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PID controller

t
u(t) = Kpe(t) + K; f e(7) dT + Kgé(t) where e(t) = r(t) - y(t)
0

Proportional (P) Control:
Effect: Faster response but steady-state error remains.

Integral (I) Control:
Effect: Improves accuracy but may cause overshoot

Derivative (D) Control:
Effect: Reduces overshoot and improves stability.



PID: Pros
Stability

PID controllers are capable of providing stable and accurate control over systems, ensuring that they
reach and maintain the desired setpoint efficiently.

Tuning Flexibility
PID controllers offer flexibility in tuning parameters (Proportional, Integral, and Derivative gains) to
achieve optimal performance for different systems and operating conditions.

Simple Implementation

Compared to more complex control algorithms, PID controllers are relatively simple to implement,

making them suitable for a wide range of applications and accessible to engineers and technicians with
basic control theory knowledge.

Real-Time Control

PID controllers are well-suited for real-time control applications due to their simplicity and efficiency,
making them suitable for controlling systems with fast response



Cart-pole control

Inverted pendulum on the cart can be modeled as follows
(M + m)y + by + mlf cos @ — ml6?sin(0) = F
ml cos(8)y + (I + mI?)0 — mglsin = 0




Cart-pole control

Inverted pendulum on the cart can be modeled as follows

(M + m)y + by + mlf cos @ — ml6?sin(0) = F
ml cos(8)y + (I + mI?)6 — mglsinf = 0
V‘/I’W F U W ) i.e. control + disturbance
Or in canonical state space ODE form
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0 = 04

' (M+m)mgl sin 6+ by; ml cos 6—m?[%0% cos 0 sin 6—mlF cos 6
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Cart-pole control

Lineralized model
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Cart-pole control

r = Ax + Bu + Dw
y=Cz

u(t)=er(t)—I—K;/te(T)dT—l-Kdé(t)
0
where e(t) = r(t) - y(t)
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Cart-pole control
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Cart-pole control
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Angle

Cart-pole control

u(t) = Kye(t) + K; / e(r) dr + Kyé(t)
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e controller keeps pendulum in up right position, but position of the
cart goes to infinity....



PID: Pros

MPC, LQR, Hoo, u-synthesis,
adaptive control, RL based
control, NN control

IS N2y PARIE

PID Control

PID is easy to implement, real-time controller which works
for many industrial challendges



PID: Cons

MPC, LQR, Hoo, u-synthesis,
adaptive control, RL based
control, NN control

1 i l'\ i L I,, &

PID Control

PID controllers do not work well when system is unstable or non-linear

PID controllers were desighed for single input single output system,
while many real-world examples are multi inputs multi outputs systems



SISO system VS MIMO system

SISO MIMO
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Single Input Single Output  Multiple Inputs Multiple Outputs
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Lineralized model
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Cart-pole control

Lineralized model
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Quadruple-Tank Process

The process inputs are

|
- 1‘ 7.51- ) “sz_

(input voltages to the pumps)
the outputs

"hr:%D R I 2

(water levels level measurement devices).

_— The target is to control the level in the lower
two tanks with two pumps.
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Paris unveils massive underground water storage
basin to clean up Seine River ahead of Olympics

Paris 2024: Why the Seine's high tlow rate
threatens the Games' opening ceremony

== Heavy spring and summer rainfall has swelled the river and its tributaries, as well as the four
artificial reservoirs responsible for regulating them. The ceremony scheduled for July 26 could
 be adapted.

By Nicolas Lepeltier
Published on July 12, 2024, at 5:30 am (Paris) - (3 4 minread - Lire en francais

What did Paris do to clean up?

To prepare for the Paris Games, the city built a giant basin to capture excess rainwater
and keep untreated waste from flowing into the river, renovated the sewage system
and upgraded water treatment plants.

Heavy rain may still swamp the system.



Quadruple-Tank Process

The process inputs are

|
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(input voltages to the pumps)
the outputs

"hr:%D R I 2

(water levels level measurement devices).

_— The target is to control the level in the lower
two tanks with two pumps.
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Quadruple-Tank Process

| Could we design such a controller?
- 1‘ And what if one of the pumps are broken?
—KD
Tank 2 y
e @41'1;1111 2
_— The target is to control the level in the lower
o ‘ two tanks with two pumps.
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Quadruple-Tank Process

| Could we design such a controller?
- And what if one of the pumps are broken?

Should we measure the level of the water in

—¥D all for tanks? Or it is enough to measure the
ank 2 | water level only in two lover tanks?

) &

_— The target is to control the level in the lower
two tanks with two pumps.
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Quadruple-Tank Process

Tank l‘

) )

Controllability

Observability

— The target is to control the level in the lower

two tanks with two pumps.
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Quadruple-Tank Process

Tank l‘

) )

Controllability

Observability

— The target is to control the level in the lower

two tanks with two pumps.
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Controllability & Observability

control output
>

»‘ actuator “ process “
input

impact control
forces and energy

controller |+

command input = specification

To design controller
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To design controller

you nheed to be able to
influence the system



Controllability & Observability

control output
>

’| actuator “ Process “

input
impact control
forces and energy

controller |+

command input = specification

Controllable To design controller

you need to be able to
influence the system



Controllability & Observability

control

output
actuator Process >
input
impact control
forces and energy
controller |+
command input = specification
Controllable To design controller
you need to be able to and know it’s changing

influence the system



Controllability & Observability

control

output
actuator Process >
input
impact control
forces and energy
controller [~
command input = specification
Controllable To design controller Observable
you need to be able to and know it’s changing

influence the system



Controllability & Observability

control output
>

’| actuator “ Process “

input
impact control
forces and energy

controller |+

command input = specification

Controllability and observability are conditions of how the system works with the
actuators and sensors, and it's not tied to a specific control technique



Controllability

Controllability (null reachability) means that there exists control signal
which allows the system to move from any any initial state to any final
state in a finite time interval



Controllability

Controllability (null reachability) means that there exists control signal
which allows the system to move from any any initial state to any final
state in a finite time interval

Monorail




Controllability

Controllability (null reachability) means that there exists control signal
which allows the system to move from any any initial state to any final

state in a finite time interval

Monorail
V=1u
p="v

+ v, km/h

n, km




Controllability

Controllability (null reachability) means that there exists control signal
which allows the system to move from any any initial state to any final
state in a finite time interval

Monorail t v, km/h
V= 1U
p="1
20 - - o
| D, km
5 >




Controllability

Controllability (null reachability) means that there exists control signal
which allows the system to move from any any initial state to any final
state in a finite time interval

Monorail | o km/h
: 60
V=—1U
p — ’U even if infinite amount of energy is required for that....
20 - - o
{ P, ]Cm
1 5




Controllability

Controllability (null reachability) means that there exists control signal
which allows the system to move from any any initial state to any final
state in a finite time interval

Monorail Example of uncontrollable system
=X imagine we lost control of gaz pedal

pP=v




Observability

Observability means that all states can
be known from the outputs of the system

Monorail

V= 1u

p="u




Observability

Observability means that all critical states can
be known from the outputs of the system

Monorail

impractical to know every state
- of the system
V=—1U




Observability

Observability means that all critical states can
be known from the outputs of the system

Monorail impractical to know every state
of the system

V= 1u

p = L =12 C




Observability

Observability means that all critical states can
be known from the outputs of the system

Monorail most states don't impact the system

. in any meaningful wa
D= u y g y

v ;= 1% C

p




Observability

Observability means that all critical states can
be known from the outputs of the system

Monorail and we do not consider them in the
state vector of the model

vV=1u
p:,v I‘_(pava/ﬁ




Observability

Observability means that all critical states can
be known from the outputs of the system

Monorail and we do not consider them in the
: state vector of the model

p="1 = (p,v)




Observability

Observability means that all critical states can
be known from the outputs of the system

What does it mean to observe a state?

Monorail we can measure both
speed, and position




Observability

Observability means that all critical states can
be known from the outputs of the system

What does it mean to observe a state?

Monorail we can measure both

we can estimate the whole state
speed, and position

from available information

AEHIH i—nfy) v

EEE—— ﬁ\

V= 1u

p

|
S

measure position estimate speed




Observability

Observability means that all critical states can
be known from the outputs of the system

What does it mean to observe a state?

Monorail we can measure both we can estimate the whole state
speed, and position

- from available information
V=1U

p=v (N () v

measure position estimate speed

R

R ) - [

measure speed estimate position




Observability

Observability means that all critical states can
be known from the outputs of the system

What does it mean to observe a state?

Monorail we can measure we canh estimate the whole state
- [ 0\ from available information
V—=—1U g —=
D A .
p="1 - v=>D
adding additional sensors . .
can be expensive estimations are

sensitive to estimate speed

measurement
errors p= /’Udt—|—0

estimate position




Observability

Observability means that all critical states can
be known from the outputs of the system

Monorail Example of unobservable system

V= U imagine we lost all the sencors




Controllability and observability
of LTI system



Controllability & Observability
of LTI system

State equation Output equation Dimensions

h states

r = Ax -+ Bu Y = OI’ —+- Du p controls m outputs

Controllability means that there exists control sighal which allows the
system to move from any any initial state to any final state in a finite
time interval

Observability means that all states can
be known from the outputs of the system



Controllability & Observability
of LTI system

State equation Dimensions
. n states
L = ASE —+- Bu p controls

Controllability means that there exists control sighal which allows the
system to move from any any initial state to any final state in a finite
time interval



Controllability & Observability
of LTI system

State equation Dimensions
n states

€T = AiE —+- Bu p controls

. iy nfrmd we need fo
o “use MATH




Controllability & Observability
of LTI system

State equation Dimensions
. n states
L = ASE —+- Bu p controls

Solution of '
x(t) = etz (0) +/ e ) Bu(1)dr
0

a state equation

matrix exponential



https://en.wikipedia.org/wiki/Matrix_exponential

Let me remind...

o Let A€ R™", the exponential of A, denoted by e” is the n x n
matrix given by the power series

A __
e =) i
k=0
@ Let Ac R"™" and I, is n x n identity matrix. Then

p(N\) = det(M, — A) = N+ a1 A"+ 4 ai )+ aols

s called the characteristic polynomial of A.



Let me remind...

Theorem Caley-Hamilton

Let A € R"*" then A satisfy its own characteristic polynomial equation, i.e.

p(A) = A" + an 1A+ .+ 1A+ agl, = 0.

@ The theorem allows A" to be expressed as a linear combination of the
lower matrix powers of A



Controllability of LTI system

@ The LTI system is called controllable if for any initial state xp and any
final state x¢, there exists input signal u(t) such that the system,
starting from x(0) = xg, reaches x(tf) = x¢ in some finite time tr.

@ Starting at 0 is not a special case — if we can get to any state in
finite time from the origin, then we can get from any initial condition
to that state in finite time as well.

o x(tr) = fotf At =T)Bu(t) dr

g Solution of

a state equation



Controllability of LTI system

@ Change the variables ™ = 7 — tf, d7 = dm gives us a form

tf
x(tr) = e "2 Bu(ts + ) dm

o —



Controllability of LTI system

@ Change the variables ™ = 7 — tf, d7 = dm gives us a form

Lr
X(tf) = e A2 Bu(tf -+ 7‘2) d7o

o —

@ Assume the system has p inputs. From the definition of matrix
exponential and Cayley-Hamilton theorem, we have

o0 ' n—1
A’ : .
—ATo __ I I
e _*°= > () = ;E—o:A a;(72)

| =

—_—

for some computable scalars a;(7).



Controllability of LTI system

@ Hence

tf
X(tf) — / (E'_AT2 Bu(tf -+ ’7'2) drm =
0)

/ (Z A'c:u, (72 ) Bu(tf + m) dm =

n—1

Z(A' / aj(m2)u(t + m2) dra = > (A'B)Bi(tr)

=0
- -~

e the coefficients 5;(tr) depends on the input u(m) € RP, 0 < m» < tr




Controllability of LTI system

Bo(tr)
_ﬁ n,—.l.(.tf )_

@ In matrix form, we have x(tf) = |B,AB, ..., Ar—1B]




Controllability of LTI system

controllability matrix | SGo(tr)
@ In matrix form, we have x(tf) = [B,AB, ..., A" 1B] R

\f, _5n—1(tf)_
C(A, B)

@ A solution of this equation exists for any x(tf) € R if and only if

rank(C(A, B)) = n.




Controllability of LTI system

Bo(tr)

@ In matrix form, we have x(tf) = [B,AB, ..., A" 1B] R

o _Bn—l(tf)_

@ A solution of this equation exists for any x(tf) € R if and only if

rank(C(A, B)) = n.

Kalman's Controllability Rank Condition

The LTI system x = Ax + Bu, x € R™! is controllable if and only if the
controllability matrix C(A, B) = [B, AB, ..., A" 1B] has full rank, i.e.

rank(C(A, B)) = n.




Controllability Examples

Example.

8

u

Yy

]xz

In the hydraulic system on the
left It Is obvious that the input
cannot affect the level x,,so it is
infuitively evident that the 2-tank
system is not controllable.

A linearised model of this system with unitary parameters gives

The controllability matrix is

x(t)
y(t) =[10]x(t)

| x(t) + [ 3] u(t)

C=[BABl=[57 ]

which is not full rank, so the system is not controllable.



Controllability Examples

Example.

The conftrollability of the hy-

u draulic systfem on the left is not
. U U ‘s SO obvious, although we can see
that x¢1 (t) and x3(t) cannot be
y affected independently by u(t).

w2

The linearised model in this case is
x(t)
y(t)

[—11 0

REANERY S

[010]x(t)

The controllabllity matrix is

O 1 —4
C=[B AB A2B] = [1 —3 11]
O 1 —4

which has rank 2, showing that the system is not controllable.



Controllability Examples

Example.
Now in the previous system suppose

that the input is applied in the first
] U [ U l tank, as shown in the figure. In

this case the linearised model is the
- same as before, except that the
matrix B is now different

]

(1) = [_51 _13 i]x(t) + [8} u(t)
y(t) =[o10]x(t)

The controllability maftrix is now

1.1 2
cz[BABAZB]={01—4}
00 1

which has rank 3, showing that the system is controllable.



Controllability & Observability
of LTI system

State equation Output equation Dimensions

h states

r = Ax -+ Bu Y = Om —+- Du p controls m outputs

Solution of '
. x(t) = etz (0) +/ e ) Bu(1)dr
0

a state equation

matrix exponential

t
Input - output 1) — (OpAt ~7) B dr + Du(t
o y(t) = Ce™x(0 )+C/O u(T)dr + Du(t)



https://en.wikipedia.org/wiki/Matrix_exponential

Observability of LTI system

@ Observability: Can we reconstruct x(0) by knowing y(7) and u(7)
over some finite time interval [0, t]? (By knowing the initial condition,
we can reconstruct the entire state x(t))

@ Let us introduce notation

y(t)=y(t)— C /0 t eAt=7) Bu(r)dr — Du(t)
then

y(t) = Ce”x(0)+ C/t eAlt—T) Bu(7)dT+ Du(t) < y(t) = Ce”tx(0)

0 _—

Y



Observability of LTI system

@ Since the n-dimensional vector x(0) has n unknown components, we
need n equations to find it.



Observability of LTI system

@ Since the n-dimensional vector x(0) has n unknown components, we
need n equations to find it.

o Let's differentiate y(t) n — 1 times: observability

_)7(1.') p— CeAtX(O) - H(t) - - mz:rlx-
(1)) = CAe?x(0 (+)(1)

40 e x(0) o | T _| A e”'x(0)
_)7(1.')(”_1) _ CAn_leAtX(O) i )7(1')(”—1)_ _CA”—l_

CO(AC)



Observability of LTI system

@ Since the n-dimensional vector x(0) has n unknown components, we
need n equations to find it.

o Let's differentiate y(t) n — 1 times:

y(t)(l) CeAtX(g) w1 T C
y(t)\") = CAe™ x(0 ()1
O S LR (O L I R s
}7(1.')(”_1) _ CAn—leAtX(O) i )7(1')(”—1)_ ;C'An—l_
O(A, C)

Kalman's Observability Rank Condition

The LTI system x = Ax + Bu, x € R™! with measurements y = Cx + Du
is observable if and only if the observability matrix O(A, C) has full rank,
i.e. rank(O(A, C)) = n.




Observability Examples

Example.

.
- U[H‘U]m

Measurements

2. 4(E)= (100
; o 1 O] ¥ (¢)
-0 O
1. 0. 0.]
0. 1. 0.]
0. 0. 1.]
-1. 1. ©0.]
o311 ek [0(0 ()= 3

0. 1. -1.]
2. -4, 1. R\
-4, 11. -4. observable
1. -4. 2.]]



Observability Examples

Example. Measurements

. 1.o(E)= (1 0,07 Y (]
B U[xZU]xs ) '
o

Ol ﬂ)-é) = [ |

N R
|

»r R ®
) ® ®

1

1ok (O(L\)C)wzj =7 Uéwz[
i'),g. i SINSSTT i& W \

—
L




Observability Examples

Example. Measurements

]uu U] 1.3(£)=£o,1,oj><(f)
o UlaUl=
n

; [ 0. 1. ©.
0 - [ 1. -3. 1.°
l ’Q -4, 11. -4.]]
(t) = [3 52 1, [ + [g] uee oM (0(B O] =2 =Y

vwon b bl

i.e. 1 sensor is enough to estimate the state, but it shouldn’t be misplaced



Let me summarize

State equation Output equation Dimensions

h states

r = Ax -+ Bu Y = Om —+- Du p controls m outputs

@ The LTI system is controllable if and only if rank(C(A, B)) = n.
@ The LTI system is observable if and only if rank(O(A, C)) = n.



Let me summarize

State equation Output equation Dimensions

h states

r = Ax -+ Bu Y = Om —+- Du p controls m outputs

@ The pair (A, B) is controllable if and only if rank(C(A, B)) = n.
@ The pair (A, C) is observable if and only if rank(O(A, C)) = n.



Duality of
controllability & observability

State equation Output equation Dimensions

h states

r = Ax -+ Bu Y = Of —+- Du p controls m outputs

@ The pair (A, B) is controllable if and only if rank(C(A, B)) = n.
@ The pair (A, C) is observable if and only if rank(O(A, C)) = n.

Duality of Controllability and observability

The pair of matrices (A, B) is controllable if and only if the pair of matrices
(AT,BT) is observable.

v




Invariance Under Change of Coordinates

@ Consider x = Ax + Bu,y = Cx + Du and similarity transformation
X = Tx, where T is invertible.

o The system X = A% + Bu,y = CX + Du with matrices
A=TAT !, B=TB,C=CT!

is then called an equivalent system.

Invariance Under Nonsingular Transformations

The LTI system is controllable if and only if the equivalent system is
controllable.

The LTI system is observable if and only if the equivalent system is
observable.




Please complete the notebook you can find at
https://perso.ensta-paris.fr/~manzaner/Cours/AUT202/

The completed notebook should be sent to your tutor
before the beginning of the next session.

Please add [ APM_4AUT2_TA] to the topic of e-mail.



