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Optimization for microgrids with storage

Microgrids control architecture is often constituted of
multiple levels handling multiple time scales

Energy storage management requires to deal with
uncertainty and information dynamic

We use two time scales stochastic dynamic optimization
to model two control levels and their interaction
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Storage control in a microgrid
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Why storage in a microgrid?

Ensure supply demand balance without wastes or curtailment:
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Why storage in a microgrid?

Energy tariff arbitrage and ancillary services
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Why stochastic dynamic optimization?

Price of electricity might be
uncertain

Demand and production are
uncertain
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Hierarchical control
architecture of microgrids
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A way to deal with multiple time scales

Multiple control levels

Primary

Secondary

Tertiary

To handle multiple time scales

2∆T

2∆T
. . .

2∆t∆t

∆T

∆T
. . .

1 min
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Target

1 s 1 s1 s

∆t ∆t∆t

InfoInfo

Tertiary level

Secondary level
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Medium time scale: intraday energy tariff arbitrage
Objective: energy intraday arbitrage
Time step: 1 min
Horizon: 24h
Input from superior level: storage aging target everyday
Output to inferior level: storage input/output energy target every
minute
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Large time scale: long term aging and investments strategy
Objective: storage long term economic profitability
Time step: 1 day
Horizon: 10 years
Output to inferior level: storage aging target every day

SAFT intensium max technical sheet
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Two time scales management
of a battery in a subway

station
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Representation of the subway station problem

S

	D ⊕ B

E s E l

Station node

D: Demand station

E s : From grid to station

	: Discharge battery

Subways node

B: Braking

E l : From grid to battery

⊕: Charge battery
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Two time scales

2∆T∆T0 . . . D∆T
24h24h

∆T∆T

2∆T

M − 1
. . .

2∆t∆t

∆T
1 min 1 min1 min

∆t ∆t∆t

Long term aging and renewal

Intraday arbitrage
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Intraday arbitrage problem
statement
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Battery state of charge dynamics
For a given charge/discharge strategy U over a day d :

Sd ,m+1 = Sd ,m −
1

ρd
U−

d ,m︸ ︷︷ ︸
	

+ ρcsat(Sd ,m,U+
d ,m,Bd ,m+1)︸ ︷︷ ︸

⊕

with

sat(x , u, b) = min(
Smax − x

ρc
,max(u, b))

d , 0 . . . d ,M − 1
1 min1 min

Two time scales SDP November 14, 2017 12 / 36



Battery aging dynamics
For a given charge/discharge strategy U over a day d

Hd ,m+1 = Hd ,m −
1

ρd
U−

d ,m − ρcsat(Sd ,m,U+
d ,m,Bd ,m+1)

d , 0 . . . d ,M
1 min1 min
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Every minute we save energy and money

If we have a battery on day d and minute m we save:

ped ,m

(
E s
d ,m+1 + E l

d ,m+1 −Dd ,m+1︸ ︷︷ ︸
Saved energy

)

ped ,m is the cost of electricity on day d at minute m
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Summary of short term/Fast variables model

We call, at day d and minute m,

fast state variables: X f
d ,m =

(
Sd,m

Hd,m

)

fast decision variables: U f
d ,m =

(
U−d,m
U+

d,m

)

fast random variables: W f
d ,m =

(
Bd,m

Dd,m

)
fast cost function: Lfd ,m(X f

d ,m,U
f
d ,m,W

f
d ,m+1)

fast dynamics: X f
d ,m+1 = F f

d ,m(X f
d ,m,U

f
d ,m,W

f
d ,m+1)
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Long term aging/investment
problem statement
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We decide our battery purchases at the end of each day

2∆T∆T0 . . . NT
24h24h

Should we replace our battery Cd by buying a new one Rd or not?

Cd+1 =

{
Rd , if Rd > 0

f (Cd ,Hd ,M), otherwise

paying renewal cost Pb
dRd at uncertain market prices Pb

d
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Summary of long term/Slow variables model

We call, at day d ,

slow state variables: X s
d = ( Cd )

slow decision variables: Us
d = ( Rd )

slow random variables: W s
d = ( Pb

d )

slow cost function: Lsd(X s
d ,U

s
d ,W

s
d+1) = Pb

dRd

slow dynamics: X s
d+1 = F s

d (X s
d ,U

s
d ,W

s
d+1)
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A link between days

The initial ”fast state” at the begining of day d deduces from:

X f
d ,0 = F i

d(X s
d ,X

f
d−1,M)

The initial ”slow state” at the begining of day d + 1 deduces from all that
happened the previous day:

X s
d+1 = F s

d (X s
d ,U

s
d ,W

s
d+1,X

f
d ,0,U

f
d ,:,W

f
d ,:)

d , 2d , 1d , 0 . . . d ,Nt − 1 d ,Nt d + 1, 0
∆t∆t ∆t 0

U f
d ,2U f

d ,1U f
d ,0 U f

d ,M−1 Us
d

X f
d ,2X f

d ,1X f
d ,0,X

s
0 X f

d ,M−1 X f
d ,M

U f
d+1,0

X f
d+1,0,X

s
d+1

W f
d ,3W f

d ,2W f
d ,1 W f

d ,M W s
d+1
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We formulate
a two time scales

stochastic optimization
problem
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We minimize fast and slow costs over the long term

min
X f ,X s ,Uf ,Us

E
[D−1∑
d=0

(M−1∑
m=0

Lfd ,m(X f
d ,m,U

f
d ,m,W

f
d ,m+1)

)
+ Lsd(X s

d ,U
s
d ,W

s
d+1,X

f
d ,0,U

f
d ,:,W

f
d ,:)
]

X f
d ,m+1 = F f

d ,m(X f
d ,m,U

f
d ,m,W

f
d ,m+1)

X f
d ,0 = F i

d(X s
d ,X

f
d−1,M)

X s
d+1 = F s

d (X s
d ,U

s
d ,W

s
d+1,X

f
d ,0,U

f
d ,:,W

f
d ,:)

σ(U f
d ,m) ⊂ Fd ,m

σ(Us
d) ⊂ Fd ,M
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Stochastic optimal control reformulation

We call

X d = (X f
d ,0,X

s
d) storage state at the beginning of day d

Ud = (U f
d ,:,U

s
d) all decisions taken during day d

W d+1 = (W f
d ,:,W

s
d+1) all uncertainties realizing on day d

we reformulate the problem as

min
X ,U

E
[D−1∑
d=0

Ld(X d ,Ud ,W d+1)
]

X d+1 = Fd(X d ,Ud ,W d+1)

σ(U f
d ,m) ⊂ Fd ,m

σ(Us
d) ⊂ Fd ,M

where the non-anticipativity constraints are not standard
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Information flow model

Fd ,m = σ

W f
d ′,m′

, d ′<d , m′≤M+1

W s
d ′

, d ′≤d

W f
d ,m′

, m′≤m

 = σ

(
previous days fast noises
previous days slow noises

current day previous minutes fast noises

)

d , 0 . . . d + 1, 0

U f
d ,2U f

d ,1U f
d ,0 U f

d ,M−1 Us
d

X d = (X f
d ,0,X

s
0)

U f
d+1,0

X d+1 = (X f
d+1,0,X

s
d+1)

W f
d ,3W f

d ,2W f
d ,1 W f

d ,M W s
d+1

Fd ,2Fd ,1Fd ,0 Fd ,M−1 Fd ,M

W f
d+1,1

Fd+1,0

Two time scales SDP November 14, 2017 21 / 36



Value of storage every day

When braking energy yesterday doesn’t impact braking energy today

d , 0 . . . d + 1, 0

U f
d ,2U f

d ,1U f
d ,0 U f

d ,M−1 Us
d

Vd(xd)

U f
d+1,0

Vd+1(X d+1)

W f
d ,3W f

d ,2W f
d ,1 W f

d ,M W s
d+1

Fd ,2Fd ,1Fd ,0 Fd ,M−1 Fd ,M

W f
d+1,1

Fd+1,0

Vd(xd) = min
X
d+1

,U
d

E
[
Ld(xd ,Ud ,W d+1) + Vd+1(X d+1))

]
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Dynamic programming: a recursion between the value of
storage each day

We define daily value functions that factorizes as function of the storage
state X d if the W d are day-wise independent.

Vd(xd) = min
X
d+1

,U
d

E
[
Ld(xd ,Ud ,W d+1) + Vd+1(X d+1)

]
s.t X d+1 = Fd(X d ,Ud ,W d+1)

U f
d ,m � σ(X d ,W

f
d ,1:m)

Us
d � σ(X d ,W

f
d ,1:M)

Ud = (U f
d ,:,U

s
d)

X d = xd

V0(x0) is the value of storage today ⇒ Initial investment decision
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Decomposing the problem
into

a daily optimization problem
and

an intraday optimization problem.

Setting short term goals to reach lifetime purposes
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A ”long term Planner” sets end of the day targets

Vd(xd) = min
X
d+1

[ intraday problem with target︷ ︸︸ ︷
φd(xd , [X d+1]) +

expected cost to go︷ ︸︸ ︷
EVd+1(X d+1)

]
s.t X d+1 � σ(X d ,W d+1)

Planner takes a decision once a day
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The ”intraday Controller” has to reach end of the day
state target

For a stochastic state target X d+1 ∈ L0(Ω,F ,P)1, the Controller solves2

φd(xd , [X d+1]) = min
U
d

E Ld(xd ,Ud ,W d+1)

s.t Fd(X d ,Ud ,W d+1) = X d+1

σ(U f
d ,m) ⊂ σ(X d ,W

f
d ,1:m)

σ(Us
d) ⊂ σ(X d ,W

f
d ,1:M)

Ud = (U f
d ,:,U

s
d)

X d = xd

Controller takes a decision every minute

1φd(xd , [X d+1]) = +∞ if X d+1 is an unreachable target
2f ([W ]) to emphasizes that f ’s domain is L0(Ω,F ,P)
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Planner sends contingent targets

Planner sends a braking energy contingent target to Controller:

If trains produce 900kWh over the day 900kWh have to flow through
the battery

If trains produce 1000kWh over the day 950kWh have to flow through
the battery
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Controller solves many multistage stochastic problems

One multistage stochastic optimization problem to solve for each
initial state, final target combination

(φd)d=0,...,D computation:

O(D × NX × NNS
X × ControllerProblemComplexity)
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Simplifying trick 1: Relaxing the target

Value functions monotonicity allows Controller to aim anywhere above the
target

O(D × NX × NNS
X × SimplerControllerProblemComplexity)
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Simplifying trick 2: Choosing the target at the beginning
of the day

We restrict to deterministic final state targets

O(D × NX × NX × SimplerControllerProblemComplexity)
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Simplifying trick 3: Daily periodicity

The tree is the same everyday? We solve one problem instead of one for
each day

O(1× NX × NX × SimplerControllerProblemComplexity)

Day 1

=

Day 2
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Summing up the offline computation of daily values of
storage

1 Solve one intraday problem φ(xd , xd+1) for every initial state xd and
deterministic target xd+1

2 Compute daily value functions by backward induction

Vd(xd) = min
xd+1

φ(xd , xd+1) + Vd+1(xd+1)
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Two ways to take a decision online

Target approach
1 Beginning of day d : Compute an optimal target

x ]d+1 ∈ arg min
xd+1

φ(xd , xd+1) + Vd+1(xd+1)

2 Day d minute m: Use value functions of φ(xd , x
]
d+1)

Final cost approach
1 Beginning of day d : Solve a new intraday problem φod(xd) without

target but Vd+1 as final cost

2 Day d minute m: Use value functions of φod(xd)
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Numerical experiment
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Synthetic price of batteries data

Batteries cost stochastic model: synthetic scenarios that
approximately coincide with market forecasts
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Maximize Net Present Value

Objective: maximize expected discounted revenues over 7 years
s.t

Yearly discount factor = 0.95

10, 000 Cb scenarios to model randomness

1 buying/aging decision per month

1 charge/discharge decision every 15 min

Constraint: having a battery everytime with at least one cycle a day
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Simulation of battery cycles/renewals over 7 years

NPV = 80,000 euros
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Conclusion and ongoing work

Our study leads to the following conclusions:

Aging aware intraday control as well as investment management and
assessment are made possible

Modeling framework provides mathematically backed methods to
solve multi time scales problems

We are now focusing on

Relevant applications: real battery investments, microgrids
management

Aging model: with capacity degradation

Other methods: dual decomposition, stochastic programming

Risk modeling: risk averse battery control, contingent claim valuation
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