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What is a control system?

|1 S .0O0X

ROCKET SCIENCE

Link to the video: Prof. Jeff Hoffman, MIT Open Learning.



https://openlearninglibrary.mit.edu/courses/course-v1:MITx+16.00x+2T2019/courseware/0157db93bad8468e88ffba1ef318750c/f5bcd157ade54f34a4ce4b450001bc86/?child=first
https://openlearninglibrary.mit.edu/courses/course-v1:MITx+16.00x+2T2019/courseware/0157db93bad8468e88ffba1ef318750c/f5bcd157ade54f34a4ce4b450001bc86/?child=first

Why automatic control ?

:
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A brief history of control theory...
https://www.youtube.com/watch?v=FD6Fz9cYy5I


https://www.youtube.com/watch?v=FD6Fz9cYy5I

“smart” means “automatically controlled”...

:
!
J
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A brief history of control theory...
https://www.youtube.com/watch?v=FD6Fz9cYy5I


https://www.youtube.com/watch?v=FD6Fz9cYy5I

What is a control system?

> control system >
input output

Control system =
mechanism that alters the future state of the system



What is a control theory?

control system

‘). ‘)

input = plant output

how do | change this ? to get what | want?

Control system =
mechanism that alters the future state of the system

Control theory =
a strategy to select appropriate input



Open-loop vs Closed-loop

Open-loop control systems are typically reserved for simple
processes that have well-defined input to output behaviors.

washing program clean dishes

Once the user sets the wash timer the dishwasher will run for that
set time, regardless of whether the dishes are actually clean or
not when it finishes running.



Open-loop vs Closed-loop

Open-loop control systems are typically reserved for simple
processes that have well-defined input to output behaviors.

command
input

—

controller

control

>

input

process

output



Open-loop vs Closed-loop

For any arbitrary process, though, an open-loop control system is
typically not sufficient.

desired
speed

—

gaz pedal
control

fuel

CASY
el

Imagine you are trying to move your car with a constant speed



Open-loop vs Closed-loop

For any arbitrary process, though, an open-loop control system is
typically not sufficient.

desired gaz pedal fuel ) @ _ speed
speed control )
Fr F
Moving flat road you can apply the —
force F which is balanced TN

by the force of friction Fr at this point




Open-loop vs Closed-loop

For any arbitrary process, though, an open-loop control system is
typically not sufficient.

desired gaz pedal fuel ) @ _ speed
speed control )
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Moving flat road you can apply the —
force which is balanced T

by the force of friction at this point




Open-loop vs Closed-loop

For any arbitrary process, though, an open-loop control system is
typically not sufficient.

desired gaz pedal fuel ) @% speed )
speed control )

but what happens when hill

Fr F
TN
the car encounters a hill or a valley? <

valley



Open-loop vs Closed-loop

For any arbitrary process, though, an open-loop control system is
typically not sufficient.

desired
speed

—

gaz pedal
control

fuel

CASY
el

to account for road gradient changes you must vary the input to
your system with respect to the output



Open-loop vs Closed-loop

For any arbitrary process, though, an open-loop control system is
typically not sufficient.
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to account for road gradient changes you must vary the input to
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Open-loop vs Closed-loop

For any arbitrary process, though, an open-loop control system is
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Open-loop vs Closed-loop

For any arbitrary process, though, an open-loop control system is
typically not sufficient.

control

>

input

feedback

plant

output

co.mmand — > | controller
Input
f\
A closed-loop
or feedback control ‘

system



Modeling




Modeling

output

input
P »‘ plant




Modeling

output

input +

actuator “ Process “ SeNnsor

An actuator is a part of a device or machine that convert energy, often
electrical, air, or hydraulic, into mechanical force. It is the component in
any machine that enables movement.

A sensor is a device that produces an output signhal for the purpose of
sensing a physical phenomenon.



Modeling

input output
actuator process sensor >
SISO MIMO
/ .
Hydraulic w, } E;:YT:O"‘ L 8'1 >
force P i 12 3
- J I, O
\ _ —

Single Input Single Output  Multiple Inputs Multiple Outputs



Modeling

| Step input [}jﬂjj* A black box model receives inputs
- f R and produces outputs but its
‘\ - workings are unknowable.
o For example: neural networks

r‘elah’onship

> F=mx + kx




Modeling

A white box modelis a
mathematical model of a physical
process described by
ODE or PDE

A black box model receives inputs
and produces outputs but its
workings are unknowable.

For example: neural networks

It's a spring-mass system!



Modeling

A black box model receives inputs
and produces outputs but its
workings are unknowable.

For example: neural networks

Grey box models

A white box modelis a
mathematical model of a physical
process described by
ODE or PDE

It's a spring-mass system!



Modeling

Physical | Prior
knowledge Knowledge
Detailed Lumped
Models Models

w0
White Grey Black



Modeling

Models allow simulating and analyzing the system
Models are never exact
Modeling depends on your goal

A single system may have many models
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Ex.1:. Vehicle Suspension System

https://www.youtube.com/watch?v=IPg695IXbPo

F
The suspension system in cars, trucks, and

m other vehicles uses springs and dampers to
O O f absorb shocks from the road and provide a

k c
T 7

AN smooth ride.



https://www.youtube.com/watch?v=lPg695IXbPo

Ex.1:. Vehicle Suspension System

https://www.youtube.com/watch?v=IPg695IXbPo

‘ The suspension system in cars, trucks, and
m other vehicles uses springs and dampers to
Ot @ 1©  absorb shocks from the road and provide a
T .
AN smooth ride.

Newton’s second law (translational motion):

mx = Fi g = —kx —cx + F
spring friction  external
force force force

Hooke’s law Stokes’ law


https://www.youtube.com/watch?v=lPg695IXbPo

Ex.1:. Vehicle Suspension System

The suspension system in cars, trucks, and

other vehicles uses springs and dampers to

absorb shocks from the road and provide a
smooth ride.




Ex.1:. Vehicle Suspension System

The suspension system in cars, trucks, and

other vehicles uses springs and dampers to

absorb shocks from the road and provide a
smooth ride.

ma = Ftotal — —]{7213 —- Cd? +@
e

Distrubance W

This disturbance represents real-world conditions that a car suspension
system might encounter, such as road irregularities, bumps, or potholes



Ex.1:. Vehicle Suspension System

X
™ —L The suspension system in cars, trucks, and
r | other vehicles uses springs and dampers to
absorb shocks from the road and provide a
smooth ride.

ar

Distrubance W ’} Control U

Design a controller to minimize vibrations and improve
ride comfort while maintaining stability.

Ball Joint



Ex.1:. Vehicle Suspension System
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Canonical form ODE

For a dynamical system, the canonical form usually involves a set of first-order
ODEs. This means that a system of higher-order ODEs is converted into a system of
first-order equations.

r = f(z,u,w)

x € R"is a state;
u € R? is a control input;

w € R¥ is a disturbance iInput;

The canonical ODE form essentially refers to expressing a system's dynamics in the
simplest, first-order ODE form, which is easier for numerical simulation and analysis.



Ex.1:. Vehicle Suspension System
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2nd-order linear ODE
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Canonical form: 1st-order ODE

definition of velocity
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Ex.1:. Vehicle Suspension System

Linearity: functions are linear mappings
"~ i)( y pping

Time invariance: a certain input will always
give the same output (up to timing), without
+’f‘ W regard to when the input was applied to the
1\ w system.

Canonical form: 1st-order ODE

T = v

|

&

S
e

4

z
—

v



Ex.1:. Vehicle Suspension System

i}( Linearity: functions are linear mappings

Time invariance: a certain input will always
give the same output (up to timing), without

+’f‘ W regard to when the input was applied to the
1\ w system.
Canonical form: 1st-order ODE Measurements
i — v only position Y =<
or

, k C 1 x
vV — A v (u 4 \W complete state y —

m m v



Ex.1:. Vehicle Suspension System

Linearity: functions are linear mappings
"~ i)( y pping

Time invariance: a certain input will always
give the same output (up to timing), without
+’f‘ W regard to when the input was applied to the
1\ w system.

Canonical matrix form of linear time invariant (LTI) systems

(O e T
hon ! =, 1) () +0u




Ex.1:. Vehicle Suspension System

Linearity: functions are linear mappings
"~ i)( y pping

Time invariance: a certain input will always
give the same output (up to timing), without
+’f‘ W regard to when the input was applied to the
1\ w system.

Canonical matrix form of linear time invariant (LTI) systems

(DD (e om0 v

m

for example



Ex.1:. Vehicle Suspension System

i}( Linearity: functions are linear mappings

Time invariance: a certain input will always
give the same output (up to timing), without
+’f‘ W regard to when the input was applied to the
1\ w system.

Canonical matrix form of linear time invariant (LTI) systems

0 1 0 0 disturbance .
L= (_ﬁ __E)_”E* (1)K+ (1)’“’ y=(1 0 <v> + 0w

m m 7/ state m 7 control\ m

vector vector senscfr
dynamic matrix matrix




State-space models of LTI systems

Vehicle Suspension System

0 1 0 0 disturbance
:i:-( L C):L’—I—(l)u—l—(l)w y = (1 0)@)-‘—0\/\
m "

m /7 state m “control M

vector vector sensor
dynamic matrix matrix

Canonical matrix form of linear time invariant (LTI) control systems

state control state control
vector vector disturbance vector vector
¢ = Az + Bu + Dw y = Cxz + Ru
dynamic sensc?r
matrix matrix

State equation Output equation



State-space models of LTI systems

State equation Output equation
state control state control
vector vector disturbance vector vector
t = Az + Bu + Dw y = Cz + Ru
dynamic senso.r
matrix matrix

r € R"is a state;
u € RP is a control input;
w € R"is a disturbance input;

y € R™ is a output vector;

Ac RV BecR"™P Dec R"™" C e R™" Rec R™*P



Passive Suspension System

A step input represents a sudden
change in road height, such as driving
over a bump or into a pothole.

0, t<3.0
w=1{10, 3.0<t<7.0

0, t>7

Position (m)

no control,i.e.u=0

Passive Suspension System

0.25 A

0.20 -

0.15 A

0.10 A

0.05 -

0.00

Time (s)



Passive Suspension System

no control,i.e.u=0

A step input represents a sudden
change in road height, such as driving
over a bump or into a pothole.

0,
w = ¢ 1.0,
0,

Why we need a damper in the system?

0
u+<1)w
m

t <3.0
3.0<t<7.0
t>7

| (0 1) 0
L = k T+ |
-k 2

Position (m)

0.4 -

0.3 -

0.2 A

0.1 ~

0.0 -

Passive Suspension System

S ———
Foneneeeg X ————— A=A e |
] O T A
LI L
peoesee sttt 14111 1111
| AR %* ________
| — ] 5 l - L]
-------------------- VIR TN 1
0 5 1]0 1[5 2l0 2,5 30
Time (s)



Passive Suspension System

A step input represents a sudden
change in road height, such as driving
over a bump or into a pothole.

0, t<3.0
w=1{10, 3.0<t<7.0

0, t>7

Position (m)

no control,i.e.u=0

Passive Suspension System

0.25 A

0.20 -

0.15 A

0.10 A

0.05 -

0.00

Time (s)



Passive Suspension System

A sinusoidal input represents a periodic
road profile, such as driving on a
washboard or corrugated road.

w = sin(t)

Position (m)

no control,i.e.u=0

Passive Suspension System




Active Suspension System

will be considered later in the course

A sinusoidal input represents a periodic

Passive Suspension System

road profile, such as driving on a
washboard or corrugated road. o R A i W S SR 4 B W
w = sin(t) alfd Al LS\
E E i | |
0 0\  § oo e
£ (V! w g : :

1 1 ' desw d behawor

m m —0.1 hesssssssessessfsssessssssnes ____________.{ __________________________

I A e 1: ---------------------------
0 2 - é 8 10

Time (s)

Design a controller to minimize vibrations and improve
ride comfort while maintaining stability.




Ex.2: DC motor

Watch on 23 YouTube

https://www.youtube.com/watch?v=LFvII68 cOQ


https://www.youtube.com/watch?v=LFvIl68_cOQ

Ex.2: DC motor

A common actuator in control systems is the DC motor. A DC motor
converts electrical energy into mechanical energy and is widely used in
applications like robotics, industrial automation, and electric vehicles.

Fixed
field

TE!
X
. C_D AF?_HJ:HE{?‘E ) ’ C) @
- circuit
f \
b6

Rotor



Ex.2: DC motor

A common actuator in control systems is the DC motor. A DC motor
converts electrical energy into mechanical energy and is widely used in
applications like robotics, industrial automation, and electric vehicles.

The electrical behavior of the DC motor is

?ﬁfj described by the armature circuit
R I equation:
ANN—r v r— TEJ .
. d1 , -
y C_D Armature . ‘([ L I RZ — V — [Q
- circuit dt —
:‘ ) ‘\ _— UR
bo Uy,

Rotor
Kirchhoff's voltage law
assuming that the magnetic field is constant



Ex.2: DC motor

A common actuator in control systems is the DC motor. A DC motor
converts electrical energy into mechanical energy and is widely used in
applications like robotics, industrial automation, and electric vehicles.

Fixed
field

¥
-I_ {
. C_D Armature ’
— circuit x

The electrical behavior of the DC motor is
described by the armature circuit

equation: electromotive
dZ force constant
L—+Ri=V)—K,
electric electric
inductance resistance

Kirchhoff's voltage law
assuming that the magnetic field is constant



Ex.2: DC motor

A common actuator in control systems is the DC motor. A DC motor
converts electrical energy into mechanical energy and is widely used in
applications like robotics, industrial automation, and electric vehicles.

The mechanical behavior of the DC

f;ﬁf motor is described by the torque
R ; equation:
MN—rrrr——r T, motor torque constant
=X 0+ b0 = Ky
v <+> Armature ’ v{ J —I_ b E— 1:?,
- circuit - w— —_—
i B ‘\ moment of inertia : . 4
¥ viscous friction motor torque
o, of the rotor constant

Newton's 2nd law



Ex.2: DC motor

A common actuator in control systems is the DC motor. A DC motor
converts electrical energy into mechanical energy and is widely used in
applications like robotics, industrial automation, and electric vehicles.

Combined System

Fixed
field

Armature ) ‘(?B d1 . :
v C_D frifu:r*) ¢ C) \@ L 7 Ri =V — Keg

Rotor i i I
o Exercise: Derive canonical state space model.

Is system linear?



Nonlinear Control Systems



Ex.3: Pendulum

Newton’s 2nd law (rotation motion):

moment of endulum torque
inertia P G Te
5 . . A
ml* -0 = —mgsin(d) - 1 + T, mgsin 6 [
— angular lever external

acceleration arm  torque mg



Ex.3: Pendulum

Newton’s 2nd law (rotation motion):

moment of dulum t
i ertia pendulum torque Te
5 . . A
mi? - § = —mgsin(6) - 1 + T, mesin 6,
—  angular lever external ) ’
acceleration arm  torque meg

Nonlinear 2nd order equation

9 — _7 Slﬂ(@) | leTe




Ex.3: Pendulum

Newton’s 2nd law (rotation motion):

moment of endulum torque

inertia P G Te

le . 9 — _mg Sln(@) . l _I_ Te mg SiIlQ external

— —_— - N torque

— angular lever external
acceleration arm  torque meg
Nonlinear 2nd order equation T = f(x,u)
1 v ‘ 0

X g . Let 0, =60. 0, =10 =(.'") u="T,
6= —ZLsin(d) + —T 1 =0, 0 v =0, e

l le ’ \

Canonical Nonlinear State Space Model



Ex.3: Pendulum

Newton’s 2nd law (rotation motion):

moment of pendulum torque
inertia Te
5 . . A
mi? - § = —mgsin(6) - 1 + T, mesin 6,
—  angular lever external ) ’
acceleration arm  torque meg

$:f($,U) 91:6’2
: 1
b= (g;) u =T (92 — —g Siﬂ(@l) | T

[ mi2"°
Canonical Nonlinear State Space Model




Ex.3: Pendulum

Newton’s 2nd law (rotation motion):

moment of endulum torque
inertia P G Te
le . 9 — _mg Sln(@) . l _I_ Te mg SiIlQ external
— —_— - N torque
— angular lever external
acceleration arm  torque meg
LTI State Space model ,
| i=fleu) | =0
r = Az + Bu + Dw ) . g 1
L= (92) u =1 92 — — Slﬂ(@l) I 5 Te

How to get it? [ ml

Canonical Nonlinear State Space Model



General linearisation procedure

> Start from nonlinear state-space model x = f (LE, ’u,)

» Find equilibrium point (zg, ug) such that f(xg,ug) =0

Note: difterent systems may have different equilibria,
not necessarily (0,0), so we need to shift variables:

Note that the transformation is nvertible:

T = I + X, U = U+ Ug



General linearisation procedure

» Pass to shifted variables £ =z — zg, ©u = © — ug

T = (zo does not depend on t)

— equivalent to original system
» The transformed system is in equilibrium at (0, 0):

f(O, 0) — f(.’L'(),’U/()) — 0



General linearisation procedure

» Now linearize:

Z:AQ_I_BQ’ WhereA?:j:% : sz:%
6.’1;3 z=2 6Uk I




General linearisation procedure

» Now linearize:

0fi

Z —_— Az _I_ B@, where A?;j — P
J

u:uo u:uo

» Why do we require that f(xg,up) = 0 in equilibrium?



General linearisation procedure

» This requires some thought. Indeed, we may talk about
a linear approximation of any smooth function f at
any point xg:

f(x) = f(xo)+f (x0)(x—20) — f(xp) does not have to be 0

» The key is that we want to approximate a given
nonlinear system © = f(z,u) by a linear system
© = Ax + Bu (may have to shift coordinates:

T T — Ty, U—>U— Up)

Any linear system must have an equilibrium point at
(z,u) = (0,0):

f(x,u)=Axz+ Bu  f(0,0) = A0+ B0 = 0.



General linearisation procedure

> Start from nonlinear state-space model 1 = f (:U ’u,)
)

9, = 0,

ng—gsin(ﬁl) | ! T.

[ ml?




General linearisation procedure

> Start from nonlinear state-space model 1 = f (:U, u)

9, = 0,

: 1
0y = g sin(6) T.

[ mi2™=°

» Find equilibrium point (zg, ug) such that f(zg,ug) =0

A, =0 ) @2 =0 ) Teo = O IS an equilibrium point



General linearisation procedure

> Start from nonlinear state-space model & = f(x, u)

9, = 0,

: 1
0y = g sin(6) T.

[ mi2™©

» Find equilibrium point (zg, ug) such that f(zg,ug) =0

A, =0 ) Cg; =0 Teo = O IS an equilibrium point
)

Is it the only one?



General linearisation procedure

> Start from nonlinear state-space model & = f(x, u)

9, = 0,

: 1
0y = g sin(6) T.

[ mi2™=°

» Find equilibrium point (zg, ug) such that f(zg,ug) =0

A, =0 ) @2 =0 Teo = O IS an equilibrium point
)

Is it the only one?

well, it is not, but let’s chose this one



General linearisation procedure

> Start from nonlinear state-space model & = f(x, u)

9, = 0,

: 1
0y = g sin(#) T.

[ mi2~°

» Find equilibrium point (zg, ug) such that f(zg,ug) =0

A, =0 ) @2 =0 Teo = O IS an equilibrium point
)

. ?
» Pass to shifted variables x =z — 29, u = u — uog s it the only one:

» The transformed system is in equilibrium at (0, 0): well, it is not, but let’s chose this one

f(0,0) = f(xg,up) =0



General linearisation procedure

> Start from nonlinear state-space model & = f(x, u)

9, = 0,

: 1
0y = g sin (6 ) 4 T.

[ mi2™=°

» Find equilibrium point (zg, ug) such that f(zg,ug) =0

A, =0 ) @2 =0 Teo = O IS an equilibrium point
)

. ?
» Pass to shifted variables x =z — 29, u = u — uog s it the only one:

» The transformed system is in equilibrium at (0, 0): well, it is not, but let’s chose this one

£(0.0) = (20, ug) = 0
f(0,0) = f( ) D V



General linearisation procedure

» Now linearize: 0, =0
1 = 0o
QZAQ—I—B@, WhereA?;j:g—a{; ) Bk:% ] 92:—%Sln(91) | TrleTe
-  matrix A L (G«, Qz\ T") ;(0;01 0)
(a )
ot -~ 0 ° QF" = 4
QD B |0=100) 7 DO, 6= (0,0)
ot -=7A'(O' 1
| ) -
?“,/ = -2 cu(sd ) ,:fj_.?ﬁ =0 501
6-(10] ¢ & =049 D4, |&490
0 6 1 —_— Y¢=b Z / b \7410



General linearisation procedure

» Now linearize:

Ofi

:B?}k:

3'u,k

ng@%—Bg, where Aij:%
e matrix B
@_‘,« | 0
Q\L ‘Tg-;i) ~
&~ (0, 0)
012
02 L
V. ‘Te'/Q ™

cn (Ba, Qz‘ Te.) '—(0,()| 0)

/o\

#

mcz/




Ex.3: Pendulum

Newton’s 2nd law (rotation motion):

moment of
. . pendulum torque
inertia
5 .
ml* -0 =—mgsin(8) - [ + T,
—  angular lever external
acceleration arm  torque

LTI state space model

external

torque



Angle (rad)

Ex.3: Pendulum

Linear System - Non linear system --

(@)= (5 o) @)+ (3) ATV
02 _% 0 02 # ’ 92 — —g Siﬂ(@l) + —1.

[ mi2~°©

: : . : Pendulum
0.100 §--========= A —————————————————————— A ——————————————————————— .
' ! . ; [ 1.00 4
: : I :
O'OTSN __________ A A 1 ' 5 i 1 ' ‘ 0.75 +{--------- 4:
I I i I :
0.050 F-p======== -T"""""";" e ";' --------- {' ““““““ 0.50 +- ;
0.025 p=fo==ce=geofoeferecccclechetocacaadta et R S8 ST SEEEIE B 02541
=)
o
0.000 +--%------fp--4--4+-----SJ---t--f-mfdf e p Y EJ 0.00 4-- . .
: : : : o : : :
S e e e s e < 025 | 5 5 .
| | i i ! ! ! |
—0.050 f---{---f---d--mp-o-frecboocfofoedooo oo oot oo -0.50 - i f gt d g o]
-0.075 t---- U""J:""j\'j""":“-"v""* ----- v ----- :L"--U ----- -0.75 +----§-- ———4:———— ~1 -——:L———— ] 1 -4 -- J -l
] ] I ] I (] (] I
] I I I ] (] ] |
-0.100 =~=-- --—--*: ------------ :*——-—— —-——-+: ———————————— :F ——————————— —1.00 A : : : :
0 2 4 6 8 10 0 2 4 6 8 10
Time (s)

Time (s)

As angle increases, linear and nonlinear system trajectories diverge.



Ex. 4: Modeling a balance system




Ex. 4: Modeling a balance system

Real-world examples modeled as an inverted pendulum on the cart.



Ex. 4: Modeling a balance system

and other exercises for today session...

Please, install Jupyter Notebook
https://jupyter.org/install

and work on the notebook you can find at
https://perso.ensta-paris.fr/~manzaner/Cours/AUT202/

The completed notebook should be sent to your tutor
before the beginning of the next session.

Please add [ APM_4AUT2_TA] to the topic of e-mail.


https://jupyter.org/install

