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State feedback design

Linear state space control theory involves modifying the
behaviour of an m-input, p-output, n-stafte system

x(t) = Ax(t) + Bu(t)

(OD)
y(t) = Cx(t),
which we call the plant, or open loop state equation, by
application of a control law of the form
u(t) = Nr(t) — Kx(t), (U)

INn which r(t) is the new (reference) input signal. The matrix K is
the state feedback gain and N the feedforward gain .



Is Full State Feedback Always Available?

In a typical system, measurements are provided by sensors:

U
— plant ~Y

Full state feedback uw = — Kz is not implementable!!
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When Full State Feedback Is Unavailable ...

.. we need an Observer!!



Is Full State Feedback Always Available?

In a typical system, measurements are provided by sensors:

u
—b Py

Full state feedback u = —Kx is not tmplementable!!

In that case, an observer is used to estimate the state x:

U ——m—

plant

observer i—» €T




State Estimation Using an Observer

If the system is observable, the state estimate T is
asymptotically accurate:

|12(t) —2(t)]| = \ ) (@i(t) — @i(t)? =0
1=1

If we are successful, then we can try estimated state feedback:

— plant i----| observer
u=—KT |
K

)




The Luenberger Observer

System: r = Az
y=Cx
Observer: z = (A— LC)Z + Ly.

What happens to state estimation error e = x — x as t — 007

= Ax — [(A— LC)x + LCx]
=(A—-LC)x— (A—- LC)x
=(A—LQC)e

Does e(t) converge to zero in some sense?



The Luenberger Observer

System: r = Ax
y=Cz
Observer: z=(A—LC)Z+ Ly
Error: ée=(A—LC)e

Recall our assumption that A — LC is Hurwitz (all eigenvalues
are in LHP). This implies that

l2(t) = 2@ = lle®]* = D les(t)* =0

1=1

at an exponential rate, determined by the eigenvalues of

A— LC.

For fast convergence, want eigenvalues of A — LC' far into
LHP!!



Observability and Estimation Error

Fact: If the system
x = Az, y=Cz

is observable, then we can arbitrarily assign eigenvalues of
A — LC by a suitable choice of the output injection matrix L.

This is similar to the fact that controllability implies arbitrary
closed-loop pole placement by state feedback.

In fact, these two facts are closely related because CCF is dual

to OCF.



Controllability—Observability Duality
Claim: The system

Tz = Az, y=Cx
is observable if and only if the system
t=Alz +Ctu
is controllable.

Proof: C(A',Cc")=[cT|ATC"|...|(A")"1CT]

-C-T

— CA — [O(A: C)]T

_CAn_ 1_

Thus, O(A, C) is nonsingular if and only if C(AT, C7T) is.



Observer Pole Placement, O/C Duality Version
Given an observable pair (A, C):

1. For F = AT, G = C7, consider the system & = Fz + Gu
(this system is controllable).

2. Use our earlier procedure to find K, such that
F-GK =AT - CTK

has desired eigenvalues.
3. Then

eig(AT — CTK) = eig(Al — CTK)! = eig(A — K1 O),
so L = K71 is the desired output injection matrix.

Final answer: use the observer

(A— LC)x + Ly
(A- K'C)z+ Ky

T



Recall: infinite-horizon Linear Quadratic Regulator (LQR)

Problem formulation: optimal control for integral-quadratic cost

minimize J(u(t)) = / +(0)TQx(t) + u(t)T Ru(t) dt
ult J 0

subject to @(t) = Az(t) + Bu(t), z(0) = x¢

Feasible if Q = 0, R >~ 0, (A, B) stabilizable, & (A, Q'/?) detectable.

Solution: independent of the initial condition x(, the linear state feedback

u*(t) = — K*z(t) = —R'B' Px

—/ & s

where P > ( solves the algebraic matrix Riccati equation

A'"P+ PA+Q=PBR'B'P



Equivalent problem formulation:

In hindsight, LQR can be interpreted as optimal pole placement for
t(t) = (A — BK™)x(t)

trading off minimal state deviation and minimal control energy:

00
K™ = argmin / z(t)' Qz(t)+z(t) K'RK z(t) dt
J O N— — N——— —
state deviation control energy



Recall: dual notions of controllability /observability

The following statements are The following statements are
equivalent for controller design: equivalent for observer design:

the system (A, B) is controllable the system (A, () is observable

the controllability matrix the observability matrix
Wc —_ [B AB . oo A'T?,—IB] — CCA |

Wo = i
_CA”—I |

has full rank n
has full rank n

the eigenvalues of A — BK can the eigenvalues of A — L(C' can be
be assigned via the matrix K assigned via the matrix L

idea: use duality (A, B, K) <> (A',C",L") to design optimal observers



Optimal design by duality (A, B, K) < (A',C",L")

LQ-optimal control for closed-loop dynamics: & = (A — BK)x

oo

minimizez f r()TQz(t) + z() TKTRK x(t) dt
() N \— p—
state deviation control energy

= K* =R !B"P where P> 0 solves ATP+ PA+Q =PBR'B'P

LQ-optimal estimation for estimation error dynamics: é = (A — LC) €

o0
minimizey, / e(t) ' Qe(t) +€e(t) LRL' €(t) dt
0 —— |
estimation error output correction

= [* = PCTR™! where P> 0 solves AP+ PA" +Q=PC"R™I1CP




Role of () and R in LQ observer design

Optimal observer for integral-quadratic cost

00
minimize; / e)TQe(t) +e(t)TLRLT e(t) dt
0 e e e— R e
estimation error output correction

trades off prediction and correction i = Ai + Bu + L(y — C%)
prediction correction
= R > 0 quantifies correction through measurement:
R “large” =— L “small" = trust prediction

R “small" = L "large” = trust measurement

= (Q >~ 0 quantifies prediction error: () “large” = “smaller” error ¢



Summary: LQ optimal estimation (LQE)

Problem formulation: optimal observer for integral-quadratic cost

o0
minimizey, / e(t) ' Qe(t) +e(t)' LRL" €(t) dt
J O N, e ——
estimation error output correction

subject to €é(t) = (A — LC)€(t)

Feasible if Q = 0, R > 0, (A, C) detectable, & (A, Q'/?) stabilizable.

Solution: independent of the initial condition ¢(, the output feedback
I*=PC'R™
where P > () solves the algebraic matrix Riccati equation

AP+ PA' +Q=PC'RCP



Combining Full-State Feedback with an Observer

» So far, we have focused on autonomous systems (u = 0).
» What about nonzero inputs?

r = Ax + Bu
y=0Cz



Combining Full-State Feedback with an Observer

» So far, we have focused on autonomous systems (u = 0).
» What about nonzero inputs?

r = Ax + Bu
y=Cx

— assume (A, B) is controllable and (A, C) is observable.

» Today, we will learn how to use an observer together with
estimated state feedback to (approximately) place
closed-loop poles.

u=—Kz

plant -Y

8)

observer «




Combining Full-State Feedback with an Observer

» Consider

r = Ax + Bu
y=0Cx

where (A, B) is controllable and (A, C') is observable.

» We know how to find K, such that A — BK has desired
eigenvalues (controller poles).

» Since we do not have access to x, we must design an
observer. But this time, we need a slight modification
because of the Bu term.



Observer in the Presence of Control Input

» Let’s see what goes wrong when we use the old approach:
z=(A—LO)Z+ Ly

» For the estimation error e = £ — x, we have

E=%—1
= Az + Bu — [(A — LC)x + LCx]
= (A— LC)e+ Bu — not good

» Idea: since u is a signal we can access, let’s use it as an
input to the observer to cancel the Bu term from zx.

» Modified observer:
z=(A—-LC)Z + Ly + Bu
é=i—17
= Ax + Bu — [(A — LC)x + LCx + Bu]
=(A—LC)e regardless of u



Observer and Controller

System: & = Ax + Bu
y = Cx
Observer: z = (A — LC)Z + Ly + Bu
Error: é=(A— LC)e

» By observability, we can arbitrarily assign eig(A — LC);
these should be farther into LHP than desired controller
poles.

Controller: u = —K=x (estimated state feedback)

» By controllability, we can arbitrarily assign eig(A — BK).



Observer and Controller

System: x = Ax + Bu
y=Cz
Observer: z = (A — LC)Z + Ly + Bu
Controller: u©=—KZx

The overall observer-controller system is:

2= (A—LC)Z+ Ly + B(—KZ%)

Y
=(A— LC — BK)x + Ly
u=—Kzx (dynamic output feedback)

— this is a dynamical system with input y and output



Dynamic Output Feedback

r = Ax + Bu

y=Cczx
Zz=(A—LC — BK)Z+ Ly
u=—Kzx

|
=
&)

observer DEEEE.
h
controller




Dynamic Output Feedback: Does It Work?

Summarizing:

» When y = z, tull state feedback u = — Kz achieves desired
pole placement.

» How do we know that u = —KZ achieves similar objectives?

Here is our overall closed-loop system:

r = Ax — BKZ
Z=(A—LC—BK)Z+ LCx

We can write it in block matrix form:

(D) -(re a-ze k) ()

How do we relate this to “nominal” behavior, A — BK?



Dynamic Output Feedback

(D =( a_rorsx) )

Let us transform to new coordinates:

(5) = () =(22) =G %))

T
Two key observations:

» T'is invertible, so the new representation is equivalent to
the old one
» in the new coordinates, we have
t = Axr — BKZx
=(A— BK)x+ BK(xz — )
= (A— BK)xz + BKe
e=(A—LC)e




The Main Result: Separation Principle

So now we can write

(O-( )

upper triangular matrix

The closed-loop characteristic polynomial is

1o (Is— A+ BK _BK
© 0 Is— A+ LC

=det (Is— A+ BK)-det(Is— A+ LC)
Separation principle. The closed-loop eigenvalues are:

{controller poles (roots of det(Is — A+ BK))}
U {observer poles (roots of det(Is — A+ LC))}

— this holds only for linear systems!!



Separation Principle

Separation principle. The closed-loop eigenvalues are:

{controller poles (roots of det(Is — A+ BK))}
U {observer poles (roots of det(Is — A+ LC))}

— this holds only for linear systems!!

Moral of the story:

» If we choose observer poles to be several times faster than
the controller poles (e.g., 2-5 times), then the controller
poles will be dominant.

» Dynamic output feedback gives essentially the same
performance as (nonimplementable) full-state feedback —
provided observer poles are far enough into LHP.

» Remember: the system must be controllable and
observable!!



Control of
Discrete-time Systems



Space model of discrete-time
system

Continuous-time systems
r = Ax + Bu
y = Cz + Du



Space model of discrete-time
system

Continuous-time systems Dicrite-time systems
r = Ax + Bu Ll — A.’Ek—l 1 Buk_l
y=Cz + Du yr = Cxp + Duy



Space model of discrete-time

system
Continuous-time systems Dicrite-time systems
r = Ax + Bu i1 = Az, + Buy
y = Cx + Du yr = Czp + Duy,

Discrete-time systems are either
inherently discrete (e.g. models of bank accounts, national economy growth
models, population growth models, digital words)



Disretization of continuous-time system

Zb — ACE —+- Bu euler method Lhkt+1 — (I T AT)mk =+ BTuk
Y = Cx -+ Du with sampling-time T> Y — Ca;k —+ Duk

N\ e
AN s

0 T 2T3T4T5T6T7T8T9T10T11T 0 1 2 3 4 5 6 7 8 9 1011

k

or they are obtained as a result of sampling (discretization) of
continuous-time systems.



Controllability
of discrete-time system

Tr+1 = Azy + Buy

yr = Czxy + Duy,

Definition of Controllability

A discrete-time linear system x;.1 = Axi + Buy is called controllable at

k = 0 if there exists a finite time ky such that for any initial state xg and
target state x;, there exists a control sequence {ux; k =0, 1,, ky} that will
transfer the system from xg at k = 0 to x; at k = ky



Observability
of discrete-time system

Tr+1 = Azy + Buy

yr = Czxy + Duy,

Definition of Observability

A discrete-time linear system is called observable at kK = 0 if there exists a
finite time kpy such that for any initial state xg, the knowledge of input
{ue, k=0,1,...,ky} and {yx; k = 0,1, ..., ky} suffice to determine the
state Xxp.



Internal stability
of discrete-time system

Tp+1 = Azxy + Buy

Y = Cxi. + Dug
Definition of internal stability

A discrete-time system is stable if and only if when the input ux = 0 for all
k > 0, the state x; is bounded for all k > 0 for any initial state xg € R"

A discrete-time system is asymptotically stable if and only if it is stable and
liMk_ 100 || Xk|| = O for any initial state xo €R™ n.



Disretization of continuous-time system

r = Az + Bu euler method zri1 = (I + AT)zy, + BTuy
Y = Cx + Du with samplingtimeT> Y — Ca;k —+ Duk
Continuous-time It’s sampled

system version



Disretization of continuous-time system

r = Ax + Bu euler method LE+1 — (I T AT)mk + BT'up,
Y = Cx -+ Du with samplingtimeT> Y — Ca;k —+ Duk
Attention!
Continuous-time It’s sampled
system version

Controllable ﬁg j> Controllable



Disretization of continuous-time system

r = Az + Bu euler method Lh+l = (I T AT)mk + BTy
Y = Cx + Du with samplingtimeT> Y — C(L‘k —+ Duk
Attention!
Continuous-time It’s sampled
system version
Controllable Controllable
Observable =) Observable




Disretization of continuous-time system

r = Ax + Bu euler method LE+1 — (I T AT)mk + BT'up,
Y = Cx -+ Du with samplingtimeT> Y — C(L‘k —+ Duk
Attention!
Continuous-time It’s sampled
system version

Controllable ﬁg j> Controllable
Observable :# :> Observable

Stable — X ~)  Stable




Disretization of continuous-time system

r = Ax + Bu euler method LE+1 — (I T AT)mk + BT'up,
Y = Cx -+ Du with samplingtimeT> Y — C(L‘k —+ D’U,k
Attention!
Continuous-time It’s sampled
system version

Controllable ﬁg j> Controllable ?
Observable :ix :> Observable ?

Stable p— X t> Stable ?




Criterion of controllability
for discrete-time system

rrr1 = Az + Bup (1) Controllability matrix
~1
yk:C$k+Duk [B,AB,...,An B]

Kalman’s Criterion

The linear discrete-time system (1) is controllable if and only
if the controllability matrix has rank equal to n, wherenis a
number of state variables.



Criterion of observability
for discrete-time system

rrr1 = Az + Bup (1) Observability C

matrix CA
yr = Cxp + Dup  (2)

CAn—l

Kalman’s Criterion

The linear discrete-time system (1) with measurements (2) is
observable if and only if the observability matrix has rank
equal to n, where n is a number of state variables.



Criterion of Stability
for discrete-time system

Tr+1 = Azy + Buy

Yk = Cxi. + Dug

Criterion of stability

A discrete-time LTI system is asymptotically (internally) stable if and only
if [A\j|] <1lforalljel,...;swhere Aq,...,\s is the set of distinct
eigenvalues of A.



PID controller

Control system
r = Ax + Bu
y=Cz




PID controller

SISO Control system
r = Ax + Bu
y=Cz

\AURJ Ljdﬂ



PID controller

SISO Control system Specification
d? — AZB Bu output of closed-loop system
should track the given reference trajectory:
Y = Cx t |jmoo(yref(f) —y(t))=0

\AURJ Ljdﬂ



PID controller

SISO Control system Specification

d; — AZB Bu output of closed-loop system should track
the given reference trajectory:

y=Cx lim (yrer () = y(£)) = 0

PID controller

ult) = Kt +K/ AT+ K- e(t)

dt
Yugy 1 =Y /4:\



PID controller

SISO Control system Specification
d? — AZB B’LL output of closed-loop system should track
4 the given reference trajectory:
Y = Cx , Ijmoo(yref(t) —y(t))=0

PID controller

d
@ Ke +K/ dT%-KdEe(t)

Yuey 1 ‘}/4:\



Digital PID controller

SISO Control system Specification

output of closed-loop system should track
the given reference trajectory:

Tp+1 = Azy + Buy

Yk = Czy im  (Vref,k — yk) =0

k——+o00
Cr

PID controller

k
U — erk + Ki 21 €y T Kd [ek — ek_l]
n=—



Digital PID controller

SISO Control system Specification

output of closed-loop system should track
the given reference trajectory:

Tr+1 = Azy + Buy

yr = Cp, Jim (Vref.k —yk) =0
/ ——+00
Sk
v PID controller
St

k
— pek -+ Ki 21 En -+ Kd [ek — ek_l]
n=—



Digital PID controller

SISO Control system Specification

output of closed-loop system should track
the given reference trajectory:

Tr+1 = Axy + Buy

Yk = Czy im  (Vref,k — yk) =0

k——+00
Cr

PID controller

The digital PID-controller is usually implemented using the so-called velocity form
up = up—1+Kp e — ep—1]+Kiep+Kq lex — 2ex—1 + ep—2]

to avoid keep track of the sum



PID: Summary

U = Up—1+K, er — ex—1|+Kier+ K lex — 2ex_1 + ex—o]

PID: Pros PID: Cons

. o Requires Tuning
° Real-Time Control

, , o Wrongly tuned might be unstable
e Simple Implementation

, o o Not Ideal for Complex Processes
° Tuning flexibilty

e Don’t take into account state and input

constraints



Stabilisation by
full feedback




Stabilisation by full feedback

MIMO Control system
r = Ax + Bu

y=4=




Stabilisation by full feedback

MIMO Control system

r = Ax

y=4=

Bu

Specification

The closed-loop system should be
asymptotically stable

im |[x(t)[| =0

t—>+400



Stabilisation by full feedback

MIMO Control system

r = Ax

y=4=

Linear Full-State Feedback Controller:

Bu

Specification

The closed-loop system should be
asymptotically stable

im |[x(t)[| =0

t—>+400

u=—Rx



Stabilisation by full feedback

MIMO Control system

r = Ax

y=4=

Linear Full-State Feedback Controller:

Bu

Closed-loop system

r=(A— BK)x

Specification

The closed-loop system should be
asymptotically stable

im |[x(t)[| =0

t—>+400

(Y= K<



Stabilisation by full feedback

MIMO Control system

r = Ax

y=4=

Linear Full-State Feedback Controller:

Bu

Closed-loop system

r=(A— BK)x

Specification

The closed-loop system should be
asymptotically stable

im |[x(t)[| =0

t—>+400

(Y= K<



Stabilisation by full feedback

MIMO Control system Specification
. The closed-loop system should be
L — AZB B u asymptotically stable
— ' im ||x(t)|| =0
Y=z lim x(2)]
Linear Full-State Feedback Controller: ( U= — K x
Closed-loop system  theorem (Eigenvalue assignment — MIMO). All eigenvalues of
. A B K (A—BK) can be assigned arbitrarily (provided complex eigenval-
L = ( o )CB ues are assigned in conjugated pairs) by selecting a real constant
‘\\ K if and only if (A, B) is controllable.

To make closed-loop system stable assign eigenvalues with negative real part



Digital full feedback regulator

MIMO Control system Specification

st = Asy + Buy el
Y = Cxy, | k_lLT_OO k|| = O

Linear Full-State Feedback Controller: u, = —Kxy

Closed-loop system Theorem (Eigenvalue assignment — MIMO). All eigenvalues of

L A B K (A—BK) can be assigned arbitrarily (provided complex eigenval-
LE+1 = ( - )LE k ues are assigned in conjugated pairs) by selecting a real constant

‘\\ K if and only if (A, B) is controllable.

To make closed-loop system stable assign eigenvalues, s.t. ‘)\;‘ < 1, | = 1, ... Nn



Stabilisation by dynamic feedback

MIMO Control system The closed-loop system should be

Zt‘ _ AZE‘ _|_ B’U, asymptotically stable
y = Cu im_[lx(9)] =0



Stabilisation by dynamic feedback

MIMO Control system The closed-loop system should be
Zt‘ _ A T _|_ B’U, asymptotically stable
im |Ix(t)]| =0
y — CQE t—>—400

Luenberger Observer: & — (A— LC)X+ Ly

Feedback controller: u—= KX

Bu



Stabilisation by dynamic feedback

MIMO Control system The closed-loop system should be
Zt‘ _ A T _|_ B’U, asymptotically stable
im |Ix(t)]| =0
y — C,{E t—>—400

Luenberger Observer: % — (A— LC)X+ Ly + Bu
u= KX

Feedback controller:

If pair (A, B) is controllable we can choose K, such that for all
\i € eig(A — BK) we have Re(\j) < 0.

If pair (A,C) is observable we can choose L, such that for all
\;i € eig(A— LC) we have Re(\;) < 0.



Stabilisation by dynamic feedback

MIMO Control system The closed-loop system should be

lim [[x[| =0

yk p— ka k—>400

Luenberger Observer: %1 =(A— LC)& + Lyx + Buy

Feedback controller: u, = KXy

If pair (A, B) is controllable we can choose K, such that for all
\;i € eig(A— BK) we have |\;| < 1.
R TEVE AT S 2

If pair (A,C) is observable we can choose L, such that for all
A\i € eig(A— LC) we have |\;| < 1.




LQR: continuous system

For a continuous-time linear system described by:

r = Ax + Bu

with a cost function defined as:
o0
J = f (:UTQ:B + ul Ru + 2:ETNu) dt
0

the feedback control law that minimizes the value of the cost is:
u=—Kzx

where K is given by:
K =R ' (B'P+ NT)

and P is found by solving the continuous time algebraic Riccati equation:

AP+ PA— (PB+ N)R*'B'P+NHY+Q =0



LQR: discrete system

For a discrete-time linear system described by:

Trt1 = Az + Bug,
with a performance index defined as:

J = (mf@mk + ugRuk + 2$£N'uk)
k=0

the optimal control sequence minimizing the performance index is given by:
ur = —Fxy

where:
F=(R+ B'PB) ' (B"PA+ N")

and P is the unique positive definite solution to the discrete time algebraic Riccati equation (DARE):

P=ATPA— (A"PB+ N)(R+ B"PB) ' (B"PA+ NT) + Q.



Why LQR is “better” than PID?

e |t can handle multiple-input multiple-output (MIMO) systems.

It is an optimal control, taking into account the system
dynamics and control effort. This can lead to better
performance and efficiency compared to PID, which focuses
on reducing error but doesn't optimize a specific criterion.

LQR more robust than PID in uncertain environments.



What are the limitations?

Don’t take into account state and input constraints!



What are the limitations?

Don’t take into account state and input constraints!

Ideally, we want

MIMO Control system The closed-loop system should be

Zi‘ _ AZE _I_ Bu asymptotically stable
im |Ix(t)]| =0
y — Caj t—>-+00




What are the limitations?

Don’t take into account state and input constraints!

Ideally, we want

MIMO Control system The closed-loop system should be
Zi‘ _ A T _I_ Bu asymptotically stable
im |Ix(t)]| =0
y — Caj t—>-+00

but, also ensure

xeX, ueld




What are the limitations?

Don’t take into account state and input constraints!

Ideally, we want

MIMO Control system The closed-loop system should be
Zi‘ L A 7 _|_ Bu asymptotically stable
lim |[x(t)]| =0
y — Caj t—>+400
//I S but, also ensure Fineny
Q y /@ | xeX, ueld =
[ _ _ %\4]4
/AR o




