State observers. Dynamic output stabilisation. Discrete time control systems.

Elena VANNEAUX

elena.vanneaux@ensta-paris.fr

Course grade breakdowns

Labs - 40%

Final test - 30%

Final project - 30 %

State feedback design

Linear state space control theory involves modifying the behaviour of an m-input, p-output, n-state system

$$\dot{\mathbf{x}}(\mathbf{t}) = \mathbf{A}\mathbf{x}(\mathbf{t}) + \mathbf{B}\mathbf{u}(\mathbf{t})$$

 $\mathbf{y}(\mathbf{t}) = \mathbf{C}\mathbf{x}(\mathbf{t}),$

which we call **the plant**, or **open loop state equation**, by application of a control law of the form

 $\mathbf{u}(\mathbf{t}) = \mathbf{N}\mathbf{r}(\mathbf{t}) - \mathbf{K}\mathbf{x}(\mathbf{t}),$

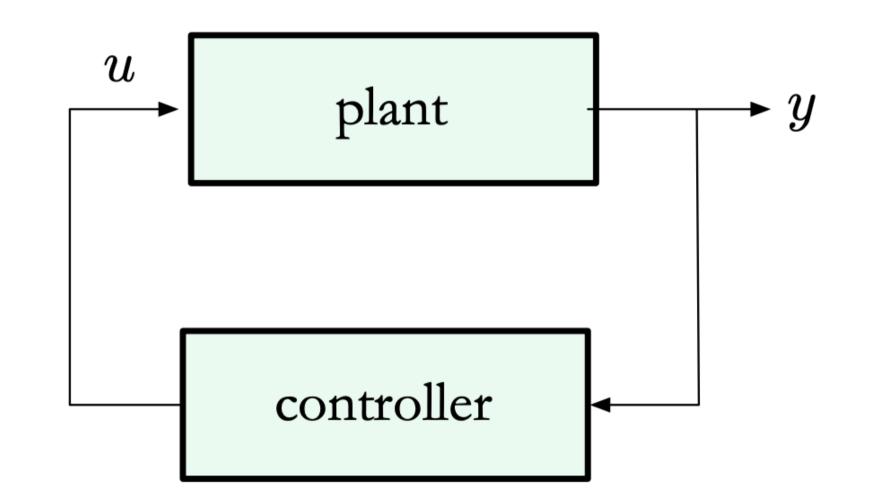
in which r(t) is the new (reference) input signal. The matrix K is the state feedback gain and N the feedforward gain.

- t)

(OL)

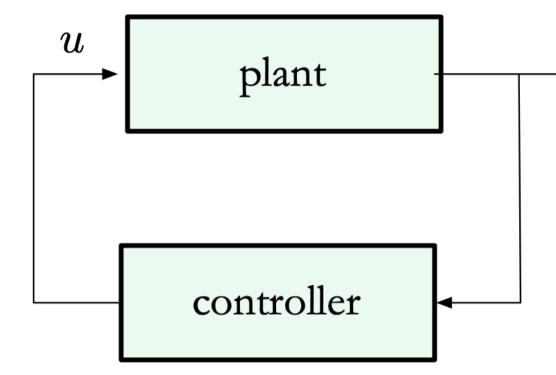
- (U)

Is Full State Feedback Always Available? In a typical system, measurements are provided by sensors:



Full state feedback u = -Kx is not implementable!!

Is Full State Feedback Always Available? In a typical system, measurements are provided by sensors:



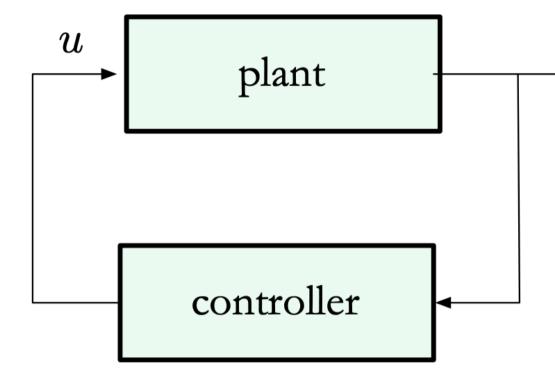
Full state feedback u = -Kx is *not implementable*!!

When Full State Feedback Is Unavailable ...

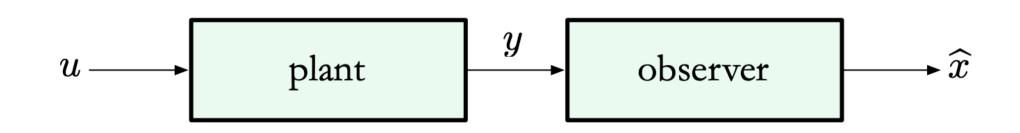
... we need an Observer!!

► y

Is Full State Feedback Always Available? In a typical system, measurements are provided by sensors:



Full state feedback u = -Kx is *not implementable*!! In that case, an observer is used to estimate the state x:



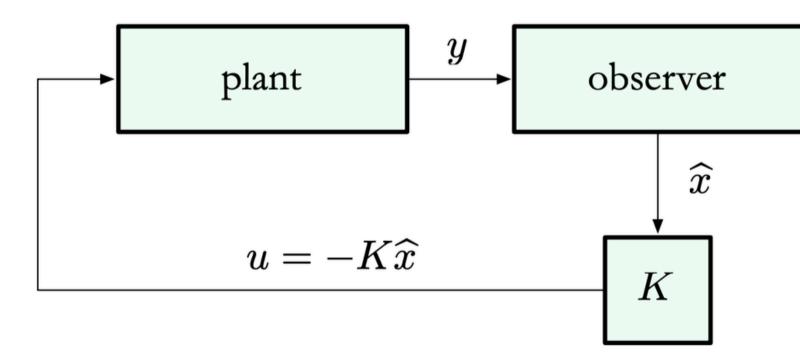
► y

State Estimation Using an Observer

If the system is observable, the state estimate \hat{x} is asymptotically accurate:

$$\|\widehat{x}(t) - x(t)\| = \sqrt{\sum_{i=1}^{n} (\widehat{x}_i(t) - x_i(t))^2}$$

If we are successful, then we can try estimated state feedback:



$$\xrightarrow{t\to\infty} 0$$

The Luenberger Observer

System:
$$\dot{x} = Ax$$

 $y = Cx$
Observer: $\dot{\hat{x}} = (A - LC)$

What happens to state estimation error $e = x - \hat{x}$ as $t \to \infty$?

$$\dot{e} = \dot{x} - \dot{\hat{x}}$$

= $Ax - [(A - LC)\hat{x} + LC]$
= $(A - LC)x - (A - LC)$
= $(A - LC)e$

Does e(t) converge to zero in some sense?

$(\widehat{x} + Ly)$.

[x] \widehat{x}

The Luenberger Observer

System:	$\dot{x} = Ax$
	y = Cx
Observer:	$\dot{\widehat{x}} = (A - LC)\widehat{x}$ -
Error:	$\dot{e} = (A - LC)e$

Recall our assumption that A - LC is Hurwitz (all eigenvalues) are in LHP). This implies that

$$||x(t) - \hat{x}(t)||^2 = ||e(t)||^2 = \sum_{i=1}^n |e_i(t)|^2$$

at an exponential rate, determined by the eigenvalues of A - LC.

For fast convergence, want eigenvalues of A - LC far into LHP!!

+Ly

 $\xrightarrow{t \to \infty} 0$

Observability and Estimation Error

Fact: If the system

$$\dot{x} = Ax, \qquad y = Cx$$

is observable, then we can arbitrarily assign eigenvalues of A - LC by a suitable choice of the output injection matrix L.

This is similar to the fact that controllability implies arbitrary closed-loop pole placement by state feedback.

In fact, these two facts are closely related because CCF is dual to OCF.

Controllability–Observability Duality Claim: The system

$$\dot{x} = Ax, \qquad y = Cx$$

is observable if and only if the system

$$\dot{x} = A^T x + C^T u$$

is controllable.

Proof:
$$C(A^T, C^T) = \begin{bmatrix} C^T | A^T C^T | \dots | (A^T)^{n-1} C^T \end{bmatrix}$$
$$= \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix}^T = [\mathcal{O}(A, C)]^T$$

Thus, $\mathcal{O}(A, C)$ is nonsingular if and only if $\mathcal{C}(A^T, C^T)$ is.

Observer Pole Placement, O/C Duality Version Given an observable pair (A, C):

- 1. For $F = A^T$, $G = C^T$, consider the system $\dot{x} = Fx + Gu$ (this system is controllable).
- 2. Use our earlier procedure to find K, such that

$$F - GK = A^T - C^T F$$

has desired eigenvalues.

3. Then

$$\operatorname{eig}(A^T - C^T K) = \operatorname{eig}(A^T - C^T K)^T =$$

so $L = K^T$ is the desired output injection matrix.

Final answer: use the observer

$$\dot{\widehat{x}} = (A - LC)\widehat{x} + Ly$$

= $(A - K^TC)\widehat{x} + K^Ty.$

K

 $= \operatorname{eig}(A - K^T C),$

Recall: infinite-horizon Linear Quadratic Regulator (LQR)

Problem formulation: optimal control for integral-quadratic cost

$$\underset{u(t)}{\text{minimize }} J(u(t)) = \int_0^\infty x(t)^\top Q \, x(t) + u(t)^\top R \, u(t) \, dt$$

subject to $\dot{x}(t) = Ax(t) + Bu(t)$, $x(0) = x_0$

Feasible if $Q \succeq 0$, $R \succ 0$, (A, B) stabilizable, & $(A, Q^{1/2})$ detectable.

Solution: independent of the initial condition x_0 , the linear state feedback

$$u^{\star}(t) = -\frac{\mathbf{K}^{\star}x(t)}{\mathbf{K}^{\star}} = -\underbrace{\mathbf{R}^{-1}\mathbf{B}^{\top}\mathbf{P}}_{=\mathbf{K}^{\star}} x$$

where $P \succ 0$ solves the algebraic matrix Riccati equation

$$A^{\top}P + PA + Q = PBR^{-1}E$$

$$P^{\top}P$$

Equivalent problem formulation:

In hindsight, LQR can be interpreted as optimal pole placement for

$$\dot{x}(t) = (A - B\mathbf{K}^{\star}) x$$

trading off minimal state deviation and minimal control energy:

$$\mathbf{K}^{\star} = \operatorname{argmin}_{\mathbf{K}} \int_{0}^{\infty} \underbrace{x(t)^{\top} Q \, x(t)}_{\text{state deviation}} + \underbrace{x(t)^{\top} Q \, x(t)}_{\text{st$$

(t)

 $(t)^{\top} \mathbf{K}^{\top} R \mathbf{K} x(t) dt$

control energy

Recall: dual notions of controllability/observability

The following statements are equivalent for **controller design**: **1** the system (A, B) is controllable 2 the controllability matrix $W_c = [B A B \dots A^{n-1} B]$ has full rank nhas full rank n3 the eigenvalues of A - BK can be assigned via the matrix K4 . . . 4 . . . **idea:** use duality $(A, B, K) \leftrightarrow (A^{\top}, C^{\top}, L^{\top})$ to design *optimal observers*

- The following statements are equivalent for **observer design**:
- **1** the system (A, C) is observable
- 2 the observability matrix

$$W_o = \begin{bmatrix} C \\ CA \\ \dots \\ CA^{n-1} \end{bmatrix}$$

- 3 the eigenvalues of A LC can be assigned via the matrix L

Optimal design by duality $(A, B, K) \leftrightarrow (A^{\top}, C^{\top}, L^{\top})$

LQ-optimal control for closed-loop dynamics: \dot{x}

$$\begin{split} & \text{minimize}_K \ \int_0^\infty \underbrace{x(t)^\top Q \, x(t)}_{\text{state deviation}} + \underbrace{x(t)^\top K^\top RK \, x(t)}_{\text{control energy}} \ dt \\ & \Rightarrow K^\star = R^{-1} B^\top P \text{ where } P \succ 0 \text{ solves } A^\top P + PA + Q = PBR^{-1}B^\top P \end{split}$$

LQ-optimal estimation for estimation error dyna

 ϵ

$$minimize_L$$

$$(t)^{\top}Q \epsilon(t) + \epsilon(t)^{\top}$$

estimation error

 $\Rightarrow L^{\star} = PC^{\top}R^{-1}$ where $P \succ 0$ solves AP + P

$$c = (A - BK) x$$

amics:
$$\dot{\epsilon} = (A - LC) \epsilon$$

$$LRL^{\top} \epsilon(t) dt$$

ut correction

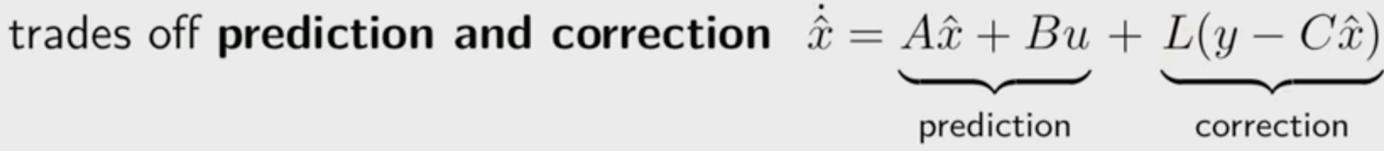
$$PA^{\top} + Q = PC^{\top}R^{-1}CP$$

Role of Q and R in LQ observer design

Optimal observer for integral-quadratic cost

$$\mathsf{minimize}_L \int_0^\infty \underbrace{\epsilon(t)^\top Q \,\epsilon(t)}_{} + \underbrace{\epsilon(t)^\top}_{}$$

estimation error output correction



 $\Rightarrow R \succ 0$ quantifies correction through measurement: R "large" $\implies L$ "small" \implies trust prediction R "small" $\implies L$ "large" \implies trust measurement

 $\Rightarrow Q \succeq 0$ quantifies prediction error: Q "large" \implies "smaller" error ϵ

 $LRL^{\top} \epsilon(t) dt$

correction

Summary: LQ optimal estimation (LQE)

Problem formulation: optimal observer for integral-quadratic cost

minimize_L \int_0^{∞}

estimation error

subject to
$$\dot{\epsilon}(t) = (A - LC) \epsilon(t)$$

Feasible if $Q \succeq 0$, $R \succ 0$, (A, C) detectable, & $(A, Q^{1/2})$ stabilizable.

Solution: independent of the initial condition ϵ_0 , the output feedback

$$L^{\star} = P C^{\top} R^{-1}$$

where $P \succ 0$ solves the algebraic matrix Riccati equation

$$AP + PA^\top + Q = PC^\top R^-$$

 $LRL^{\top} \epsilon(t) dt$

output correction

- ^{1}CP

Combining Full-State Feedback with an Observer

- So far, we have focused on autonomous systems (u = 0).
- ► What about nonzero inputs?

$$\dot{x} = Ax + Bu$$
$$y = Cx$$

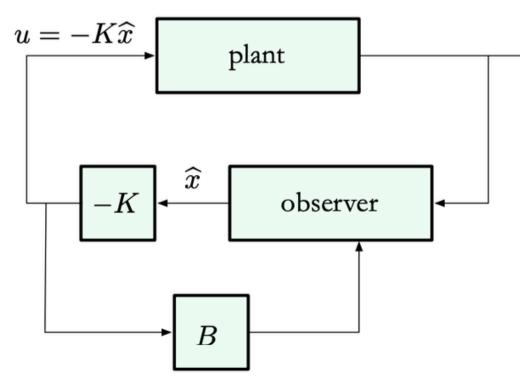
an Observer as systems (u = 0).

Combining Full-State Feedback with an Observer

▶ So far, we have focused on autonomous systems (u = 0). ▶ What about nonzero inputs?

$$\dot{x} = Ax + Bu$$
$$y = Cx$$

— assume (A, B) is controllable and (A, C) is observable. ▶ Today, we will learn how to use an observer together with estimated state feedback to (approximately) place closed-loop poles.



► y

Combining Full-State Feedback with an Observer

► Consider

$$\dot{x} = Ax + Bu$$
$$y = Cx$$

where (A, B) is controllable and (A, C) is observable.

- \blacktriangleright We know how to find K, such that A BK has desired eigenvalues (controller poles).
- Since we do not have access to x, we must design an observer. But this time, we need a slight modification because of the Bu term.

Observer in the Presence of Control Input

▶ Let's see what goes wrong when we use the old approach:

$$\dot{\widehat{x}} = (A - LC)\widehat{x} + Ly$$

▶ For the estimation error $e = x - \hat{x}$, we have

$$\dot{e} = \dot{x} - \dot{\hat{x}}$$
$$= Ax + Bu - [(A - LC)\hat{x} + LC)$$
$$= (A - LC)e + Bu$$

 \blacktriangleright Idea: since u is a signal we can access, let's use it as an input to the observer to cancel the Bu term from \dot{x} . ► Modified observer:

$$\dot{\widehat{x}} = (A - LC)\widehat{x} + Ly + Bu$$

 $\dot{e} = \dot{x} - \dot{\widehat{x}}$
 $= Ax + Bu - [(A - LC)\widehat{x} + L]$
 $= (A - LC)e$ reg

- [Tx]– not good

LCx + Bu] ardless of u

Observer and Controller

System:
$$\dot{x} = Ax + Bu$$

 $y = Cx$
Observer: $\dot{\hat{x}} = (A - LC)\hat{x} + Ly$
Error: $\dot{e} = (A - LC)e$

• By observability, we can arbitrarily assign eig(A - LC); these should be farther into LHP than desired controller poles.

Controller: $u = -K\hat{x}$ (estimated state feedback)

▶ By controllability, we can arbitrarily assign eig(A - BK).

+Bu

Observer and Controller

System:
$$\dot{x} = Ax + Bu$$

 $y = Cx$
Observer: $\dot{\hat{x}} = (A - LC)\hat{x} + LC$
Controller: $u = -K\hat{x}$

The overall observer-controller system is: $\dot{\widehat{x}} = (A - LC)\widehat{x} + Ly + B\underbrace{(-K\widehat{x})}_{=u}$ $= (A - LC - BK)\hat{x} + Ly$ $u = -K\widehat{x}$ (dynamic output feedback)

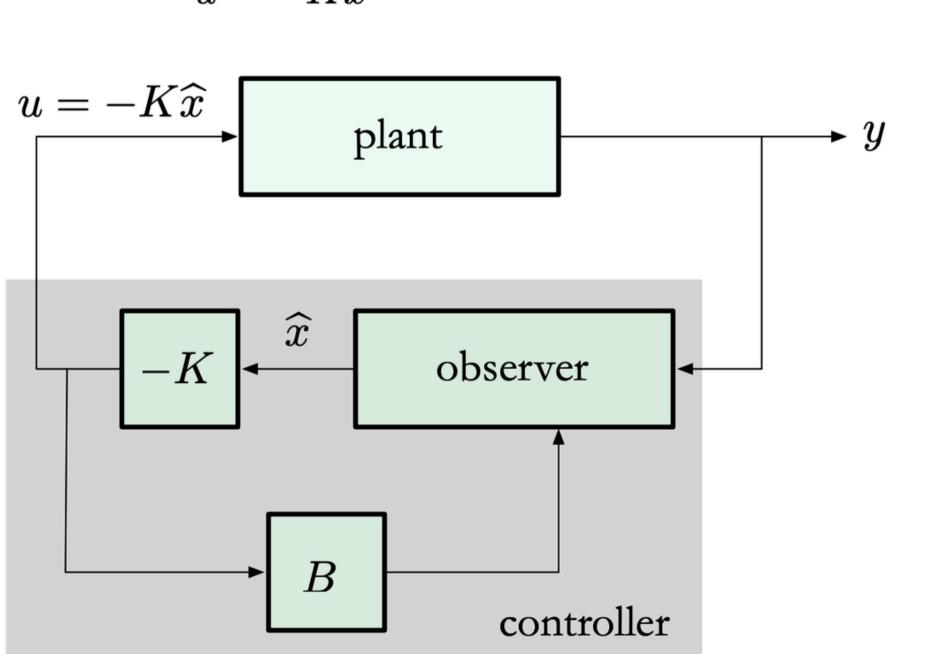
— this is a dynamical system with input y and output u

Ly + Bu

Dynamic Output Feedback

$$\dot{x} = Ax + Bu$$

 $y = Cx$
 $\dot{\hat{x}} = (A - LC - BK)\hat{x} + Ly$
 $u = -K\hat{x}$



Dynamic Output Feedback: Does It Work?

Summarizing:

▶ When y = x, full state feedback u = -Kx achieves desired pole placement.

• How do we know that $u = -K\hat{x}$ achieves similar objectives? Here is our overall closed-loop system:

$$\dot{x} = Ax - BK\hat{x}$$

 $\dot{\hat{x}} = (A - LC - BK)\hat{x} + LC$

We can write it in block matrix form:

$$\begin{pmatrix} \dot{x} \\ \dot{\hat{x}} \end{pmatrix} = \begin{pmatrix} A & -BK \\ LC & A - LC - BK \end{pmatrix}$$

How do we relate this to "nominal" behavior, A - BK?

$$\begin{pmatrix} x \\ \widehat{x} \end{pmatrix}$$

Dynamic Output Feedback

$$\begin{pmatrix} \dot{x} \\ \dot{\hat{x}} \end{pmatrix} = \begin{pmatrix} A & -BK \\ LC & A - LC - BK \end{pmatrix}$$

Let us transform to new coordinates:

$$\begin{pmatrix} x \\ \widehat{x} \end{pmatrix} \longmapsto \begin{pmatrix} x \\ e \end{pmatrix} = \begin{pmatrix} x \\ x - \widehat{x} \end{pmatrix} = \underbrace{\begin{pmatrix} I \\ I \end{pmatrix}_{I}}_{I}$$

Two key observations:

- \triangleright T is invertible, so the new representation is equivalent to the old one
- ▶ in the new coordinates, we have

$$\dot{x} = Ax - BK\hat{x}$$
$$= (A - BK)x + BK(x)$$
$$= (A - BK)x + BKe$$
$$\dot{e} = (A - LC)e$$

 $\left(egin{smallmatrix} x \\ \widehat{x} \end{array}
ight)$

 $\underbrace{\begin{array}{c}0\\-I\end{array}}^{0}\begin{pmatrix}x\\\widehat{x}\end{pmatrix}$

 $(x-\widehat{x})$

The Main Result: Separation Principle

So now we can write

$$\begin{pmatrix} \dot{x} \\ \dot{e} \end{pmatrix} = \underbrace{\begin{pmatrix} A - BK & BK \\ 0 & A - LC \end{pmatrix}}_{\text{upper triangular matrix}}$$

The closed-loop characteristic polynomial is

$$\det \begin{pmatrix} Is - A + BK & -BK \\ 0 & Is - A + LC \end{pmatrix}$$
$$= \det (Is - A + BK) \cdot \det (Is - A)$$

Separation principle. The closed-loop eigenvalues are:

{controller poles (roots of det(Is - A + BK))} \cup {observer poles (roots of det(Is - A + LC))}

— this holds only for linear systems!!

 $\begin{pmatrix} x \\ e \end{pmatrix}$

-A + LC

Separation Principle

Separation principle. The closed-loop eigenvalues are:

{controller poles (roots of det(Is - A + BK))} \cup {observer poles (roots of det(Is - A + LC))}

— this holds only for linear systems!!

Moral of the story:

- ▶ If we choose observer poles to be several times faster than the controller poles (e.g., 2–5 times), then the controller poles will be dominant.
- Dynamic output feedback gives essentially the same performance as (nonimplementable) full-state feedback provided observer poles are far enough into LHP.
- Remember: the system must be controllable and observable!!

Control of Discrete-time Systems

Space model of discrete-time system

Continuous-time systems

$$\dot{x} = Ax + Bu$$

 $y = Cx + Du$

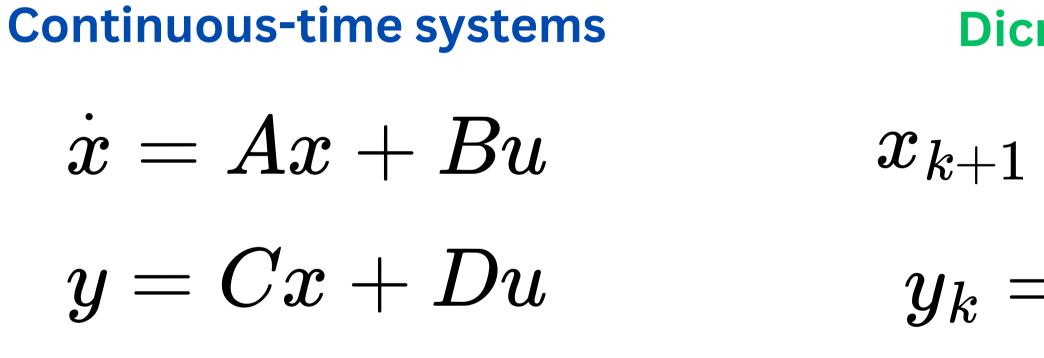
Space model of discrete-time system

Continuous-time systems	Dicr
$\dot{x} = Ax + Bu$	$x_k = 1$
y = Cx + Du	$y_k =$

crite-time systems

 $Ax_{k-1} + Bu_{k-1}$ $= Cx_k + Du_k$

Space model of discrete-time system

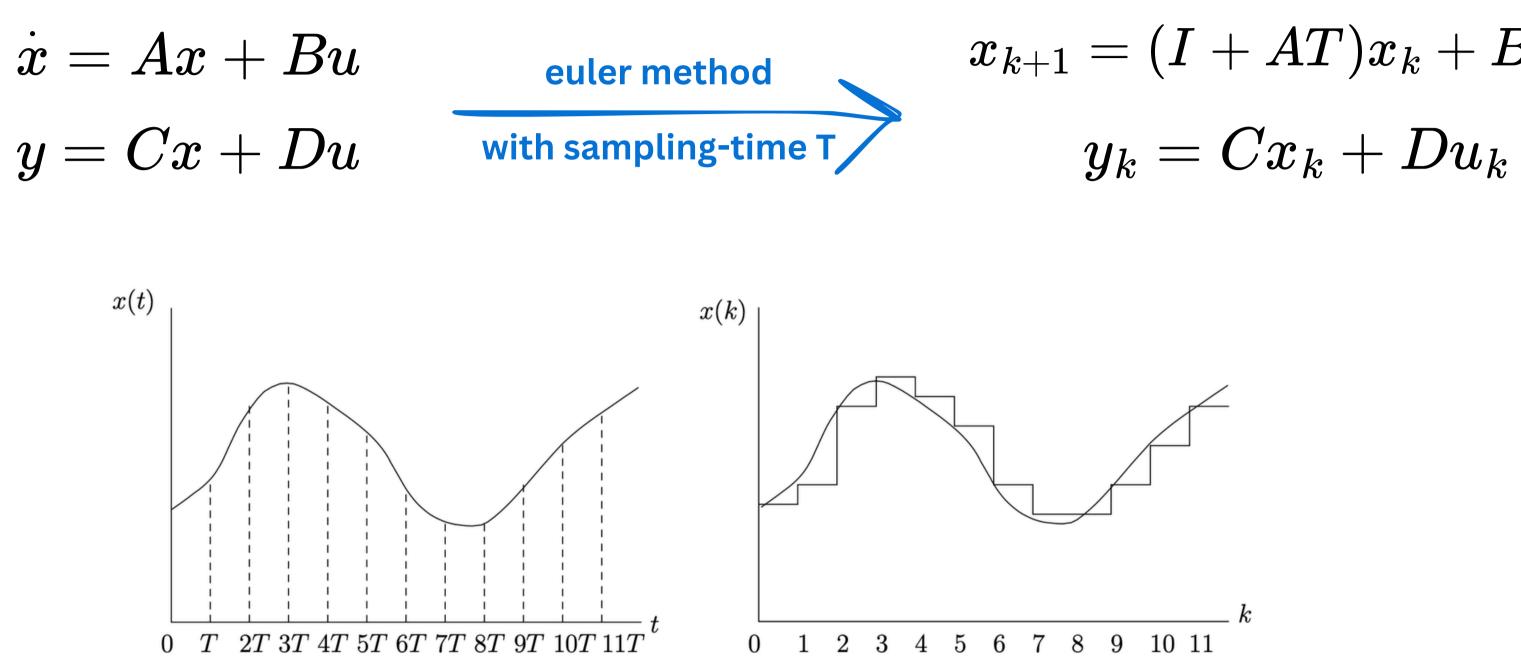


Discrete-time systems are either inherently discrete (e.g. models of bank accounts, national economy growth models, population growth models, digital words)

Dicrite-time systems

$$= Ax_k + Bu_k$$
$$= Cx_k + Du_k$$

Disretization of continuous-time system



or they are obtained as a result of sampling (discretization) of continuous-time systems.

$x_{k+1} = (I + AT)x_k + BTu_k$

Controllability of discrete-time system

$$x_{k+1} = Ax_k + Bu_k$$

$$y_k = Cx_k + Du_k$$

Definition of Controllability

A discrete-time linear system $x_{k+1} = Ax_k + Bu_k$ is called controllable at k = 0 if there exists a finite time k_N such that for any initial state x_0 and target state x_t , there exists a control sequence $\{u_k; k = 0, 1, k_N\}$ that will transfer the system from x_0 at k = 0 to x_t at $k = k_N$

Observability of discrete-time system

$$x_{k+1} = Ax_k + Bu_k$$

$$y_k = Cx_k + Du_k$$

Definition of Observability

A discrete-time linear system is called observable at k = 0 if there exists a finite time k_N such that for any initial state x_0 , the knowledge of input $\{u_k; k = 0, 1, ..., k_N\}$ and $\{y_k; k = 0, 1, ..., k_N\}$ suffice to determine the state x₀.

Internal stability of discrete-time system

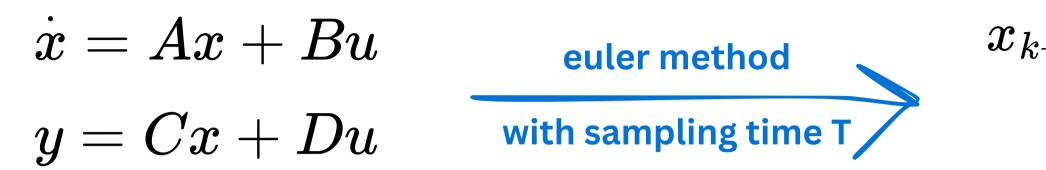
 $x_{k+1} = Ax_k + Bu_k$

$$y_k = Cx_k + Du_k$$

Definition of internal stability

A discrete-time system is stable if and only if when the input $u_k = 0$ for all $k \geq 0$, the state x_k is bounded for all $k \geq 0$ for any initial state $x_0 \in \mathbb{R}^n$

A discrete-time system is asymptotically stable if and only if it is stable and $\lim_{k\to+\infty} ||x_k|| = 0$ for any initial state $x_0 \in \mathbb{R}^n$ n.



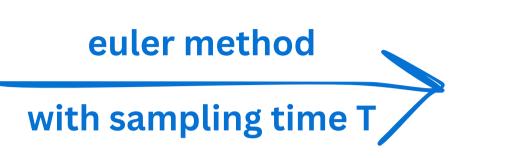
Continuous-time system

$x_{k+1} = (I + AT)x_k + BTu_k$

$y_k = Cx_k + Du_k$

It's sampled version

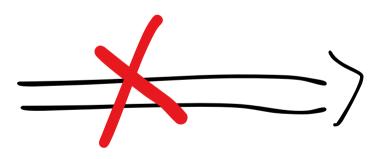
 $\dot{x} = Ax + Bu$ y = Cx + Du



Attention!

Continuous-time system

Controllable

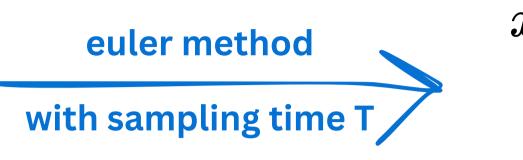


$x_{k+1} = (I + AT)x_k + BTu_k$

$y_k = Cx_k + Du_k$

It's sampled version Controllable

 $\dot{x} = Ax + Bu$ y = Cx + Du

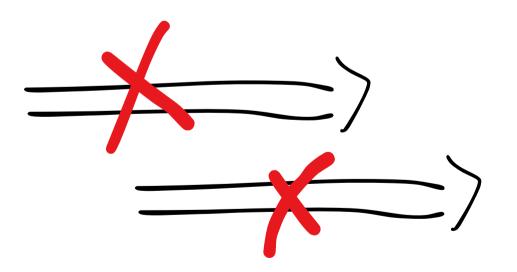


Attention!

Continuous-time system

Controllable

Observable



$x_{k+1} = (I + AT)x_k + BTu_k$

$y_k = Cx_k + Du_k$

It's sampled version Controllable Observable

 $\dot{x} = Ax + Bu$ y = Cx + Du

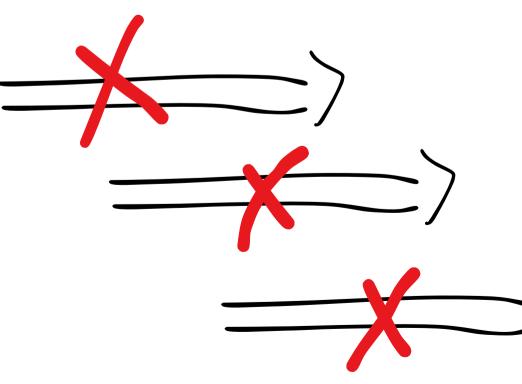
Attention!

Continuous-time system

Controllable

Observable

Stable

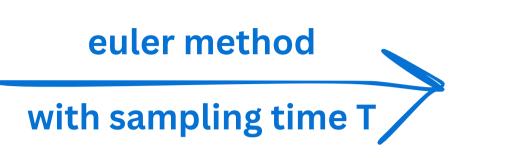


$x_{k+1} = (I + AT)x_k + BTu_k$

$y_k = Cx_k + Du_k$

It's sampled version Controllable Observable

 $\dot{x} = Ax + Bu$ y = Cx + Du



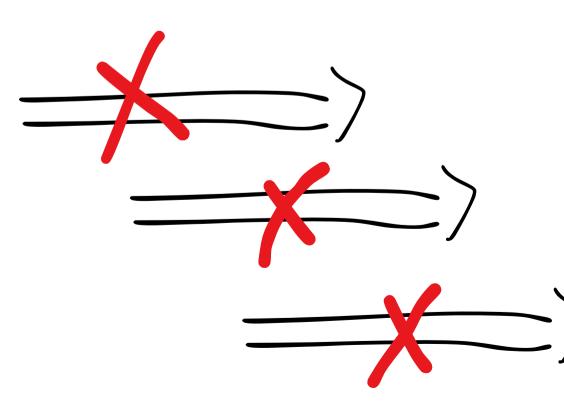
Attention!

Continuous-time system

Controllable

Observable

Stable



$x_{k+1} = (I + AT)x_k + BTu_k$

$y_k = Cx_k + Du_k$

It's sampled version Controllable ? Observable ? Stable ?

Criterion of controllability for discrete-time system

$$egin{aligned} x_{k+1} &= A x_k + B u_k & ext{(1)} & ext{Controllar} \ y_k &= C x_k + D u_k & ext{[}B, ext{,} \end{aligned}$$

Kalman's Criterion

The linear discrete-time system (1) is controllable if and only if the controllability matrix has rank equal to n, where n is a number of state variables.

ability matrix

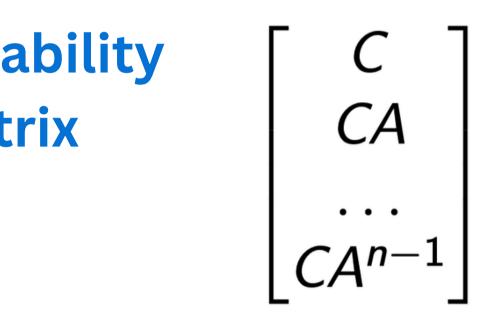
$AB,\ldots,A^{n-1}B$]

Criterion of observability for discrete-time system

$$x_{k+1} = A x_k + B u_k$$
 (1) Observal $matrix$ $y_k = C x_k + D u_k$ (2)

Kalman's Criterion

The linear discrete-time system (1) with measurements (2) is observable if and only if the observability matrix has rank equal to n, where n is a number of state variables.



Criterion of Stability for discrete-time system

$$x_{k+1} = Ax_k + Bu_k$$

$$y_k = Cx_k + Du_k$$

Criterion of stability

A discrete-time LTI system is asymptotically (internally) stable if and only if $|\lambda_j| < 1$ for all $j \in 1, ..., s$ where $\lambda_1, ..., \lambda_s$ is the set of distinct eigenvalues of A.

Control system

$$\dot{x} = Ax + Bu$$

$$y = Cx$$

SISO Control system

$$\dot{x} = Ax + Bu$$
$$y = Cx$$
$$\forall \in \mathbb{R}, \forall \in \mathbb{R}$$

SISO Control system

 $\dot{x} = Ax + Bu$ y = CxYER, YER

- output of closed-loop system should track the given reference trajectory:
 - $\lim_{t\to+\infty}(y$

Specification

$$y_{ref}(t) - y(t)) = 0$$

SISO Control system

- $\dot{x} = Ax + Bu$ y = Cx
- - $\lim_{t\to+\infty} (y)$

PID controller

$$u(t) = K_p e(t) + K_i \int_0^t e(\tau) d\tau$$

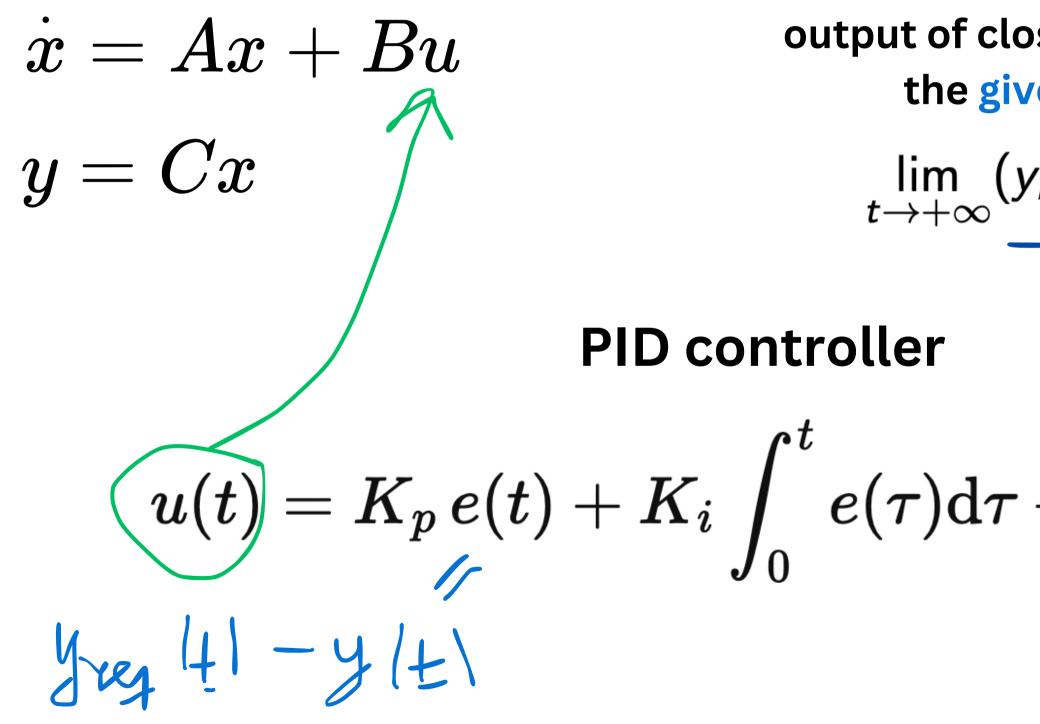
 $\int_0^t e(\tau) d\tau$

Specification

$$y_{ref}(t) - y(t)) = 0$$

$$+ K_d \, rac{\mathrm{d}}{\mathrm{d}t} e(t).$$

SISO Control system



Specification

$$y_{ref}(t) - y(t)) = 0$$

$$+ K_d \, rac{\mathrm{d}}{\mathrm{d}t} e(t).$$

Digital PID controller

SISO Control system

 $x_{k+1} = A x_k + B u_k$ output of the $y_k = C x_k$

PID controller

$$u_k = K_p e_k + K_i \sum_{n=1}^k e_n + K_d [e_k - e_{k-1}]$$

Specification

$$\lim_{k \to +\infty} (y_{ref,k} - y_k) = 0$$

Digital PID controller

SISO Control system

 $x_{k+1} = Ax_k + Bu_k$ $y_k = C x_k$ k **PID controller** $u_k = K_p e_k + K_i \sum_{n=1}^k e_n + K_d \left[\epsilon\right]$

Specification

$$\lim_{k \to +\infty} (y_{ref,k} - y_k) = 0$$

$$e_k - e_{k-1}]$$

Digital PID controller

SISO Control system

$$egin{aligned} x_{k+1} &= A x_k + B u_k & ext{the} \ y_k &= C x_k & & ext{the} \end{aligned}$$

PID controller

The digital PID-controller is usually implemented using the so-called velocity form

$$u_{k} = u_{k-1} + K_{p} \left[e_{k} - e_{k-1} \right] + K_{i} e_{k} + K_{d} \left[e_{k} - 2e_{k-1} + e_{k-2} \right]$$

to avoid keep track of the sum

Specification

$$\lim_{\to +\infty} (y_{ref,k} - y_k) = 0$$

PID: Summary

$u_{k} = u_{k-1} + K_{p} \left[e_{k} - e_{k-1} \right] + K_{i} e_{k} + K_{d} \left[e_{k} - 2e_{k-1} + e_{k-2} \right]$

PID: Pros

•	Real-Time Control	•	
•	Simple Implementation	•	Wrong
•	Tuning flexibilty	•	Not Id

lacksquare

PID: Cons

Requires Tuning

ly tuned might be unstable

deal for Complex Processes

Don't take into account state and input

constraints

MIMO Control system

$$\dot{x} = Ax + Bu$$

$$y = x$$

MIMO Control system

$$\dot{x} = Ax + Bu$$
 The closed states the states of the stat

$$y = x$$

Specification

losed-loop system should be asymptotically stable

$\lim_{t\to+\infty}\|x(t)\|=0$

MIMO Control system

$$\dot{x} = Ax + Bu$$

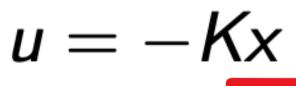
$$y = x$$

Linear Full-State Feedback Controller: U

Specification

The closed-loop system should be asymptotically stable

$\lim_{t\to+\infty}\|x(t)\|=0$



MIMO Control system

Closed-loop system

$$\dot{x} = (A - BK)x$$

Specification

The closed-loop system should be asymptotically stable

$\lim_{t \to +\infty} \|x(t)\| = 0$

-KxU'

MIMO Control system

Closed-loop system

$$\dot{x} = (A - BK)x$$

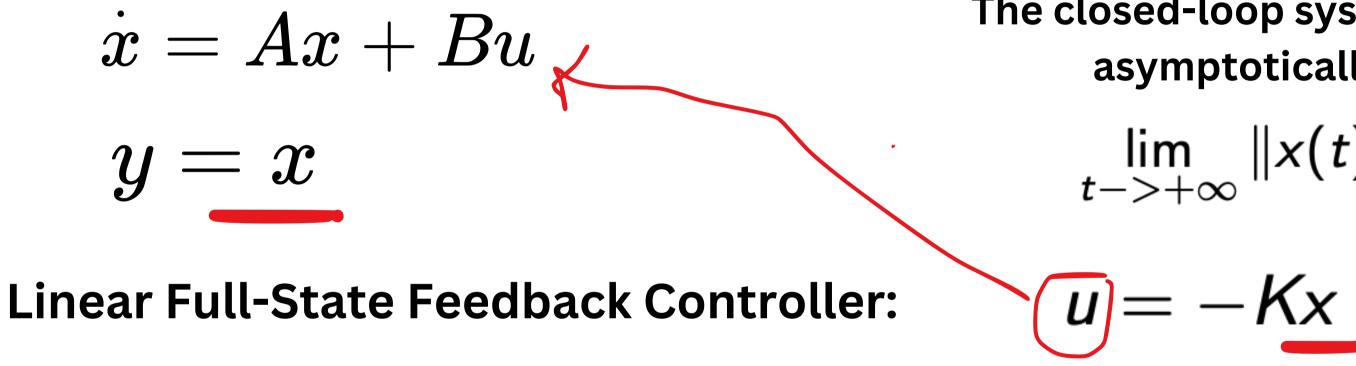
Specification

The closed-loop system should be asymptotically stable

$\lim_{t \to +\infty} \|x(t)\| = 0$

-KxU'

MIMO Control system



Closed-loop system

$$\dot{x} = (A - BK)x$$

Theorem (Eigenvalue assignment — MIMO). All eigenvalues of (A-BK) can be assigned arbitrarily (provided complex eigenvalues are assigned in conjugated pairs) by selecting a real constant K if and only if (A, B) is controllable.

To make closed-loop system stable assign eigenvalues with negative real part

Specification

- The closed-loop system should be asymptotically stable
 - $\lim_{t\to+\infty}\|x(t)\|=0$

Digital full feedback regulator

MIMO Control system

$$x_{k+1} = A x_k + B u_k$$
 asymptotically stab $y_k = C x_k$ interclosed-loop system of $x_{k+1} = 0$

$u_k = -K x_k$ Linear Full-State Feedback Controller:

Closed-loop system $x_{k+1} = (A - BK)x_k$

K if and only if (A, B) is controllable.

To make closed-loop system stable assign eigenvalues, s.t

Specification

The closed-loop system should be le

Theorem (Eigenvalue assignment — MIMO). All eigenvalues of (A - BK) can be assigned arbitrarily (provided complex eigenvalues are assigned in conjugated pairs) by selecting a real constant

$$|\lambda_i| \le 1, i = 1, ... n$$

MIMO Control system

 $\dot{x} = Ax + Bu$ y = Cx

- The closed-loop system should be asymptotically stable
 - $\lim_{t\to+\infty}\|x(t)\|=0$

MIMO Control system

 $\dot{x} = Ax + Bu$ y = Cx

- The closed-loop system should be asymptotically stable
- - $\lim_{t \to +\infty} \|x(t)\| = 0$

Luenberger Observer: $u = K\hat{x}$ Feedback controller:

$\hat{x} = (A - LC)\hat{x} + Ly + Bu$

MIMO Control system

 $\dot{x} = Ax + Bu$ y = Cx

 $\hat{x} = (A - LC)$ **Luenberger Observer:** $u = K\hat{x}$ Feedback controller:

> If pair (A, B) is controllable we can choose K, such that for all $\lambda_i \in eig(A - BK)$ we have $Re(\lambda_i) < 0$.

If pair (A,C) is observable we can choose L, such that for all $\lambda_i \in eig(A - LC)$ we have $Re(\lambda_i) < 0$.

- The closed-loop system should be asymptotically stable
 - $\lim_{t\to+\infty}\|x(t)\|=0$

$$(\hat{x})\hat{x} + Ly + Bu$$

MIMO Control system

 $x_{k+1} = Ax_k + Bu_k$

 $y_k = C x_k$

Luenberger Observer: $\hat{x}_{k+1} = (A - LC)\hat{x}$ Feedback controller: $u_k = K \hat{x}_k$

If pair (A, B) is controllable we can choose K, such that for all $\lambda_i \in eig(A - BK)$ we have $|\lambda_i| < 1$.

If pair (A,C) is observable we can choose L, such that for all $\lambda_i \in eig(A - LC)$ we have $|\lambda_i| < 1$.

The closed-loop system should be asymptotically stable

$$\lim_{k \to +\infty} \|x_k\| = 0$$

$$\hat{x}_k + Ly_k + Bu_k$$

LQR: continuous system

For a continuous-time linear system described by:

 $\dot{x} = Ax + Bu$

with a cost function defined as:

$$J = \int_0^\infty ig(x^TQx + u^TRu + 2x^TNuig)$$

the feedback control law that minimizes the value of the cost is:

$$u = -Kx$$

where K is given by:

$$K = R^{-1}(B^T P + N^T)$$

and P is found by solving the continuous time algebraic Riccati equation:

$$A^TP + PA - (PB + N)R^{-1}(B^TP -$$

dt

 $(+ N^T) + Q = 0$

LQR: discrete system

For a discrete-time linear system described by:

 $x_{k+1} = Ax_k + Bu_k$

with a performance index defined as:

$$J = \sum_{k=0}^\infty \left(x_k^T Q x_k + u_k^T R u_k + 2 x_k^T N u_k
ight)$$

the optimal control sequence minimizing the performance index is given by:

$$u_k = -Fx_k$$

where:

$$F = (R + B^T P B)^{-1} (B^T P A + N^T)$$

and P is the unique positive definite solution to the discrete time algebraic Riccati equation (DARE):

$$P=A^TPA-(A^TPB+N)ig(R+B^TPBig)^{-1}(B^TPA+$$

 $(N^T) + Q$.

Why LQR is "better" than PID?

- It can handle multiple-input multiple-output (MIMO) systems.
- It is an optimal control, taking into account the system
 - dynamics and control effort. This can lead to better
 - performance and efficiency compared to PID, which focuses
 - on reducing error but doesn't optimize a specific criterion.
- LQR more robust than PID in uncertain environments.

Ideally, we want

MIMO Control system $\dot{x} = Ax + Bu$ y = Cx

- The closed-loop system should be asymptotically stable
 - $\lim_{t\to+\infty}\|x(t)\|=0$

Ideally, we want

MIMO Control system $\dot{x} = Ax + Bu$ y = Cx

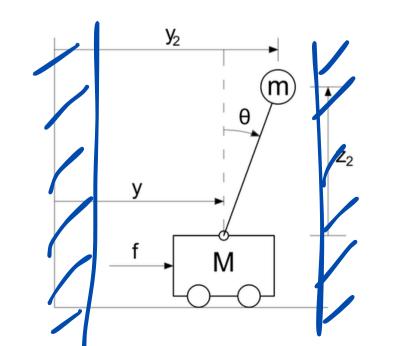
but, also ensure

 $x \in \mathcal{X}, \ u \in \mathcal{U}$

- The closed-loop system should be asymptotically stable
 - $\lim_{t\to+\infty}\|x(t)\|=0$

Ideally, we want

MIMO Control system $\dot{x} = Ax + Bu$ t ->y = Cx



but, also ensure $x \in \mathcal{X}, \ u \in \mathcal{U}$

- The closed-loop system should be asymptotically stable

$$\max_{x \to \infty} \|x(t)\| = 0$$

