
Introduction
Decomposition methods

Discussion

Optimization of Energy Production and Transport
♦

Approaches by Decomposition under Stochasticity

P. Carpentier, J.-P. Chancelier, A. Lenoir, F. Pacaud 1

ENPC ParisTech — EDF Lab — Efficacity — ENSTA ParisTech

VAME Workshop, May 2017

1Work supported by the FMJH Program Gaspard Monge for Optimization.
P. Carpentier and F. Pacaud Energy Production and Transport VAME Workshop 1 / 35



Introduction
Decomposition methods

Discussion

Motivation

An energy production and transport optimization problem on a grid
modeling energy exchange across countries.2

Stochastic dynamical problem.

Discrete time formulation (one-day time step).

Large-scale problem (many countries).
2But the framework remains valid for smaller energy management problems.
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Goal

Obtain cost-to-go functions for such a large scale
stochastic optimal control problem in discrete time.

In order to obtain these functions ( decision strategies),
we have to use dynamic programming or related methods.

Assumption: Markovian case,
Difficulty: curse of dimensionality.

To overcome the barrier of the dimension we want to use
decomposition/coordination techniques (by country), which
makes it difficult to take into account the information pattern
induced by the stochasticity in the optimization problem.

This study is part of a broader project, aiming to develop
decision analysis tools for long-term investment problems.
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Previous work

We studied the application of stochastic decomposition to the
optimization of large hydraulic valleys.

Valley: a tree structure with

node: hydroelectric dam,

arc: inter-dams connection.

We solved these problems using
a price-decomposition approach
(see [Carpentier et al, 2017]).

We want to extend this work in two directions:

more complex topologies (graphs rather than trees)

other decomposition algorithms (allocation, prediction).
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Lecture outline

1 Introduction
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Mixing decomposition and dynamic programming

2 Decomposition methods
Price decomposition
Resource allocation
Interaction prediction

3 Discussion
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The production and transport problem
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Production at each node of the grid

At each node i of the grid, we formulate a production problem on
a discrete time horizon J0,T K, involving the following variables at
each time t:

W t

X i
t

U i
t

Qa
t

Qb
t

F i
t

X i
t : state variable

(dam volume)

U i
t : control variable

(energy production)

F i
t : grid flow

(import/export from the grid)

W t : noise
(consumption, renewable)

The noise W t is supposed to be

shared across the different nodes.
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A stochastic optimization problem decoupled in space

At each node i of the grid, we have to solve a stochastic optimal
control subproblem depending on the grid flow process F i :3

J iP[F i ] = min
X i ,U i

E
( T−1∑

t=0

Lit(X
i
t ,U

i
t ,F

i
t ,W t+1) + K i (X i

T )
)
,

s.t. X i
t+1 = f it (X i

t ,U
i
t ,F

i
t ,W t+1) ,

X i
t ∈ X

i ,ad

t , U i
t ∈ U

i ,ad

t ,

U i
t � Ft ,

The last equation is the measurability constraint, where Ft is
the σ-field generated by the noises {W τ}τ=1...t up to time t.

3The notation J i
P[·] means that the argument of J i

P is a random variable.
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Modeling exchanges between countries

The grid is represented by a directed graph G = (N ,A). At each
time t ∈ J0,T − 1K we have:

F i
t

Qa
t

a flow Qa
t through each arc

a, inducing a cost cat (Qa
t ),

modeling the exchange
between two countries

a grid flow F i
t at each node

i , resulting from the balance
equation

F i
t =

∑
a∈input(i)

Qa
t −

∑
b∈output(i)

Qb
t
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A transport cost decoupled in time

At each time step t ∈ J0,T − 1K , we define the transport cost as
the sum of the cost of the flows Qa

t through the arcs a of the grid:

JT,t [Qt ] = E
(∑

a∈A
cat (Qa

t )
)
,

where the cat ’s are easy to compute functions (say quadratic).

Kirchhof’s law

The balance equation stating the conservation between Qt and F t

rewrites in the following matrix form:

AQt + F t = 0 ,

where A is the node-arc incidence matrix of the grid.
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The overall production transport problem

The production cost JP aggregates the costs at all nodes i :

JP[F ] =
∑
i∈N

J iP[F i ] ,

and the transport cost JT aggregates the costs at all time t:

JT[Q] =
T−1∑
t=0

JT,t [Qt ] .

The compact production-transport problem formulation writes:

min
Q,F

JP[F ] + JT[Q]

s.t. AQ + F = 0 ! coupling .
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Introducing decomposition methods

The decomposition/coordination methods we want to deal with are
iterative algorithms involving the following ingredients.

Decompose the global problem in several subproblems of
smaller size by dealing with the constraint AQ + F = 0,

Coordinate at each iteration the subproblems using either
a price or an allocation.

AQ + F︸︷︷︸
allocation

= 0 ; λ︸︷︷︸
price

Solve the subproblems using Dynamic Programming (when
a state is available in the subproblem), taking into account
the price or the allocation transmitted by the coordination.
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Production subproblems induced by decomposition

The i-th production subproblem at iteration k formulates as follows.

Price transmission case

min
X i ,U i ,F i

E
( T−1∑

t=0

Lit(X
i
t ,U

i
t ,F

i
t ,W t+1) +

〈
λ

(k)
t ,F i

t

〉
+ K i (X i

T )
)
,

s.t. X i
t+1 = f it (X i

t ,U
i
t ,F

i
t ,W t+1) ,

U i
t � Ft .

Allocation transmission case

min
X i ,U i

E
( T−1∑

t=0

Lit(X
i
t ,U

i
t ,F

i ,(k)
t ,W t+1) + K i (X i

T )
)
,

s.t. X i
t+1 = f it (X i

t ,U
i
t ,F

i ,(k)
t ,W t+1) ,

U i
t � Ft .
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Approximating the subproblems

In both cases, the subproblems encompass a new “noise”, that is,

either a price multiplier λ
(k)
t or a flow allocation F i ,(k)

t , which may
be correlated in time. The white noise assumption fails.

Dynamic Programming cannot be used for solving the subproblems.

In order to overcome this difficulty, we use a trick that involves
approximating the new noise (either λk

t or F k
t ) by its conditional

expectation w.r.t. a chosen random variable Y t .

Assume that the process Y has a given dynamics:

Y t+1 = ht(Y t ,W t+1) .

If noises W t ’s are time independent, then (X i
t ,Y t) is a valid state

for the i-th subproblem and Dynamic Programming applies.4

4See [Barty et al, 2010] for further details.
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Price decomposition

The production and transport optimization problem writes

min
Q,F

JP[F ] + JT[Q] s.t. AQ + F = 0 .
(
P
)

The decomposition scheme consists in dualizing the constraint,
and then in approximating the multiplier λ by its conditional
expectation w.r.t. Y . This trick leads to the following problem

max
λ

min
Q,F

JP[F ] + JT[Q] +
〈
E(λ | Y ) ,AQ + F

〉
.

It is not difficult to prove that this dual problem is associated
to the following relaxed primal problem:

min
Q,F

JP[F ] + JT[Q] s.t. E
(
AQ + F

∣∣ Y
)

= 0 ,

and hence provides a lower bound of
(
P
)
.
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A dual gradient-like algorithm

Applying the Uzawa algorithm to the dual problem

max
λ

min
Q,F

JP[F ] + JT[Q] +
〈
E(λ | Y ) ,AQ + F

〉
,

leads to a decomposition between production and transport:

F (k+1) ∈ arg min
F

JP[F ] +
〈
E
(
λ(k)

∣∣ Y
)
,F
〉
, Production

Q(k+1) ∈ arg min
Q

JT[Q] +
〈
E
(
λ(k)

∣∣ Y
)
,AQ

〉
, Transport

E
(
λ(k+1)

∣∣ Y
)

= E
(
λ(k)

∣∣ Y
)

+ ρ E
(
AQ(k+1) + F (k+1)

∣∣ Y
)
. Update

Note that the update step may implement a much more elaborated

formula than the one corresponding to a fixed-step gradient. . .
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Decomposing the transport subproblem

The transport subproblem

min
Q

JT[Q] +
〈
E
(
λ(k)

∣∣ Y
)
,AQ

〉
,

writes in a detailled manner

min
Q

T−1∑
t=0

E
(∑

a∈A
cat (Qa

t ) +
〈
A>E

(
λ

(k)
t

∣∣ Y t

)
,Qt

〉)
.

This minimization subproblem is evidently decomposable in time
(t by t) and in space (arc by arc), leading to a collection of easy
to solve subproblems.
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Decomposing the production subproblem

The production subproblem

min
F

JP[F ] +
〈
E
(
λ(k)

∣∣ Y
)
,F
〉
,

evidently decomposes node by node

min
F i

J iP[F i ] +
〈
E
(
λi ,(k)

∣∣ Y
)
,F i
〉
,

hence a stochastic optimal control subproblem for each node i :

min
X i ,U i ,F i

E
( T−1∑

t=0

(
Lit(X

i
t ,U

i
t ,F

i
t ,W t+1) +

〈
E
(
λ
i,(k)
t

∣∣ Y t

)
,F i

t

〉)
+ K i (X i

T )

)
s.t. X i

t+1 = f it (X i
t ,U

i
t ,F

i
t ,W t+1)

U i
t � Ft .
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Solving the production subproblems by DP

Assuming that

the process W is a white noise,

the process Y follows a dynamics Y t+1 = ht(Y t ,W t+1),

Dynamic Programming applies for production subproblems:

V i
T (x , y) = K i (x)

Vt(x , y) = min
u,f

E
(
Lit(x , u, f ,W t+1)

+
〈
E
(
λ
i ,(k)
t

∣∣ Y t = y
)
, f
〉

+ V i
t+1(X i

t+1,Y t+1)
)

s.t. X i
t+1 = f it (x , u, f ,W t+1) ,

Y t+1 = ht(y ,W t+1) .
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Resource allocation decomposition

Resource allocation decomposition applied to the problem

min
Q,F

JP[F ] + JT[Q] s.t. AQ + F = 0 .
(
P
)

consists in rewriting the constraint AQ + F = 0 by introducing a
new variable V (the allocation), that is,

AQ + V = 0 and F − V = 0 .

Here the trick consists in limiting the measurability of variable V ,
that is, V � Y . This approximation leads to solve the following
restricted primal problem (hence providing an upper bound of (P))

min
V�Y

(
min
F

(
JP[F ] s.t. F − V = 0

)
+ min

Q

(
JT[Q] s.t. AQ + V = 0

))
.
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A primal gradient-like algorithm

Applying a gradient-like algorithm w.r.t. V to the problem

min
V�Y

(
min
F

(
JP[F ] s.t. F − V = 0

)
+ min

Q

(
JT[Q] s.t. AQ + V = 0

))
,

leads to a decomposition between production and transport:5

min
F

JP[F ] s.t. F − V (k) = 0  λ(k+1) Production

min
Q

JT[Q] s.t. AQ + V (k) = 0  ν(k+1) Transport

V (k+1) = projV�Y

(
V (k) + ρ

(
λ(k+1) − ν(k+1)

))
Update

5Note that we must ensure at each iteration that V (k)
t ∈ ImA.
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Decomposing the transport subproblem

The transport subproblem

min
Q

JT[Q] s.t. AQ + V (k) = 0 ,

writes in a detailled manner

min
Q

T−1∑
t=0

E
(∑

a∈A
cat (Qa

t )
)

s.t. AQt + V (k)
t = 0 ∀t .

This minimization subproblem is evidently decomposable in time
(t by t), but not in space (coupling between the arcs). However,
the resulting subproblems are still easy to solve.
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Decomposing the production subproblem

The production subproblem

min
F

JP[F ] s.t. F − V (k) = 0 ,

evidently decomposes node by node

min
F i

J iP[F i ] s.t. F i − V i ,(k) = 0 ,

hence a stochastic optimal control subproblem for each node i :

min
X i ,U i

E
( T−1∑

t=0

Lit(X
i
t ,U

i
t ,V

i ,(k)
t ,W t+1) + K i (X i

T )
)
,

s.t. X i
t+1 = f it (X i

t ,U
i
t ,V

i ,(k)
t ,W t+1)

U i
t � Ft .
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Solving the production subproblems by DP

Assuming that

the process W is a white noise,

the process Y follows a dynamics Y t+1 = ht(Y t ,W t+1),

Dynamic Programming applies for production subproblems:6

V i
T (x , y) = K i (x)

Vt(x , y) = min
u

E
(
Lit(x , u, ψ

i ,(k)
t (y),W t+1) + V i

t+1(X i
t+1,Y t+1)

)
s.t. X i

t+1 = f it (x , u, ψ
i ,(k)
t (y),W t+1) ,

Y t+1 = ht(y ,W t+1) .

6V i,(k)
t , being measurable w.r.t. Y t , writes as a functional ψ

i,(k)
t of Y t .
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Interaction Prediction Principle

As in resource allocation, we introduce a new variable V and
rewrite the constraint AQ + F = 0 as

AQ + V = 0 and F − V = 0 .

We again limit the measurability of variable V , that is, V � Y .
The interaction prediction is, in this specific case, a mix of price
decomposition and resource allocation, aiming at solving

min
V�Y

max
µ

(
min
F

(
JP[F ] s.t. F − V = 0

)
+ min

Q

(
JT[Q] +

〈
µ ,AQ + V

〉))
,

that is, a part of the constraint is handled as such (production),
whereas the other part is treated by duality (transport).
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A fixed-point algorithm

Applying a fixed-point algorithm w.r.t. V and µ to the problem

min
V�Y

max
µ

(
min
F

(
JP[F ] s.t. F − V = 0

)
+ min

Q

(
JT[Q] +

〈
µ ,AQ + V

〉))
,

leads to a decomposition between production and transport:

min
F

JP[F ] s.t. F − V (k) = 0  λ(k+1) , Production

min
Q

JT[Q] +
〈
µ(k) ,AQ

〉
 Q(k+1) , Transport

(
V (k+1),µ(k+1)

)
=
(
− E(AQ(k+1) | Y ) , λ(k+1)

)
. Update
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Decomposing the production and transport subproblems

In prediction decomposition, the production subproblem is solved
in the same way as in ressource allocation, whereas the transport
subproblem is solved in the same way as in price decomposition.

All that has been seen above therefore applies:

the production subproblem decomposes node by node and
Dynamic Programming applies;

the transport subproblem decomposes in time and in space
which leads to easy to solve subproblems.
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Research agenda

We aim at benchmarking these three decomposition methods:

numerical comparison on the (simplified) European grid,

convergence and convergence rate of the method,

proper choice of the information process Y ,

gap between the lower and upper bounds:

Jprice ≤ J
] ≤ Jresource = Jprediction ,

application to energy management in a urban district
(dozens of houses equipped with solar panels, batteries
and connected by a private network).

We also aim at comparing these methods with some augmented
Lagrangian based methods such as ADMM (work in progress in
cooperation with Ph. Mahey).
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Thèse de doctorat, Université Paris-Est, 2010.
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