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Basics in Probability

The results below may be found in classical books such as [30, 65, 66, 89].
We provide recalls on probability spaces, random variables, convergence of
random variables, then on conditional expectation, conditional probability
and stochastic kernels. We conclude with the Monte Carlo method.

B.1 Probability Space

We give the definition of a probability space, after having recalled the notions
of measurable space and of measure.

B.1.1 Measurable Space

A σ-field on a set Ω is a collection A of subsets of Ω such that:

• ∅ ∈ A,
• if the sequence {Bn}n∈N is such that Bn ∈ A, for n ∈ N where N is
countable, then

⋃
n∈N Bn ∈ A,

• if B ∈ A, then the complementary set Bc = Ω\B ∈ A.

Given any collection C of subsets of Ω, the σ-field σ(C) generated by C is
defined to be the smallest σ-field in Ω such that C ⊂ σ(C). It is called the
σ-field generated by C.

A measurable space is a set Ω together with a σ-field A on Ω, and is
denoted by (Ω,A). The elements of A are called measurable sets.

Let (Ω,A) and (Y,Y) be two measurable spaces. A mapping Y : Ω → Y

is said to be measurable if Y −1(Y) ⊂ A. The collection Y
−1(Y) of subsets of

A is a σ-field, denoted by σ(Y ) and called the σ-field generated by Y .

Definition B.1. For any topological space Y, the Borel σ-field of Ω is the
σ-field Bo

Y generated by the open sets of Y. Elements of Bo
Y are called Borel

sets. When we use measurable mappings with values in a topological space (as
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metric or Hilbert spaces), measurability implicitly refers to the Borel σ-field.
A continuous mapping between topological spaces is measurable.

B.1.2 Measure

Let (Ω,A) be a measurable space. A measure on (Ω,A) is a function µ : A→
R ∪ {+∞} with values in the extended real numbers, such that:

1. µ(B) ≥ 0 for B ∈ A, with equality if B = ∅;
2. if the sequence {Bn}n∈N is such that Bn ∈ A, for n ∈ N where N

is countable, and the Bn are mutually disjoints, then µ(
⋃

n∈N Bn) =∑
n∈N µ(Bn).

The second property is called σ-additivity, or countable additivity. The triple
(Ω,A, µ) is called a measure space.

A measure µ is said to be finite if µ(Ω) < +∞. A measure µ is said to
be σ-finite (or a measure µ is a σ-finite measure) if there exists a countable
sequence {Bn}n∈N in A such that

⋃
n∈N Bn = Ω and µ(Bn) < +∞ for all

n ∈ N .
Say that a subset C ⊂ Ω is µ-negligible in the measure space (Ω,A, µ)

if there exists B ∈ A such that C ⊂ B and µ(B) = 0. The measure space
(Ω,A, µ) is called µ-complete [26, p. 2] if every µ-negligible subset is in A.
Given a measure space (Ω,A, µ), we define a new σ-field Aµ which consists of
all the sets B ⊂ Ω for which there exists B+, B− ∈ A such that B− ⊂ B ⊂ B+

and µ(B+ − B−) = 0. The extension of µ on Aµ is unique and the measure
space (Ω,A, µ) is complete if Aµ = A. On a measurable space (Ω,A) without
explicit reference to a measure, it is possible to define a σ-field called the σ-
field of universally measurable sets over (Ω,A) [21, Definition 7.18]. It is the

σ-field Â :=
⋂

µ A
µ obtained when the intersection is over the finite measures

µ on A. A σ-field A is said to be complete or universally complete if A = Â. As
an example, suppose that µ is a σ-finite measure on A and A is µ-complete.
Since A ⊂ Â =

⋂
µ′ A

µ′ ⊂ Aµ = A we have that A = Â, so that the σ-field A

is universally complete.

B.1.3 Probability Space

If µ(Ω) = 1, then (Ω,A, µ) is called a probability space, and the measure µ is
called a probability measure, generally denoted by P and called a probability.
Elements of A are called events

Let (Ω,A,P) be a probability space. A condition holds almost surely on Ω
if it holds on Ω\N , where N is a subset of Ω of measure 0, and abbreviated
a.s. or P-a.s..

Definition B.2. We say that a probability space (Ω,A, µ) is non-atomic, or
alternatively call µ non-atomic, if µ(A) > 0 implies the existence of B ∈ A,
B ⊂ A with 0 < µ(B) < µ(A).



B.2 Random Variables 325

B.1.4 Product Probability Space

Let (Ωi,Ai,Pi), i = 1, 2 be two probability spaces. The product probability
space is defined as (Ω1×Ω2,A1⊗A2,P1⊗P2), where the product σ-field A1⊗
A2 has been introduced at Remark 3.25 as the one generated by the rectangles
{G1 ×G2 |Gi ∈ Ai , i = 1, 2}, and where the product probability P1 ⊗ P2 is
characterized on the rectangles by

P1 ⊗ P2(G1 ×G2) = P1(G1)× P2(G2) . (B.1)

It can be shown that P1⊗P2 can be extended into a probability on the product
σ-field A1⊗A2. By associativity, one can define the product of a finite number
of probability spaces. The case of an infinite product of probability spaces is
discussed at §B.7.1.

B.2 Random Variables

After having recalled the definition of a random variable, we turn to inte-
gration, with Lp-spaces and mathematical expectation. Recalls on probability
image, Radon-Nikodym derivative and uniform integrability are also provided.

Definition B.3. Let (Ω,A,P) be a probability space and (Y,Y) be a measur-
able space. A measurable mapping Y : Ω → Y is called a random variable.

Remark B.4. When the measurable mapping Y takes values in (R,Bo
R) it is

called a real-valued random variable. When it takes values in (Rn,Bo
Rn) it is

called a random element. ♦

Two random variables Y and Z are said to be equal almost surely, or
P-almost surely, or P-a.s., when P({Y = Z}) = 1. Recall that, in Probability
Theory, it is customary to omit the variable ω and to write

{Y = Z} :=
{
ω ∈ Ω

∣∣ Y (ω) = Z (ω)
}

. (B.2)

B.2.1 L
p-Spaces

Let 0 < p ≤ +∞. The Lp-norm of a random variable Y with values in a
Banach space is defined for p < +∞ as

∥∥Y
∥∥
p
:=

(∫

Ω

∥∥Y
∥∥p

dP

) 1

p

, (B.3)

when the integral exists, and for p = +∞ as

∥∥Y
∥∥
∞

= ess sup
∥∥Y

∥∥ := inf
{
y ∈ R

∣∣ P
{
ω

∣∣ ∥∥Y (ω)
∥∥ > y

}
= 0

}
. (B.4)
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The L∞-norm
∥∥Y

∥∥
∞

of Y is called the essential supremum of
∥∥Y

∥∥.
The set of random variables with finite Lp-norm forms a vector space V

with the usual pointwise addition and scalar multiplication of functions. Two
random variables are said to be equivalent when their difference has zero
Lp-norm: the Lp-space on Ω is the quotient space of V by this equivalence
relation. Thus, random variables in Lp-space are defined up to equivalence
almost surely. We use the notation Lp(Ω,A,P;Y) to specify the domain and
images spaces, and the notation Lp(Ω,A,P) for real-valued random variables.
For 1 ≤ p ≤ +∞ the space Lp(Ω,A,P) is a Banach space.

B.2.2 Mathematical Expectation

A real-valued random variable Y is said to be integrable when Y ∈
L1(Ω,A,P) or, equivalently, when

∫
Ω

∣∣Y
∣∣ dP < +∞. The mathematical ex-

pectation of Y is

E(Y ) :=

∫

Ω

Y dP . (B.5)

With this notation, Y ∈ L1(Ω,A,P) ⇐⇒ E(
∣∣Y

∣∣) < +∞.
When the dependence w.r.t. the probability P has to be stressed, one uses

the notation EP(Y ):

EP(Y ) :=

∫

Ω

Y dP . (B.6)

The space L2(Ω,A,P) is a Hilbert space, equipped with the scalar product

〈
Y ,Z

〉
:=

∫

Ω

Y (ω)Z (ω) dP(ω) . (B.7)

Random variables in L2(Ω,A,P) are said to be square integrable.

B.2.3 Probability Image

Let Y be a random variable. The image measure

PY := P ◦Y −1 (B.8)

is a probability on (Y,Y), called the probability law of Y or probability distri-
bution of Y . It is also denoted by

Y
⋆
(P) := P ◦Y −1 . (B.9)

For any measurable bounded real-valued function ϕ, the mapping ϕ(Y ) :
Ω → R is a random variable, and one has that

EP(ϕ(Y )) = EPY
(ϕ) . (B.10)
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B.2.4 Radon-Nikodym Derivative

Let P and Q be two probabilities on (Ω,A). The probability Q is said to
have a density w.r.t. P if there exists a nonnegative (R ≥ 0, P-a.s.) integrable
random variable R ∈ L1(Ω,A,P) such that

EQ(Z ) = EP(RZ ) , ∀Z ∈ L1(Ω,A,Q) . (B.11)

The random variable R is uniquely defined P-a.s., is called a density , and is
denoted by R = dQ/ dP.

The probabilities P and Q are said to be equivalent if Q is absolutely
continuous w.r.t. P and P is absolutely continuous w.r.t. Q. This is denoted
by P ∼ Q. In that case, R = dQ/ dP is uniquely defined P-a.s. and Q-a.s.,
and we have that R > 0 and dP/ dQ = 1/R:

P ∼ Q and
dQ

dP
= R ∈ L1(Ω,A,P) , R > 0 , P-a.s. or Q-a.s. . (B.12)

B.2.5 Uniform Integrability

Consider {Yi}i∈I a collection of random variables with values in a Banach
space. The collection {Yi}i∈I is said to be uniformly continuous if

∀ǫ > 0 , ∃α > 0 such that P(A) ≤ α⇒ sup
i∈I

∫

A

∥∥Yi

∥∥ dP ≤ ǫ ,

and uniformly integrable if

∀ǫ > 0 , ∃α > 0 such that sup
i∈I

∫

‖Yi‖>α

∥∥Yi

∥∥ dP ≤ ǫ . (B.13)

B.3 Convergence of Random Variables

Let (Ω,A,P) be a probability space. We present different notions of conver-
gence of random variables.

B.3.1 Almost Sure Convergence

Let Y be a random variable and {Yn}n∈N be a sequence of random variables
with values in the same topological space. We say that {Yn}n∈N converges

almost surely towards Y , denoted by Yn

a.s.−→ Y , if

P
(
Yn −→

n→+∞
Y

)
= 1 .

This is denoted by Yn

a.s.−→ Y .
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B.3.2 Convergence in L
p Norm

Let 1 ≤ p ≤ +∞. Let Y be a random variable and {Yn}n∈N be a sequence
of random variables with values in the same Banach space. The sequence
{Yn}n∈N converges in Lp norm towards Y if

∥∥Yn − Y
∥∥
p
−→

n→+∞
0 .

This is denoted by Yn

Lp

−→ Y . The L2 convergence is called mean square
convergence.

B.3.3 Convergence in Probability

Let {Yn}n∈N be a sequence of random variables, taking values in a metric
space (Y, d). The sequence {Yn}n∈N converges in probability towards a random
variable Y if, for every ε > 0,

lim
n→∞

P(d(Yn,Y ) ≥ ε) = 0 .

This is denoted by Yn

P−→ Y .

B.3.4 Convergence in Law

Let Y be a random variable and {Yn}n∈N be a sequence of random variables
with values in the same topological space. The sequence {Yn}n∈N converges in
law or converges in distribution towards a random variable Y if the sequence
{PYn

}n∈N of image probabilities (see §B.8) narrowly converges towards PY ,
that is, if

lim
n→+∞

E(ϕ(Yn)) = E(ϕ(Y )) , (B.14)

for all bounded continuous function ϕ. This is denoted by Yn

D−→ Y .

B.3.5 Relations Between Convergences

We have the following properties.

• Convergence almost surely implies convergence in probability.
• If a sequence converges in probability, there exists a sub-sequence which
converges almost surely.

• If a sequence of random variables converges in L2 norm, the sequence
converges in probability.

• If the sequence {Yn}n∈N converges in probability to Y then {Yn}n∈N
converges in law to Y .

• When {Yn}n∈N converges in law to a constant random variable Y , then
{Yn}n∈N converges in probability to the constant Y .
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B.4 Conditional Expectation

Let (Ω,A,P) be a probability space. In what follows, G denotes a subfield of
A, that is, G ⊂ A and G is a σ-field. In this section, when not specified, a
random variable is a real-valued random variable.

Let L2(Ω,G,P) be the closed vector subspace of square integrable G-
measurable functions in the Hilbert space L2(Ω,A,P). We can thus define
the orthogonal projection on L2(Ω,G,P).

Definition B.5. If Y is a square integrable random variable, we define the
conditional expectation of Y knowing (the σ-field) G, and we denote by
E
(
Y | G

)
, the orthogonal projection of Y on L2(Ω,G,P):

Z = E
(
Y | G

)
⇐⇒ Z = argmin

T ∈L2(Ω,G,P)

E

(∥∥Y − T
∥∥2

)
. (B.15)

Thus, the conditional expectation solves an optimization problem under mea-
surability constraints (among G-measurable random variables). This was dis-
cussed in §3.5 in the case of a finite probability space.

The conditional expectation may be extended to L1 random variables. If
Y is an integrable random variable, E

(
Y | G

)
is the unique Z ∈ L1(Ω,G,P)

such that
E
(
Y T

)
= E

(
ZT

)
, ∀T ∈ L∞(Ω,G,P) . (B.16)

In fact, the above result holds true under the weaker assumptions that Y is
bounded either below or above by an integrable random variable.

The conditional expectation may be extended componentwise to L1 ran-
dom variables with values in Rd.

Elementary Properties

Let X and Y be two integrable random variables, λ a real number. Then

E
(
λX + Y | G

)
= λE

(
X | G

)
+ E

(
Y | G

)
, (B.17)

X ≥ 0⇒ E
(
X | G

)
≥ 0 , (B.18)

E
(
E
(
X | G

))
= E

(
X

)
, (B.19)

Y ∈ L∞(Ω,G,P)⇒ E
(
Y X | G

)
= Y E

(
X | G

)
. (B.20)

If G♭, G♯ are two subfields of A, we have that

G♭ ⊂ G♯ ⇒ E

(
E
(
X | G♯

) ∣∣∣ G♭
)
= E

(
X

∣∣ G♭
)
. (B.21)
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Dependence Upon the Probability Law

Proposition B.6. Let P and Q be two equivalent probabilities on (Ω,A), with
positive Radon-Nikodym derivative R (see §B.2.4). We have that

EQ

(
X | G

)
=

EP

(
RX | G

)

EP

(
R | G

) , P-a.s. or Q-a.s. , (B.22)

for all bounded random variable X .

Proof. Let X ∈ L∞(Ω,A,P). We first note that the right hand side of Equa-
tion (B.22) is well defined because X is bounded and R ∈ L1(Ω,A,P). For
any G ∈ G, we have that

EQ

(
X1G

)
= EP

(
RX1G

)
by (B.11)

= EP

(
EP

(
RX | G

)
1G

)
by (B.16)

= EP

(
EP

(
R | G

) EP

(
RX | G

)

EP

(
R | G

) 1G

)
since R > 0

= EP

(
R

EP

(
RX | G

)

EP

(
R | G

) 1G

)
by (B.16)

= EQ

(
EP

(
RX | G

)

EP

(
R | G

) 1G

)
by (B.11) .

The proof is complete by Equation (B.16). �

Remark B.7. If dQ/ dP is G-measurable, then the conditional expectation
operators EQ (· | G) and EP (· | G) coincide (Q-a.s. or P-a.s.). In other
words, the conditional expectation operator EP (· | G) depends upon G and
the equivalence class of P for the relation P ∼G Q ⇐⇒ P ∼
Q and dQ/ dP is G -measurable. ♦

Proposition B.8. Let Φ : (X,X) → (Ω,A) be measurable, and let Q be a
probability on (X,X). Let Φ⋆(Q) the probability on (Ω,A), image of Q by Φ
(see §B.8). For any random variable Y on Ω such that EΦ⋆(Q)

(∣∣Y
∣∣) < +∞,

we have that

EΦ⋆(Q)

(
Y | G

)
◦Φ = EQ

(
Y ◦Φ | Φ−1(G)

)
, P-a.s. . (B.23)

Proof. For any G ∈ G, we have that

EQ

(
1Φ−1(G) × (Y ◦Φ)

)
= EQ

(
(1G ◦Φ)× (Y ◦Φ)

)

= EΦ⋆(Q)

(
1G × Y

)
by (B.10)

= EΦ⋆(Q)

(
1G × EΦ⋆(Q)

(
Y | G

))
by (B.16)

= EQ

(
1G ◦Φ× EΦ⋆(Q)

(
Y | G

)
◦Φ

)
by (B.10)

= EQ

(
1Φ−1(G) × EΦ⋆(Q)

(
Y | G

)
◦Φ

)
.
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We conclude that (B.23) holds true since Φ−1(G) is equal to
{
Φ−1(G) |G ∈ G

}

and since the function EΦ⋆(Q)

(
Y | G

)
◦Φ is Φ−1(G)-measurable and is in

L1(X,X,Q). �

Conditional Expectation w.r.t. an Atomic σ-Field

A subfield G of A is called atomic (see Definition 3.26) if it is generated by
a countable partition {Ωn}n∈N : G = σ(Ωn, n ∈ N), where N is countable (in
bijection with a subset of N).

Proposition B.9. If G is an atomic σ-field, generated by the countable par-
tition {Ωn}n∈N , and if Y is an integrable random variable, then

E
(
Y | G

)
=

∑

n,P(Ωn)>0

E
(
1Ωn

Y
)

P(Ωn)
1Ωn

. (B.24)

Conditional Expectation Knowing a Random Variable

Definition B.10. If Y is an integrable random variable and Z is a random
variable, we define the conditional expectation of Y knowing (the random
variable) Z as the random variable

E
(
Y | Z

)
:= E

(
Y | σ(Z )

)
, (B.25)

where σ(Z ) is the σ-field generated by the random variable Z .

The following proposition results from Proposition 3.46.

Proposition B.11. Let Y be an integrable random variable. For any random
variable Z , there exists a unique measurable function Ψ (unique PZ -a.s.) such

that E
(
Y | Z

)
= Ψ(Z ). Therefore, we can define

E
(
Y | Z = z

)
:= Ψ(z) , ∀z such that P(Z = z) > 0 . (B.26)

Notice that Ψ depends functionally upon the random variable (Y ,Z ), hence,
in particular, upon Z . To insist upon this dependence, we rephrase the above
result as follows. For any random variable Z , there exists a unique measurable
function Ψ[Y,Z ] (unique PZ -a.s.) and Ω′ ⊂ Ω such that P(Ω′) = 1 and

E
(
Y | Z

)
(ω) = Ψ[Y,Z ]

(
Z (ω)

)
, ∀ω ∈ Ω′ . (B.27)

If Y and Z are discrete random variables, by (B.24), we have that

Ψ[Y,Z ](z) =
∑

y∈Y (Ω),z′∈Z(Ω)

y
P(Y = y,Z = z′)

P(Z = z′)
1{z′}(z) , (B.28)

which indeed depends functionally upon Y and Z , by the terms P(Y =
y,Z = z′) and P(Z = z′).
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B.5 Conditional Probability

Let (Ω,A,P) be a probability space. In what follows, G denotes a subfield
of A.

B.5.1 Conditional Probability w.r.t. an Event

Let B ∈ A such that P(B) > 0, and F ∈ A. We define the conditional
probability of (the event) F knowing (the event)B as the real number

P(F | B) :=
P(F ∩B)

P(B)
. (B.29)

Let B ∈ A such that P(B) > 0. The conditional probability P|B : A→ [0, 1]
defined by

P|B(F ) := P(F | B) , ∀F ∈ A (B.30)

is a probability over (Ω,A). The probability P|B has the density 1B/P(B)
w.r.t. P:

dP|B

dP
=

1B

P(B)
. (B.31)

B.5.2 Conditional Expectation w.r.t. an Event

Let B ∈ A with P(B) > 0. As (Ω,A,P|B) is a probability space, we can
define the expectation under this probability, denoted E (· | B). Let Y be an
integrable random variable. Then the conditional expectation of Y knowing
the event B is the real number

E
(
Y | B

)
:= EP|B (Y ) . (B.32)

For any integrable random variable Y , we have that

E
(
Y | B

)
=

E
(
Y 1B

)

P(B)
. (B.33)

Notice that, with the above notation, Equation (B.24) can be written as:

E
(
Y | σ({Ωn}n∈N )

)
=

∑

n∈N,P(Ωn)>0

E
(
Y | Ωn

)
1Ωn

. (B.34)

B.5.3 Conditional Probability w.r.t. a σ-field

Let B ∈ A. The conditional probability of (the event) B knowing (the subfield)
G is the random variable:

P(B | G) := E (1B | G) . (B.35)
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If G is an atomic σ-field, generated by the countable partition {Ωn}n∈N , we
obtain using (B.24):

P(B | σ({Ωn}n∈N)) =
∑

n∈N,P(Ωn)>0

P(B | Ωn)1Ωn
. (B.36)

If Z is a random variable, we define the conditional probability of the event
B knowing (the random variable) Z as the random variable

P(B | Z ) := E
(
1B | σ(Z )

)
, (B.37)

where σ(Z ) is the σ-field generated by the random variable Z .

B.6 Stochastic Kernels

The main objective of this section is to formulate Proposition B.22, which
states the following, widely used property. When computing a conditional
expectation with respect to a σ-field G, all the G-measurable variables can be
“frozen” during the conditional expectation evaluation. For this purpose, we
review results on Borel spaces and on regular conditional laws.

B.6.1 Borel Spaces

Here we follow [21, chap. 7].

Definition B.12. Let X be a topological space. We denote by Bo
X the σ-field

generated by the open subsets of X. The elements of Bo
X are called the Borel

subsets of X. A mapping ϕ between topological spaces X and X′ is said to be
Borel-measurable if ϕ−1(Bo

X′) ⊂ Bo
X.

Definition B.13. A topological space X is a Borel space if there exists a
separable1 complete metric space X′ as well as a Borel subset B ∈ Bo

X′ such
that X is homeomorphic2 to B. A Borel isomorphism ϕ between Borel spaces
X and X′ is a one-to-one Borel-measurable mapping such that ϕ−1 is Borel-
measurable on ϕ(X).

The spaces Rn, as well as their Borel subsets, are Borel spaces. Every Borel
space is metrizable and separable, and any complete separable metric space
is a Borel space. Every uncountable Borel space is Borel isomorphic to [0, 1],
metrizable and separable. If X is a Borel space, then the space P(X) of prob-
ability distributions over X is a Borel space.

1 A metrizable topological space is separable if it contains a countable dense set.
2 A homeomorphism ϕ between topological spaces (X,T) and (X′,T′) is one-to-one
and continuous, and ϕ−1 is continuous on ϕ(X) with the relative topology.
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B.6.2 Stochastic Kernels

Stochastic Kernels and Parametric Disintegration

Definition B.14 ([89]). Let (X,X) and (Y,Y) be two measurable spaces. A
stochastic kernel from (X,X) to (Y,Y) is a mapping p : X × Y → [0, 1] such
that

• for any F ∈ Y, p(·, F ) is X-measurable;
• for any x ∈ X, p(x, ·) is a probability on Y.

A random measure is a stochastic kernel from (Ω,A) to (Ω,A).

A stochastic kernel may equivalently be seen as a measurable mapping from
(X,X) to P(Y).Thus, as for notation and terminology, we shall speak of a
stochastic kernel p(x, dy) from X to Y or of a stochastic kernel p( dy | x) on
Y given X.

Here is a composition operation on stochastic kernels.

Definition B.15 ([89]). Let (X,X), (Y,Y) and (Z,Z) be three measurable
spaces. Consider two stochastic kernels, p( dy | x) on Y given X and q( dz | y)
on Z given Y. Then, the following expression defines a stochastic kernel p⊗ q
on Z given X:

(p⊗ q)(F | x) :=
∫

Y

p( dy | x)
∫

F

q( dz | y) , ∀F ∈ Z . (B.38)

The following proposition establishes that one can decompose a probability
measure on a product Y×Z of Borel spaces as a marginal on Y and a stochastic
kernel on Z given Y. Moreover, this property remains valid when a measurable
dependence w.r.t. a parameter is admitted.

Proposition B.16 (Parametric disintegration [21]). Let (X,X) be a mea-
surable space, Y and Z be Borel spaces and q( dy dz | x) be a stochastic kernel
on Y×Z given X. Then, there exists a stochastic kernel r( dz | x, y) on Z given
X×Y and a stochastic kernel s( dy | x) on Y given X such that q = r⊗s, i.e.:

q( dy dz | x) = r( dz | x, y)s( dy | x) . (B.39)

The stochastic kernel s( dy | x) is given by

∫

F

s( dy | x) =
∫

F×Z

q( dy dz | x) , ∀F ∈ Z . (B.40)

Corollary B.17. Let X, Y and Z be Borel spaces and q( dy dz | x) be a
stochastic kernel over Y×Z knowing X. Then, there exists a stochastic kernel
r( dz | x, y) over Z knowing X × Y and a stochastic kernel s( dy | x) over Y

knowing X such that q = r ⊗ s as in (B.39).
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Corollary B.18 ([21]). Let Y and Z be Borel spaces and q ∈ P(Y × Z).
Then, there exists a stochastic kernel r( dz | y) over Z knowing Y such that
q = r ⊗ s:

q( dy dz) = r( dz | y)s( dy) where s( dy) =

∫

Z

q( dy dz) . (B.41)

Regular Conditional Laws and Disintegration

Definition B.19 ([30, 89]). Let (Ω,A,P) be a probability space. Let X be a
random variable taking values in a measurable space (X,X).

1. Let G be a subfield of A. A regular conditional law of the random variable
X knowing G is a stochastic kernel p from (Ω,A) to (X,X), such that,
for any F ∈ X, p(·, F ) is a version3 of P(X ∈ F | G).

2. Let Y : (Ω,A) → (Y,Y) be a random variable taking values in a mea-
surable space (Y,Y). A regular conditional law of the random variable
X knowing the random variable Y is a stochastic kernel p from (Y,Y) to
(X,X), such that, for any F ∈ X, p(Y (·), F ) is a version of P(X ∈ F | Y ).

When (X,X) = (Ω,A) and X = IΩ : (Ω,A) → (Ω,A) is the identity map-
ping, we obtain the following particular cases. A regular conditional law of P
knowing G is a random measure P such that, for any F ∈ A, P (·, F ) is a
version of P(F | G). A regular conditional law of P knowing Y is a stochastic
kernel p such that, for any F ∈ A, p(Y (·), F ) is a version of P(F | Y ).

As a special case, when X is G-measurable, we may take p(ω, F ) = 1F (X (ω))
as a version of P(X ∈ F | G). This gives p(ω, dω′) = δX (ω)( dω

′)
When a regular conditional law of X knowing G exists, we say that it is

unique P-a.s. if any two candidates P and Q are almost surely equal, in the
sense that P({ω ∈ Ω | P (ω, ·) = Q(ω, ·)}) = 1. In that case, we denote it by
PG
X (ω, dx) or by PG(ω,X ∈ dx). The regular conditional distribution of X

knowing G is such that, for any measurable function ϕ : X → R satisfying
E
(∣∣ϕ(X )

∣∣) < +∞, we have that:

E
(
ϕ(X ) | G

)
(·) =

∫

X

ϕ(x)PG
X (·, dx) P-a.s. . (B.42)

In the same way, the regular conditional distribution of P knowing G is denoted
by PG(ω, dω′). It is such that, for any integrable random variable X : Ω → R,

E
(
X | G

)
(·) =

∫

Ω

X (ω′)PG(·, dω′) , P-a.s. . (B.43)

In the same vein, the regular conditional distribution of X knowing Y is

denoted by P
Y

X (y, dx), by PY (y,X ∈ dx) or by P(X ∈ dx | Y = y). It is

3 This means that p(·, F ) and P(X ∈ F | G) are almost surely equal w.r.t. P.



336 B Basics in Probability

such that, for any measurable function ϕ : X → R satisfying E
(∣∣ϕ(X )

∣∣) <
+∞, we have that:

E
(
ϕ(X ) | Y

)
(·) =

∫

X

ϕ(x)P
Y

X (Y (·), dx) , P-a.s. . (B.44)

Example B.20. The following expressions are well known and may be easily
verified. If G is an atomic σ-field generated by a countable partition {Ωn}n∈N ,
we have that:

PG(ω, dω′) =
∑

n,P(Ωn)>0

1Ωn
(ω)P|Ωn

( dω′) . (B.45)

If Y is a discrete random variable, we have that (see (B.29) and (B.30)):

PY (y, dω′) = P|{Y =y}( dω
′) . (B.46)

If X and Y are discrete random variables, we have that:

P
Y

X (y, dx) =
∑

x′∈X (Ω)

P(X = x′ | Y = y)δx′( dx) . (B.47)

If the couple (X ,Y ) has a density f(X ,Y ) > 0 w.r.t. the Lebesgue measure
on R2, we have that:

P
Y

X (y, dx) =
f(X ,Y )(x, y)∫

X
f(X ,Y )(x′, y) dx′

dx . (B.48)

△

Proposition B.21 ([30, 89]). Let X be a random variable taking values in a
Borel space. If Y is another random variable, there exists a regular conditional
distribution of X knowing Y , and it is unique PY -a.s..

Using the previous proposition with X = IΩ and when (Ω,A) is a Borel space
we obtain as a corollary that there exists a regular conditional distribution of
P knowing Y .

The following disintegration formula is widely used.

Proposition B.22 (Disintegration[89]). Let X : (Ω,A) → (X,X) be a
random variable taking values in a measurable space (X,X), G be a subfield of
A, and Y : (Ω,A)→ (Y,Y) be a G-measurable random variable. Let also f be
a measurable function on X× Y such that E

(∣∣f(X ,Y )
∣∣) < +∞. If X has a

regular conditional distribution PG
X (ω, dx) knowing G, we have that:

E
(
f(X ,Y ) | G

)
=

∫

X

PG
X (·, dx)f(x,Y (·)) , P-a.s. . (B.49)
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If X has a regular conditional distribution P
Y

X (Y (·), dx) knowing Y , we have
that:

E
(
f(X ,Y ) | Y

)
=

∫

X

P
Y

X (Y (·), dx)f(x,Y (·)) , P-a.s. . (B.50)

Equation (B.50) is usually written under the form

E
(
f(X ,Y ) | G

)
(ω) = E

(
f(X , y) | G

)
(ω)|y=Y (ω) , P-a.s. (B.51)

whenever Y is G-measurable. As a corollary, we have that

E
(
f(X ,Y )

)
=

∫

Ω

P( dω)

∫

X

PG
X (ω, dx)f(x,Y (ω)) . (B.52)

B.7 Monte Carlo Method

The knowledge of a random phenomenon arises from experiments, which often
consist of a set of independent observations. In this section, we analyze this
intuitive idea. We first recall what is the product of probability spaces. We
then introduce the notion of sample, and we recall the construction of the
underlying probability space. We present the celebrated “Strong Law of Large
Numbers” and the “Central Limit Theorem”. We conclude this section by
presenting numerical experiments and practical considerations.

B.7.1 Infinite-Dimensional Product of Probability Spaces

Let {(Xn,Xn, µn)}n∈N be a sequence of probability spaces. We denote by X∞
the product space, that is the Cartesian product of Xn

X∞ =
∏

n∈N

Xn ,

and we define the sequence {Xn}n∈N of coordinate mappings, namely

Xn : X∞ → Xn

(x0, . . . , xn, . . . ) 7→ xn .

Our first objective is to equip the product space with a σ-field.

Definition B.23. The σ-field σ
(
{Xn}n∈N

)
generated by the sequence of co-

ordinate mappings is defined to be the smallest σ-field relative to which all Xn

are measurable. It is also called the product σ-field with components Xn, and
is denoted

X∞ =
⊗

n∈N

Xn .
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In the product space X∞, sets of the form
∏

n∈NAn with An ∈ Xn are called
cylinders with finite dimensional basis if An = Xn for all but a finite number
of indices n. For such a cylinder A, the (finite) subset of N for which An 6= Xn

is denoted BA.

Proposition B.24. The product σ-field X∞ is the smallest σ-field containing
all cylinders with finite dimensional bases of X∞ .

For a proof, see [37, §1.3].
We are now able to define a probability measure on (X∞,X∞).

Theorem B.25. There exists a unique probability distribution µ∞ defined on
the product σ-field X∞ such that for every cylinder A with finite basis BA,

µ∞(A) =
∏

i∈BA

µi(Ai) .

For a proof, see [37, §6.4].
The following notation is usual for the product distribution:

µ∞ =
⊗

n∈N

µn .

The probability space (X∞,X∞, µ∞) is called the infinite-dimensional prod-
uct probability space associated with the sequence {(Xn,Xn, µn)}n∈N. When
(Xn,Xn, µn) = (X,X, µ) for all n ∈ N, the following notation is used:

(X∞,X∞, µ∞) =
(
XN,X⊗N, µ⊗N

)
.

B.7.2 Samples and Realizations

Let (Ω,A,P) be a probability space and let X be a random variable, that is
a measurable mapping, defined on Ω taking its values in a space X equipped
with a σ-field X:

X : (Ω,A) −→ (X,X) .

For the sake of simplicity, we restrict ourselves to the finite-dimensional case
X = Rp, X = Bo

Rp being the associated Borel σ-field. We use the term “random
variable” for X whatever the dimension p is (see §B.2). We denote by µ the
probability distribution of X , that is the probability distribution induced
by X :

µ(A) = P(X−1(A)) , ∀A ∈ X .

Here we study problems which involve carrying out a sequence of observa-
tions of a random phenomenon. More precisely, we are interested in (possibly
infinite-dimensional) sequences of independent observations of X , that is, se-
quences of independent random variables which have the same probability
distribution as X . We first define the notion of sample and realization.
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Definition B.26. A n-sample from the probability distribution µ is a sequence
(X1, . . . ,Xn) of independent random variables with the same probability dis-
tribution µ.

This definition easily extends to infinite-dimensional samples, namely se-
quences {Xk}k∈N of independent identically distributed (i.i.d.) random vari-
ables.

Before using samples, we have to know if it is always possible to get a
(possibly infinite-dimensional) sample from the random variable X defined on
the probability space (Ω,A,P). The answer is usually negative, the original
probability space being not “big enough” to support independent random
variables.4 There is, however, a canonical way to define samples. Let the
infinite product of the probability spaces (X,X, µ) become the probability
space under consideration

(Ω̃, Ã, P̃) =
(
XN,X⊗N, µ⊗N

)
,

and consider the coordinate mappings

Xn : XN → X

(x1, . . . , xn, . . . ) 7→ xn .

They are measurable (by definition of X⊗N), independent by construction
(since µ⊗N is a product probability), and their common probability distribu-
tion is µ. They thus constitute an infinite-dimensional sample of X . Owing to

a change of the probability space, (Ω̃, Ã, P̃) replacing (Ω,A,P), it is possible
to generate samples of arbitrary size.

Consider now the products of n probability spaces (X,X, µ), namely(
Xn,X⊗n, µ⊗n

)
. The projection mappings

Πn : XN → Xn

(x1, . . . , xn, . . .) 7→ (x1, . . . , xn) ,

are measurable. Let F̃n be the σ-field generated by Πn:

F̃n = σ(Πn) = σ(X1, . . . ,Xn) .

Then {F̃n}n∈N is the filtration associated with the sample (X1, . . . ,Xn, . . . ).
Otherwise stated, consideringXn as the observation ofX delivered at stage n,

F̃n is the σ-field generated by all observations prior to n.

4 Consider for example a coin toss, and let Ω = {H,T} and A =
{

∅, {H}, {T}, Ω
}

.
If the game is modeled using a real-valued random variable defined on Ω, every
potential random variable representing the game can be obtained (by composition
with a deterministic function) from the unique random variable (H 7→ 0, T 7→ 1).
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B.7.3 Monte Carlo Simulation

Let (Ω,A,P) be a probability space and let X be a random variable defined
on Ω taking its values in the Borel space

(
Rp,Bo

Rp

)
. We denote the proba-

bility distribution of X by µ, and we consider an infinite-dimensional sample
(X1, . . . ,Xn, . . . ) ofX . According to the previous paragraph, such a sequence
exists up to a change of probability space. We suppose from now that (Ω,A,P)
is “big enough” for such a sequence to exist.

We first recall a classical convergence theorem (Strong Law of Large Num-
bers).

Theorem B.27. Let (X1, . . . ,Xn, . . . ) be a sequence of i.i.d. random vari-
ables, and let Mn = (1/n)(X1+· · ·+Xn). We suppose that E

(∥∥X1

∥∥) < +∞.

Then, the random variable Mn almost surely converges to E
(
X1

)
as n goes

to infinity:
Mn

a.s.−→ E
(
X1

)
.

A second classical theorem (Central Limit Theorem) gives some indication
about the convergence rate of the estimator Mn.

Theorem B.28. Let (X1, . . . ,Xn, . . . ) be a sequence of i.i.d. random vari-

ables and let Mn = (1/n)(X1+· · ·+Xn). We suppose that E
(∥∥X1

∥∥2
)
< +∞,

and we denote M = E
(
X1

)
and Σ = Var

(
X1

)
the mean and the covariance

matrix of X1. Then, the sequence of probability distributions of the random
variables

√
n
(
Mn −M

)
narrowly converges towards the centered normal dis-

tribution with covariance matrix Σ:

√
n
(
Mn −M

)
D−→ Np(0, Σ) .

Otherwise stated, it means that the covariance matrix ofMn is asymptotically
equal to Σ/n: the convergence rate is 1/n, and it does not depend on the
dimension of the space Rp.

The proof of these two celebrated theorems can be found in any text-
book on Probability (e.g. [37]). Other results for the rate of convergence are
available, e.g. from Large Deviations Theory [56].

B.7.4 Numerical Considerations

We are now interested in the computational point of view, that is the ma-
nipulation of random variables on a computer. As a matter of fact, if the
convergence analysis of algorithms involving samples has to be carried out
on random variables, their implementation on a computer is done using nu-
merical values. The following definition is useful for numerical considerations.
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Definition B.29. A realization (x1, . . . , xn) of the n-sample (X1, . . . ,Xn)
is a value taken by the sample at some ω ∈ Ω:

(x1, . . . , xn) =
(
X1(ω), . . . ,Xn(ω)

)
.

This definition is extended without difficulty to infinite-dimensional sample
(X1, . . . ,Xn, . . . ). Such realizations are obtained using a pseudo-random num-
ber generator, that is a computational device designed to generate numbers
that approximate the properties of random numbers.5 Such a generator usu-
ally delivers the components of the realization (x1, . . . , xn) one by one: given a
realization (x1, . . . , xn−1) of a (n−1)-sample of X , a further call to the gener-
ator produces a value xn such that (x1, . . . , xn) is a realization of a n-sample
of X .

Let us illustrate the previous notions with help of a basic example, namely
the numerical computation of the expectation of a random variable X . Using
a infinite dimensional sample (X1, . . . ,Xn, . . . ) of X , we know from The-
orem B.27 that Mn = (1/n)(X1 + · · · + Xn) almost surely converges to
M = E

(
X

)
. Moreover, the last summation can be written recursively, namely

Mn = Mn−1 −
1

n

(
Mn−1 −Xn

)
.

From a realization (x1, . . . , xn, . . . ) of the sample, we deduce the realization
mn of the estimator Mn:

mn =
1

n
(x1 + · · ·+ xn) .

Note that the strong law of large numbers asserts that, except on someΩ0 ⊂ Ω
such that P(Ω0) = 0, each realization (x1, . . . , xn, . . . ) of the sample satisfies

lim
n→+∞

mn = M .

Using the recursive formulation, the sequence {mn}n∈N is obtained by a com-
puter as follows.

Algorithm B.30 (Recursive Monte Carlo Estimation).

1. Set m0 = 0 and n = 1.
2. Draw a realization xn of X .
3. Compute mn = mn−1 − (1/n)(mn−1 − xn).
4. Set n = n+ 1 and go to step 2.

As already explained, the value xn is obtained in such a way that (x1, . . . , xn)
is a realization of a n-sample of the random variable X . The algorithm is
stopped after a given number N of iterations (say a few thousands). Outputs
of the algorithm are shown at Figure B.1, in the specific case M = 0. We have
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Fig. B.1. Estimation by the Monte Carlo Method

represented the variation of ‖mn‖ over the iterations, for different values p of
the dimension of the space X.

Let us conclude with two remarks about this algorithm.

1. The output mN of Algorithm B.30 is a single realization of the random
variable MN . We have to perform multiple runs of the code in order to
obtain statistical conclusions on the output.

2. It is clear from the experiments presented at Figure B.1 that, at least
asymptotically, the rate of convergence does not depend on the dimen-
sion p of the space X.

5 sequence of numbers that lacks any pattern, in the computer science terminology.


