AMS308 2022-23 : devoir à la maison $n^{\circ}3$

Le compte-rendu doit être envoyé par courriel à $\frac{Maryna\ Kachanovska}{}$ au plus tard le 13/02/23

Le nombre de pages du compte-rendu est limité à 10

Exercice 1. Un modèle en électromagnétisme. Soit Ω un domaine de \mathbb{R}^3 , composé d'un milieu parfait isotrope et entouré par un conducteur parfait. La permittivité électrique ε et la perméabilité magnétique μ sont mesurables, et telles que :

$$\begin{array}{l} \exists \varepsilon_-, \varepsilon_+ > 0, \ \varepsilon_- \leq \varepsilon \leq \varepsilon_+ \ \text{p. p. dans} \ \Omega \, ; \\ \exists \mu_-, \mu_+ > 0, \ \mu_- \leq \mu \leq \mu_+ \ \text{p. p. dans} \ \Omega. \end{array}$$

On note $(\Gamma_k)_{k=0,K}$ les composantes connexes maximales de $\partial\Omega$, et $\Sigma=(\Sigma_i)_{i=1,I}$ les coupures de Ω . On veut résoudre le modèle suivant

$$\begin{cases}
\operatorname{Trouver} \mathbf{A} \in \mathbf{H}(\mathbf{rot}; \Omega) \text{ tel que} \\
\mathbf{rot} (\mu^{-1}\mathbf{rot} \mathbf{A}) = \mathbf{J} \operatorname{dans} \Omega \\
\operatorname{div} (\varepsilon \mathbf{A}) = 0 \operatorname{dans} \Omega \\
\mathbf{A} \times \mathbf{n} = 0 \operatorname{sur} \partial \Omega \\
\langle (\varepsilon \mathbf{A}) \cdot \mathbf{n}, 1 \rangle_{H^{1/2}(\Gamma_k)} = 0, \ \forall k = 1, K
\end{cases}$$
(1)

La donnée est $\boldsymbol{J} \in \boldsymbol{H}(\operatorname{div};\Omega)$, avec $\operatorname{div} \boldsymbol{J} = 0$ dans Ω et $\langle \boldsymbol{J} \cdot \boldsymbol{n}_{|\Gamma_k}, 1 \rangle_{H^{1/2}(\Gamma_k)} = 0$, pour tout k = 1, K.

1. On considère le modèle (1) avec deux permittivités ε_1 et ε_2 distinctes, et même perméabilité μ . On note \boldsymbol{A}_1 une solution de $(1)_{\varepsilon_1,\mu}$ et \boldsymbol{A}_2 une solution de $(1)_{\varepsilon_2,\mu}$, avec la même donnée \boldsymbol{J} . Montrer que **rot** $\boldsymbol{A}_1 = \operatorname{rot} \boldsymbol{A}_2$.

Dans la suite, on va considérer le modèle avec $\varepsilon = 1$ p. p. dans Ω .

- 2. Construire une formulation variationnelle équivalente au modèle (1).
- 3. Justifier que cette formulation variationnelle est $bien\ pos\'ee$:
 - Introduire une pression artificielle pour $sym\acute{e}triser$ la formulation variationnelle. Pour démontrer que cette pression s'annule, il faut utiliser toutes les hypothèses sur J!
 - Etablir une condition inf-sup.
- 4. Comment dépend la norme de \boldsymbol{A} en fonction de celle de \boldsymbol{J} ?
- 5. Quel est l'ensemble des équations vérifiées par le champ $\boldsymbol{B} = \operatorname{\mathbf{rot}} \boldsymbol{A}$? Qu'en pensez-vous ?

Exercice 2. Résolution numérique. Le but est de proposer une méthode de résolution numérique du modèle (1).

- 1. Quelle discrétisation choisir pour A?
- 2. Construire la formulation variationnelle discrète.
- 3. Démontrer qu'elle est bien posée.
- 4. Quel résultat de convergence peut-on attendre?
- 5. Que peut-on en déduire pour le champ B?