54VqHCsAUF0bdduTeXX9uYFnEDcFZEdwwSJro9+nH7T9qN00osO+O1iHxmMbBHrPar3q9oSlF2R2IGTdgUb/1T+WPe57Zf4681iHhmMbW7ptGrO1hSsN/aQtmup7+KOM3D4Pb7YPWIdGYxoZeRx6cnWkagcvaIHPYmjqv3Atuc3uhdUgwprGr3+nfvAoZdODADG+nlY3f+KXdW2lrHRKLNI4NPPXrZynkVqUub4tl9f72rM3dB61DQiGOn+z/2fPhlLPLe+X8rN8uFqad6dU6JBQLkz+59s3wDvV0eTu9jbuPG3bWD1qHRGIZO55wv8ms8ErZZY164MhvbO09aB1CENPNYXhKPtPGDDfqz/Bsg7fWChsX62odQhDL1LPFV85o+fPw1zNws8of8Qc774nWIQQXLkb/twx/w5MZZpFRREQAyDJN89L0hDRN07x8NpbATzsuWcPsqx60DkGRePerqHeQlnzjnOajSyoHxhgDWUwYhiGYJAAWuGEYBr90/5nJfoG/27iGUoVZVYUhFFpRdx8kfx/3p5VMXJ/1ID2Li5NrN11Ia9O9ASS3BDZ+fpjX7txdlCwqEBj91MwDTew7Q5x8sWjeG2SSpgST/ro82gKRdCHHOEgWEZGU1I/zn1De4zUAABn355OXvuhddA86rSz6FhF56Vd41b5boBuLEEQ/spBYe2hQo0s/9Dwpkd/z+dMAhFHwz2HSePO6FQDg5t/0mseL2wuO0ZhmXxOuG4uEQViNQfDpJuLUzRuAxo3ObzaFWPpC07uB7GZi+xm4Pfd1r1G0/QdDuys3Hqtt114gunZIGBxfosPllwSxcC16r9i+4utve1kWnrkLtd/cs3bNvt/D4z46pbjDyqz0rvlbbDv/ROuQKIjnbruiZakC5rj1s14ZwFUz61g871yDz++sxlD9D48C+LRkOEHoiq22RSa1DomCcPqHxlV8a31m1XsLXiJ4svuBC/ylaSERTNzHvdhdcicYWmGnbbdF65AoCIfQutTPXGBiVdPFGBPoBliNh8HNGASq1SOcLyj+KkMz7AwQeQgyJEDQAUPYidZdycRxAnXL1PrdSv6jFhg6pBePOjKqfQ+6HIms4joWQIdg/cv49D21DonjIjJLvTZRp+SuMQCNSt7nvlU0g8go8H89GezwTUFBup/cHWaStQ6J4yLSSr22Kmf76pBxqeoo/cs23F5LlB9pEvvh1YBVgMxYW6tpYYCPmbf+/4VZeWgdEkcaCku/IVzh/JnlyRR+6n6Gur8L9CckvJ81+FOuCPhxuE2J1iEEMbTJGSiI/I+ImQV1/X8kKgf+s1Ud8s5Viz23WocQmNHPNmfjx2hsOu+9Av6jkgFHCJaxdv35DX0Cr7PRtUNc4BhaNcrBOEMOtkeuA2EfWgXQIdDFyDj19baMz/rEvk2EjjsEhVHzWlHOHzDUqHPwAos0vkjYiVYRBqkl1u24kL/ux9gf2tE6BIdRtLNJTFZvfWxXxLMPDOvRNsJKhWHZaeR/93nsUx1ahxBEv5WXxLXYHOkfkShcl351ZLeF+KFNuaCTK2O/m1qHhMHQA4si7TwQtu3pUDeyGklizYGLDHkb98b8DJfWIWFw3FB/wfcRPpQtMRNjIqz0BVacBXjBjytingnVOiQMZlYeWTg3sltLRsE0DImsSpHY+u15EOHU52E/0REIrUPi4JiEf3qN4l+sgDAu3WYGw6foBUqWW1uYvX9Es8hWzkqsPOphIORt3RxrZ1LrkDi47DJo+2wUx7FyYZ28FNIqRAHyLn3xNHCKAIAMvIoHI6vyybi4JhcMTHhOLI+1tdBhqARC+OXCP9/qIgYGTOrozqyG4gWRLe/MON+7pE0Qdx3kNd1ggGV8sK5PH4qoyie2Yd95SJCFk+vPVo1tlaXeSDCRSD587t9+4S03c1V0z8rdOcnz2+3/rHdkN8A0/viPPAkvM8hV+f0bY7t7WodEYonNHbI2NbMEAEm4/LQmSYBdaqhLPjKNX/1l4vsRPnND7MfjGWb1l6+65TwzcyrHVjvoxiKRCKv900/f/ZmQvEwvjZX6yRV/5HUt/Ev25Ej/DUZ16gBo2Ko+AMS4Il93JRMKx1O9VjyIsGYuTNf22/BGfTPSW8JISi88F2FKGevzGVqHhMIsvFv/H39gYaxeNY0fBp/57Qgr8vqacc7BOTiPeUpT65BYhJmzsPLTz/CQ4WOvcajvgbufsfmGaB0SjGG2X1Tpd4+DB90CjLyuHb12TnojvF2kEofWIdEYZvfPak6+zTTMwBWEyVxLrz9473uw70n+IrQOCccwO69p+X6PDQY3/fcgLGlYk2/J/d3rttugdagADLPV2v5fdn70uMHMcqcUkEmCf9L5cfHWH0PvRZpwbE+A6kTwRFtADKvG4n/VeKnVcycMwaRpFT0mV3SeBTPYqoH9Nw3ZeodU4GbYnwK1IRbxakc/CIn7tv7i7BMt7l3t5YZgjBGBMW4YOPZOj16LO8ya18pS4Xw0HZUMiuSf1W0Vhzqck1X3b/e/+u4bbzTs27VNq2puBlgXv9/67Yq1XnR5cCKnyOatEoXWISiEdR1bxWOzBWZIavma9z+tD7/9NnidnCqwjh4+D6DJzeN7A1bYz0klFq1DCDLCfdo1FJxwdnHa4mort2zZfuhLAKJOx/bturRxARZXomqA1iEkMm4bsUix4vtRORgyBFbhyTzGsiu7AcCCUEUGrUOFMgUT4OXERWZO0RsWcaaOC9A6VBxSHJlbpy8MBhAIAINKp28XoXWIGQpv4bPkCy+OqmIJAMzGbYaDo+MOsWGZYCycp7xJYArG2J3cUOjaIRYkEwAxA6G37yW+bUXbG9RrHkqjdYgBybF00Y7zWVcN6M9CrTCVfDbGcdXXoWodoscSp366AACWvtrv3VrB7zQZ5jSMULbPUILuO0SNFGdvXAB0GXUN8EmfUyLoeieJL7b1aa38jvCqp09pHt6COkvXzfh6US1s/2XwrxKmYoJtW02HjdYhBIH37uMb3gKfeZMkGrAwHe+v5UHGF2ScnZU5UPm2QusQCk+gmyzxDnDbDV7G4Ol8D/BusKtILDs2tF6YByjaiPIJtBeGK2v6/02TUbAUmADOwAQmAEvyRbDpjSkYb3dmwkDrEBSOkR39lxHh4D7UbgcOgKN5IxzZFfjxaSkOz6t/YxIUtvopVBTCDi/qFm3bw6hGY3h2BtEBCzyjK1nKdx103CF6DgLNULTfiunOBg4H/CYJTMFou9MbDlqHqDkO1EXRs/pu5ADHAn6T+Ler21+neoAa0DpEDeEEcGrneQ4AVrVc4GTAcaTkMzEuZBhbBbQOUeOBmDq95IUUVsDTJsjwTsdw9YMO0DrEBLMuhxlFsHHF5ztvisd67MSjdYgaA+aQ+/KKGovKb85GwMMqCFMx0bbD7yLMkyZKagJNB5a8WA3UCHDHyTgzu1L/pGgrdNwhWhhqAz/CY1mWZRXiKFA7wDclPj0xrI76AWpA1w4x0ADYC1fxzoAHgfoBvsfwYVIEqAFdO0QNQ2uGoycYASCeewi8lf8vSv7d/Jw+SVLQyZFKBWFo0gRHdkACIOzbj3ot/RemxHxrdGYSBKgBrUPUMKtKD2AWJAATM4Ee1fzecjKSJUANaB1i4SfAmztdpmm6D/4LuN3/lwib1nbqlgwBakDrED2C+gxG/shdhmHsv/Usbunv/5F8iZkYj+iP26tY9Mgiaoi9tv7Y9s4DGx9edBY1/+V/w1cyCqdjaHIEHaB1iAFu5awc/e2F6QBw1fQr/c9QSbFmT78WSRGgBrQOsSCslt+8tXjHhaxW/e90B5yvnJIsAWpA6xCSYA/kCmncc0+hKdIB6d8GEqfmVOmXPD20pEmoTQTfKoyTKdOy0skM9DyNxJLTI2olSdABWodQsJPng/nADE5EzAh0vxmmYJzdeYgArUNQLHz4dYhnp1iQg1clP7CgSe8kKuTkSalNWLF0AyXm0pj05GkrtA6hiP7QZYAMTMVIu3MQCXpkEQoLJgGs5H8hIkqlYlHENnzVpUuyBKgBrUMIGFhVpJV+zyIGFmB7J2K+Qkg+E+ORDCuoS9A6BIWQ/3KXQrfhMlyZWZmVq2emZWSW3F2LWNluJLFDOZcX0JNxcTpLngA1oHUISVqvnielaZqe/CN5+fkmI7iqVa9WvW7takV33fKpKYjRhPpThVlcqFKs2j+oadIEqAGtQ0hE+9a+L2V+fu6PZ84cXnERaXXr5jSs4QIAKTljgBSLhmcOeKvepXNUp2BC8gSoAa1DSCgfJgdAAIEzXqlSrRYAIHOPHvxx6znKzGnUvE4GB6TkwNalZsvxL3Y1BQNInJhTPYkC1IDWITTc5zhcFGlBICZq1GgDIPfwnu3LTFfDdm1qcuD47oP7vu79y4fGkuSwjE/O/qxmMnUktQ4Rw0qGmgQiiGrV2gF5R7evneNu0rb70lNHeN7CHq/s/S2zBE+yADWgdYieog4kQRLPatZsqDyw+bMZe/MuckarOyw/9LrwuPcuatYzudqKJEutejAmDE5kmbzprb/7Wc0jADG+6ccTw4+6MRdj0pIoQA1oHeICY8IAefA19kKCJNu+vtr4r/BBcgWoAd1YhCT8k/Lc+UcNVslLAIzvl0ya3H5j105qnHAVPlqHoHCMzgqzBiW2+bOOQ2SBBTBm5O9r+yLGB1okpSxah6AwauB/hbSfr6L1I8agYneI4VRl77CkClADWodQsDAPLwEYVR3o+3rNj0ObJFWAGtA6hCT83zcjeenLZLn/lWwBakDrEE98TjmT7mPza96cfOO2pEtwciDx8fmRNZIs6ACtQ4Lg+BBj7U5EVOnWxB/Jdy9p0SMJCzf5UpwMSMzBWFfytRVah0RABk3DyKQLOkDrkBAkvtp4Q3vlD77yQxImWX0I05Ph4Cs/aB3iDxkXZroGJ2NboXVIABIrDg/OSboANaB1SAxJt4K6BK1D3JHi6Ee1bkrOkk3KRKuNxKL8kdWSMOgArUMCEJiCMXYnIkq0DvFGsh3LruqepAWbnKlWGYk5GGckZ1uhdQhFpAMEMuQ0jEjKoAO0DiGJ9L5KfLGlZ7tkDFADejVUCCRf1LBdRAElwjRMsH0FtSxdqYWdGq1DUAhbXe0iaS/IOD8rfZDtbUW0lZPWIQTpkZWQFMt/GN3A9se21xx1lUhMTLpvSQvz77QOIYh4XtL+g6+I4fHPfd9I3183zIdFtA5xRYoj8+r0tb+DngaXBQCMKl+AlZ4e7t9pHeKK5Asvjqpic1vBgL/nCgLArHpTfyPwQvVwe8Nah7iiSoD60n5Wm/4M64m7wx73ah3iieTbVrS9wf62orjHY7r39L2ACX8Of2ikdYgnks/GOG77uKJ4oGm5zw45je7voahyoDBiavaL7CDIMBUKUEtBw3bhyjnc4gCkyRizQo2TtA5xROKLbX1aKxKgJo5JK1FpXrYpAFjcgITgIY7sUyPpDoEwFRNVWUEt8fiHHLPamAYAKfY/1bVJx4f3iOCp0zrEDzLOzsocoEhbYYrXJhvyjVtMA4DF13T444+tc1+5+lMe1AetQwgiKCCJT48NrWcpUaRe46OfC/Pxuy0DAAnvXedfO7T4wL8u3pnPg40zlEi7ylw0I/jyFNsD1MWYrq/GMmvcc0X3V2LWrn73Q+K+YYcWBW3MtA5BYWhbN9zaX4rD8+vfqESJmsbBoR667j1YjIiIUKnDeJjcg3Y4GnRBj447BIVjYNg/GckXeEZXUiDoAGmcH3QczeYbJMAAGBg8mGDAwBfICWq31iEEYU4FAiQwBaPtTi4AEPeM2I6cj2sWlqjJGRjgdS1YlhN8fk3rEIKwxwnEt6xuf50KB19ZxuvLMgqq/PKH4m6COHP/I5aA17XpdrwQvPrSOsQLyWdhPFOhrQBOoQBbt15+vRsgy7WuX+5zY4Mv29M6xAkyvNOhxr6iDC2uqWrxS6cDi9z2ABlzR3uf/3WItk/rECek+HznTa2UeGxbYOLEMm+RwMuP4P2JkmkdKgTCFExU+LHtX79Q7aNeXhGia6x1iA9knJlTqb8SbQVQ7mEhKSa/0HxJY7hC/Z3WIT5IsfTEpDpqdCRRdjxkiW8eT/9n7cMuQFbNCvZ3KrR1ToCpfPAVw59wcUBmTt26Der/A94g39S1Q1yQ/Lv5OX0U/XERN2ve4PZyAOJUQx2VTDySz7NGZyrTVpSGwXjT52WwW66mz8kGGZiqRoA6RnTtEA+IbVrbqZsKAeqAKSz5Dx13SDySz8R4KNpWAAh76kU3FnGAjEJVAtQxonWIAxJr9vRvrkSAOkYckAUVSNp9RcugdYgdEqfmVO3niKJ0Qh4SShin7EosOT28VpLuFVcarUNwiLGQPigdoI4MrUNQiH1/OpQPku9f0KS3M0rSEZlIHBIzNoV6yk5iHo1Jd0RboXUIBQt1m8nAVIyyO5lxQusQK4QNX3XprHKAOgK0DrEiMRPjYcV+IRXQOsQIGRens6FOCFADWoeYkVi1f2BTJwSoAa1DHHBKgBrQOsSKFCfmVHdGgBrQOsQK4ZOzI2o6I+gArUOsMHzolAA1oHWIEcn3Lm7Wyzml6JiM2IPEXIxxO6at0DrEBBmY4pgANaB1CEnQ9Q6EdRuu7UjOCFADqq2kNkHGpYrXkhB228qCJ0HyGQocfBVH1NLBwOXNmEiICHZmShAcE9IDz06RkT9DDHZKgBpQSgdi598qlOMbFSlAbO42DL7a9uhvdpDPpFj53dAmticxjiikA0Pl/36LM5OLNkplF+4+gf52pwmgoD/+Dx0UoAbU6kqaeBhYUGgQAImPT2BwJ/t/eUGWv0hxbG72LUoVYayolBeBgdnY/jkkAIapwGhVdn/3j8Ti87dWd07QAWrpwKxag4GpIEDyQ8tQZ5Daa4w4pmCs3YmId5aUYgKwKNcgEObnYpDaU0OS717SsodqJRgbSmWGo08bHFkKCY6pwMTYr5hIJOZgrEtpYyNGKR2YZYwFpgEW2/glrlb7l0cGTcWtTgo6QDEdwDAqHZ9+LyRmmRhpmCqXtcRXm25or8jBV/FCrdxweVVvnF0A4Z2FtNGKJa4MhOmYoPbQJ3IUK3HCJGAG+PKd6HWV/UGHYCk1Lsx0OSpADSinA8fAelizFdOB8Wr/8iRWHB6So7SxUaBYdphVfTg8C7EYtQerHXQAPsR4RwWoAeV0ADAeWPPJUQzKVnoIJ8XRubVuVrD4YkO1/Ah0vwYb3gAm2J2S4Egsyh9ZVWljo0E1HWBhPI7NQ9ue6iXNF+G8ADWgoA4Mt2ZJYJRL7aAD27Hsqu7qlV6sKJchLpv0gzQUDzpIzME44bi2QsFClxgNqcw59/4hQzovQA2oqAPDRmCC2hsmSHzxba+2ShsbHYrlSJIUF6ej7hC1gw6EaaqHyaJDMR0443j/IIbXVKQjKTH7m/K3nYxzs9IHObCtUGnpLADaUostfATGA3ZqKolfutGEfVXKhx6l+OyH0Q1U3qA+WpTSgdhDq7POc9zXxsaiJl7KCLfflHyoepgsShTTIVueh+zzso2Vg+SvVB1YB7BYURr8zEpIcWRe3RtVa2fjglI6ALduuVB72OMuGycKGb7Z/16Xm7pWA0zuPxmSL7w4qooT2wq1dOCYMLYgk8PeaeNKh37YPKf1tTd2SIP/A2wEpmCMnSlMHOV0sGDaOGtLPEsWcmbjEE66L16UZ3KPbvyo9bXd27j9PMEt+bYV7a53ZFtRXoeqSLM3RcLuStglIay8vGMHNsxt1e7W9HLDSclnYyx3ZFtRRgeCNfV4vgPH05Gw2wUJcM+JE3t3n16y7n9lPibDnIoRTgw6oHztwFv2OevIajBcyPjSAhiTQGamPHu9p2xjIcXa7YpPqURPaR0YWNur7U6S3WRLgMidlV3v6t6dc94sO3lCmIaJTtriw5dyfYeL8Dozp2FCwiQYGTWy29zQqwWAc2VaBTLOzsoc4NC2orwODNyZ9WCYEDJrues269anvQGSZJQtDCk+PTaunjM7korFHVSA2Mnm7W/sXAUwORcWeLl6YIpDA9SA1qEcDI/VuBKwGC8qmgJPqY+lODy/fh9nBh2gdSgHo86wwIsbA46u9Ur1EyRf4BldyalthdahHEyyyzebUR+UGlM6OEANaB38UKohYFSmctiyusN1jm0rnJuxeFF6qzCJWRgH562gLkHrEAlkeKdjmFODDtA6RIbEmp03t3LaY9s+ODdniWGqw/YVLYPWIQJInJldub+D2wqtQyRILD05rI7l4DJzcNbiD8MUjLc7EQlF6xA+kh+cn9Pb0UXm5LzFG4n51phM5wYdoHWIABIOO/jKD1qHsCG28Ytruqn9LHGsaB3CpjhAbXcyEorWIVzIKHR2gBrQOoSPxJo9/Zs7OEANaB0iYQomOjlADWgdwobEqTlVnXXwlR8cnr34IbHk9PBajg46QOsQkpJHdhk+dHiAGtA6hIIYIwCQfP/CJr0cX1xOz1+MENtzjBWd6zmPxqQ7va3QOgRHYt63kAAZzg9QA1qHkBgCAAgb1nXt7OwANaB1CElRT1JiBsY7PEANaB3Cg4yCGWyIwwPUgNYhPCRW7x/Y1OEBakDrEC4fOj9ADWgdwkKKEx/VcHyAGtA6hAXhk7PD1T4fPk5oHcIgNQLUgNYhHCTfu7iZ2ufDx4tUyGOsED7CmLRUaCu0DmFgYCpGpUDQAVqHcODrNlzX0aH7ipbNqt0JSAZmOPPgKz9oHUIhcX6GSIUANaB1CAFBmlj53eDGKRCgBvRWYUGRMFCpKj7EuFQIUANah2BYAkd3LTt8bn6DQalSi2odAkEQ21+cng8ALblTd6gvS4pYHwXE/tH27ax7Bk1ogA2tVgvnL30BtA4BsfhLD4oXdv17/KD8xvd833ttavigdfCPJVY/mr7sV9VR8N/Tk/49WU46K1KhN+m0vkO87hnD0/hnTw832HI+Ao9tf+dvv4/XvuQqRzAcpgPFq6zZxuWd7iCXxDnc0Mk0nnjnncfddieSAkdGLSElrIC/BRZuI+AsHYihMC7Nn5mxHKNhGYStGAfIFjd9+s21F+NSPcg0Fp0PxAL/+wJZleGKPXGO0oHYkdsO8Hi0FyTOoDkYGWcXYDC45PUxKj7PYHHP9e+5ovGB2JnlAT+UVVYdPZEX4KrMqt43zH/QUTpI8e1nPFPGpcGwitp4V4uxOZJLALlxSmTejKdbRVc9WOcC/1l+b3E80O+AmWHfZUfpALhx+//OxaFOt6o898RBEKPMVQwcDMexqOf5eLRDxo1fRpc+Rtl3xLew/KUu4f9CBWOgSlyu0xezHuYoauYt8d3Shl1QOS4X5tFOlTMK9pfBK5xwDXScDgRvHPJErOu1a2eM9rgYMUjCi+aEDDMOtU7J/gBRwRIfKHecDmXPp4nyGpZ4asB9LdrDBJjg/32t9sN+jlCM7tI2F09QdFTSP8Lq/+TpXm97DcMQp359F96u5eSN6i/hwNohPnD6k/H0Hc8Pae7dOCu3yvv9HXtWYim0DgFghKdufm7BLgCVHni8QWrYoHUICCN5/fzd6783mnerjRSxQUkdiOLTH4wRJizeogUAWBXQp1cD9XSQTAEVihCQkhjjqSKDgjpIjhOHqWrdTCWc4KkwnPBBNR0k3/artfmisO9iI26T1ZqwUUwHyQ/0Pgl4wY1U6b0phWI6EJ456fZc1/aHIXanJDVRTAeBL+F59MWi/9RUOGp1lQj5F4Db4EmNB2TVQ63agYEIRmXEbVmiJjLUqh1My0NAIS6mxEMNCqKSDhJPtux9DNbwa1r9DqbdqUlJ1GosNu4DGO0CNqfKI9OKoZIODPd0xd/P8gfr5F6rBxa2oJQONHIk3jsrnqoOpMj2GqqhVKkzU56xQMdRmBJLjxREpdoBEMzFAAMuG22QEvC3TJUswPFzWmrpoAAU4IYTM4r/3+4UJhKtQ2mI7VyZJpmZPVSUef/MbA5WeG17R/ugdSiNFJ8+CADY2qZUb1aKGfcCwFPtHb0tkLObwmhwwyW4GwtLRz4YZsLN3U4Pn2sdykKQFln4qFTRSL53DbxSOj06pnXwB0ms/5b5TKtKLCwwyOkyaB38kw3DXOR78wVmwxJO7kQWoXUoD0fPZmap1kKy7V8g81pHDyqKs64pC0PTvuDrt1xuLSTme9ExBQ68UTCDKvwER8GwLrcWZGAOMKyG3alKPArqoEB/Lb9XHQ/mXiocwsZ1wHCv3clKPArqoACFRqnWQmIuoVOzC3YnK/GopQNDxuxVK+srkKrRMKySSBQZci5wawqcyK5AwZdGdO5xfbrdiQBHj5zLrYXE+k1wD1GurBKSccWQlgKL6hlq3AyxfnNRa0GYDVx7tXplFX+UyyIXaiRpFIQsai3I8CwARtmdoApBjbKPBWklZCjSvUlJayHxxXZkDbQ7nxVC8uvABbPib0RhpX4QX29iEiDMAro3TYFhpgN0uPj7WSeFYPHucTCMLG4tyMhfDIxJjYM0k1wHQsGcx25/anWe4DApjnUExw3NPZgLAYk1e1H9lmQvqfBI+tVQhth/dOOsq66/sZ2BOEY0mZnRf4/4emNHSZgJ9G6QGmu7K0wHmZDKlgwvoaDgxMGvPmjfo+eVcVysxDDy79xa2NFynf0EGFNRxWQzFaUDJWpFeg0Bxqy8vGP7VuS0HZYbt/qB49qrdmDukxyrDqF23+h3Fk8qKkgHydfNz0xEgfK8E8IiMObx5B7asTk/fodhmWkDd4gN33TCdOCmK1Jka6IK0oGhyUAjAfEBMnKnSYBBgmVWrtLYtSFu0+MMI17i1oJOx5alTltRYTrQFVck5spWFeKSkF65RuNOfW5e+1bcdODo1nYr5v5+9VHk9E6NcUXF9R1YPEeBlyFx3oJMy6hZt0Pv6+sC+XFMsWkM3iq+OfAx0L9KirQVFTeySMxWsgRk1ah8RZvuPVsA0nTH80fMMPx54O+fp8p8BeCAuAPxmzrf2N4ASR7nzYI5unTYJP5ponkKLJIsJsl1YKj6ypU1ADPeLgBgpjFkEys0MDg9VdqK5Need65hSRjxzAcvXr3LMQxSEEYWv88ufeJYkl4HSIrvCgkTF+EBADBc01FaVuvrikvJi4tw+LxmkjcWiL/QVzSqfiYHDACzxB2nq5++kxe3FfUaVT9d19n1Q/LrEF8ERo0AeJFkAg/eB7iKti0T+Pn9gHBAfRoErUNZSk+u+B5zLpzfodQ6lIN8HwQL/MKRaB3KwcJ74Ugc3RJqIkXroPFB66DxQeug8UHroPFB66DxQeug8UHroPFB66DxQeug8UHroPFB66DxQeug8UHroPEhJSe4iQgExuL27EfcL2gXqaeDlMaluyZlHHahl1JcuiBZyX12WqrpYDHOceHId+fyMq5o2DCNw2Kx3T9JgqPgx4On843s+o0zjZgvaCuppQNJgS1zPl93tuhlg+5Db6kJM4YyIMvAd7NXfnms6GV2t8EDGsHiSdtmpJQOlhBfPjsfqN3pyuzM/GO7tkydWuOeBxoQRft7toSx9/n3PKh6fbNalTzH929auNB1+y+uRvI+tUW+WDTvDTIpWTFpGe4kb6CPvXTmXqDF5G/yit84s+DODFT5N0WbZS/JP7lR6/E1ucVvXFj5SB3gSW/ANEhJ3bGbLLtLKhAppINJyxuj7n89RESm1+O1iIgOPQaMPBdYoWB4aff1cD9zhojI8nq8JhHRmVeqoOveQBfUOlQgQXUw6UPgZ6eJvJYsekdK0yT68mq02R+ND176qiZu2UPkNWXJFU0v0YFBqLYywAVV1yGJe8GRYYr3J+CN/1Y3ySjp6TEmhDS7fTl2W+/9RsSnE5jGV31O/fqTZiYZlwaaTBjkbbzgN7l9PzNMu3McDamig2ksuQ3T7rakUbrXzw0zY+q9hwaeExFuZGYZewfnP/M8rDIXZC4Lz75kDtoWuWAKkCI6SOPwOLw5xvQTJDIsvD5+110RPlNDwjvu5K9+K/0cwSzIevhPBRPzhQKnOEVKiujAcN+Zx+40DX/3XFh4s+2MD1hEtbvEbzcMfgF+Q06M05MjN/8xGXexTg0dTDZtUddnESAaIMzM1/Dk+Ug2OrTEphdrvA7Lf5XCJP5W5YXtkbY/CpASOpDhfRbPCTNQe2BYPW8/+J9IzrpimIyn63sDRZuEWf939KIKZ/5FSEroIPHplv43ymAR2Efx9wvhVw+S753a6M4gIV2Be+q9vSP5qoeU0AGYjp8Ga8qF1W7kwVXhN/YSCzAx0wzc+2RmlXsxP/mqh1TQgUT+8kq9QmR1BD4J/4ocizA46FiEYzAWJV/pJl2Co0Bi16EudWSwrDJ0xeqwC4P4yY112yL4BVs2/uY4S7bqwXEzmhLlBoyW2I6uCKFDo+Z7Djf0hCeElfbdyf6Vg1/Qyrp63u5anjKdTYKhdH/CYTowZKDcqawGvkPr4GEmZrmb7ikM93QUAyfQOkTHgNB23mmklf8gTeVNZBymg4mt710o+6uljMVoGPJPa+DNq/LDqx1k1mLkhPgOQ3XMPFsuLUwecCs8m+EwHTKxalWU+bQwOZJ/KfQCF4n33vP3flamLUUTFo7SQaDbu4fSyzXOlP7ButAhJoEHmxeEV49TxvKPQncBGEb3zCtX3fCC9jnqziM7SgfAuM3v2+fXfR/yT3PxUNOw/51mH4W6IOEcJg31/5m6nQeH6QCTyg/urPSG2BG850fCuy/TgCe8GyXTsrEtxE1l2IaqKCxXDzCK/9768cNpOvjLD0drfBU8qEDs0K72jcIdWUg0qr45L4uCCEGiYEtWS7jVrQj8omwrFtc8tqq//njQkw8J63FD2HNYXNbqeGQbgl9w974OdSjJbEgJHZhVqc+5NSHiBHPRP/wrSvTHoqAXlFiMAcm34iEVdAAwBu8E+1iKnVPr9wy/MDiG4gNPkBlQMvL+jaEK9xkDZiwF4Li51bw1InD4R+Jl/LyqGfbd47LlrXvfDtK4WHjr4Ph2yXdud9IlOBqYmf4bPIGAv2bT+PI/9e4NI7J0CcLjeOpEwPkHaRz/Ax5LvsohNXSAwO03rn460K9ZGt5f4E/Vw68cAGF1+fmPDyDAjCUBj5x6qEPyVQ7OeigvMCbtycIU8vj7zJJ0FwZHeEFJ+W3wFJnS32deegktc0lGeE0FSEKBo0GYzT7AhEUus3z1bnL26JuN/hfhKIBZGVMr/+Gvwk+NI8n49yPig6pW8rUVKdJYAIY17HUaNMXgZun6nbyGdddLtRZmR1qzC7PtXPF/zzBR7oKcP3sfPrrGVDj4GJjS9aZTGwsiMuk/wEN5Ps9oFj1S+e11aLwtumc0l2dhxPelLmh5iY6NRfqiJC3F1NGBTJpfC82mERFJr8frMSURnXjGQL/j0T7Bvak9qv41n4ik6fF6vJKI8t+sjTZborug/ZTuG0s+/4d7C502j1FSD1pp3z86De3vuvnK4vPv8r+a8+5Z/tyvWJRZNtPyf/8SGt49pGVG0RueLfPe/Q4PPFfZhjKMS9tUVoe5FyZWeEYqkm+emW+KZq2b1MzIP7530w+od8dDV8R0wcPPTD2HnLZX1srynjiwaT+qjPu/VnZnMnpK62CJj98ZcMG53UtJVT0rlpzxlLzObDmgjedCDLvHkVWZr593vKDkdVqjfp3ZORs2C5PpY7PiMGFWNpBS8HlhEo6PwsfilTKswtNnCjzurOrZBuUVxHjvLJaZRZ7c0/mFIqtqLTfy88mOIQW5e6bFfhUk3ZMAmkRSrsuTdHOyUUBFc9MsbpMKcb9gFMSlgdK1g8YH53YbNVGgddD4oHXQ+KB10PigddD4oHXQ+KB10PigddD4oHXQ+KB10PigddD4oHXQ+KB10PigddD4oHXQ+KB10Pjw/yFtjQP2hx5oAAAAJXRFWHRkYXRlOmNyZWF0ZQAyMDI0LTAxLTIzVDEyOjQ2OjAxKzAwOjAwnMgN0wAAACV0RVh0ZGF0ZTptb2RpZnkAMjAyNC0wMS0yM1QxMjo0NjowMSswMDowMO2VtW8AAAAodEVYdGRhdGU6dGltZXN0YW1wADIwMjQtMDEtMjNUMTI6NDY6MjErMDA6MDD4pZPNAAAALHRFWHRTb2Z0d2FyZQBZYW5kZXguRGlzayAoaHR0cDovL2Rpc2sueWFuZGV4LnJ1KVzqC+YAAAAASUVORK5CYII=" } }, "cell_type": "markdown", "id": "799120fc", "metadata": {}, "source": [ "## EX3: Inverted Pendulum\n", "\n", "![2024-01-23_13-32-20.png](attachment:2024-01-23_13-32-20.png)\n", "The system in this example consists of an inverted pendulum mounted to a motorized cart. The inverted pendulum system is an example commonly found in control system textbooks and research literature. Its popularity derives in part from the fact that it is unstable without control, that is, the pendulum will simply fall over if the cart isn't moved to balance it. Additionally, the dynamics of the system are nonlinear. The objective of the control system is to balance the inverted pendulum by applying a force to the cart that the pendulum is attached to. A real-world example that relates directly to this inverted pendulum system is the attitude control of a booster rocket at takeoff.\n", "The system in this example consists of an inverted pendulum mounted to a motorized cart. The inverted pendulum system is an example commonly found in control system textbooks and research literature. Its popularity derives in part from the fact that it is unstable without control, that is, the pendulum will simply fall over if the cart isn't moved to balance it. Additionally, the dynamics of the system are nonlinear. The objective of the control system is to balance the inverted pendulum by applying a force to the cart that the pendulum is attached to. A real-world example that relates directly to this inverted pendulum system is the attitude control of a booster rocket at takeoff.\n", "\n", "\n", "Let us consider the system with the following system parameters\n", "\n", " (M) mass of the cart 0.5 kg\n", " \n", " (m) mass of the pendulum 0.2 kg\n", " \n", " (l) length to pendulum center of mass 0.3 m\n", " \n", " (b) coefficient of friction for cart 0.1 N/m/sec\n", " \n", " (I) mass moment of inertia of the pendulum 0.006 kg.m^2\n", " \n", " (F) force applied to the cart\n", " \n", " (y) cart position coordinate\n", " \n", " (theta) angle between the pendulum and the vertical axis\n", "\n", "## TODO\n", "\n", "1) Show that the inverted pendulum on the cart can be modeled as follows\n", "\n", "$$(M+m)\\ddot{y} + b\\dot{y} + ml\\ddot{\\theta}\\cos\\theta -ml\\dot\\theta^2\\sin(\\theta) = F$$\n", "\n", "$$ml\\cos(\\theta)\\ddot{y} + (I+ml^2)\\ddot{\\theta} - mgl\\sin\\theta = 0$$ \n", "\n", "2) Let the state vector $x = (y,y_1,\\theta,\\theta_1),$ where $y_1 = \\dot{y}$ and $\\theta_1 = \\dot{\\theta}.$ Lineralize the system around equlibrium point $x = (0,0,0,0).$\n", "\n", "3) Is the autonomous system stable (u = 0)? Is the system controllable? Design a full state feedback controller $u = -Kx$ assigning the following eigenvalues $\\lambda_1 = - 1, \\lambda_2 = -2, \\lambda_3 = -1.5, \\lambda_4 = -2.5$ in the closed-loop system. Is a closed-loop system stable?\n", "\n", "4) Let us assume that we only measure the position $y$ and the angular velocitity $\\theta$. What is the right matrix C? Is the system observable?\n", "\n", "5) Design an optimal estimator (LQE) and optimal estimated state feedback controller (LQR) which stabilize the system in (0,0,0,0).\n", "\n", "6) Use the following library to implement an MPC controller\n", " https://github.com/forgi86/pyMPC/blob/master/README.md\n", " that stabilize the system while ensuring that following state and input constraints are satisfied\n", "\n", " $x_{min} = [-5,-100,-100,-100]\\leq x \\leq x_{max}= [5,100,100,100]$\n", " \n", " $u_{min} = -20 \\leq u\\leq u_{max}=20$\n", " \n", " The following notebook can be useful for you \n", " https://github.com/forgi86/pyMPC/blob/master/examples/example_inverted_pendulum.ipynb\n", " " ] }, { "cell_type": "code", "execution_count": null, "id": "b01f283c", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.13.2" } }, "nbformat": 4, "nbformat_minor": 5 }