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Introduction

Stochastic Optimal Control (SOC) problems.

Stochastic discrete time formulation:
noise, state, control variables, cost function, constraints.

Algebraic point of view:
measurability constraints between random variables.

Variational approach:
necessary optimality conditions “à la Kuhn-Tucker”.

Numerical resolution methods.

 Standard way to solve the problem: min
U∈Uad

J(U)

Another approach for such problems: Dynamic Programming
(functional point of view, sufficient conditions).
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Introduction

Two main paths when solving infinite dimensional problems:

Optimize

Optimize

D
isc

r
e
t
ize

OCorig

OCdisc

Porig

Pdisc

D
isc

r
e
t
ize

Path 2

Path 1

Noncommutative diagram!

1 either obtain a finite dimensional
approximation of the problem
(discretize) and then solve the
associated optimality conditions
(optimize),

2 or obtain optimality conditions of
the problem (optimize) and solve a
finite dimensional approximation of
these conditions (discretize).

This lecture: Path 2 (Path 1  Scenario tree)
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SOC problem formulation

Consider a fixed discrete time horizon T .

min
U,X

E
( T−1∑

t=0

Lt(Xt ,Ut ,Wt+1) + K (XT )
)
,

subject to the constraints:

X0 = f-1(W0) ,

Xt+1 = ft(Xt ,Ut ,Wt+1) , ∀t = 0, . . . ,T − 1 ,

Ut � Ft , ∀t = 0, . . . ,T − 1 ,

Ut ∈ Γt P-a.s. , ∀t = 0, . . . ,T − 1 .

All variables Wt , Ut and Xt are assumed to be square integrable
random variables defined on (Ω,A,P) and valued on appropriate
finite dimensional spaces Wt , Ut and Xt .

P. Carpentier & SOWG Variational approach to SOC problems ICSP 2013 6 / 24



Problem formulation and optimality conditions
Several possible implementations

Numerical algorithm and example

Stochastic optimal control problem
General optimality conditions

Compact formulation

We denote by W = (W0, . . . ,WT ) ∈ W, U = (U0, . . . ,UT−1) ∈ U and
X = (X0, . . . ,XT ) ∈ X the noise, control and the “state” processes.

X being an intermediate process depending on U and W, the
cost function may be written in the following form:

J(U) := E
( T−1∑

t=0

Lt(Xt ,Ut ,Wt+1) + K (XT )

)
,

Ut has to be measurable w.r.t. the σ-field Ft generated by
(W0, . . . ,Wt). This constraint defines a linear subspace:

Ut ∈ Ume
t = L2(Ω,Ft ,P;Ut) .

Ut is subject to the almost sure constraint: Ut(ω) ∈ Γt P-a.s.
which defines a closed convex subset of random variables:

Ut ∈ Uas
t .
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General optimality conditions

Using all previous notations, the SOC problem boils down to

min
U∈U

J(U) s.t. Ut ∈ Uas
t ∩ Ume

t ∀t = 0, . . . ,T−1 ,

and the associated optimality conditions are as follows:

E
(
∇Ut J(U])

∣∣ Ft

)
∈ −∂χUas

t
(U]

t) ∀t = 0, . . . ,T−1 .

Sketch of proof

Write the standard optimality conditions: ∇Ut J(U]) ∈ −∂χUas
t ∩Ume

t
(U]

t ),

and use the specific structure of the feasible set:

projUas
t ∩ Ume

t
= projUas

t
◦projUme

t
,

projUme
t

(Ut) is the conditional expectation E(Ut | Ft),
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Initial formulation of the optimality conditions

Computing the gradient of the cost function J using the adjoint
(co-state) method, we obtain a first set of detailed optimality
conditions for the SOC problem.

If U] is a solution of the problem, then

E
(
∇uLt(X]

t ,U
]
t ,Wt+1) +∇uft(X]

t ,U
]
t ,Wt+1)λ]

t+1

∣∣∣ Ft

)
∈ −∂χUas

t
(U]

t) ,

where X] and λ] are given by

X]
0 = f-1(W0) ,

X]
t+1 = ft(X]

t ,U
]
t ,Wt+1) ,

λ]
T = ∇K (X]

T ) ,

λ]
t = ∇xLt(X]

t ,U
]
t ,Wt+1) +∇x ft(X]

t ,U
]
t ,W

]
t+1)λ]

t+1 .
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Optimality conditions with adapted co-states

Starting from the previous set of optimality conditions, taking the
conditional expectation w.r.t. Ft , we obtain a new set of optimality
conditions that only depends on Λt = E(λt | Ft).

If U] is a solution of the problem, then

E
(
∇uLt(X]

t ,U
]
t ,Wt+1) +∇uft(X]

t ,U
]
t ,Wt+1)Λ]

t+1

∣∣∣ Ft

)
∈ −∂χUas

t
(U]

t) ,

where X] and Λ] are given by

X]
0 = f-1(W0) ,

X]
t+1 = ft(X]

t ,U
]
t ,Wt+1) ,

Λ]
T = ∇K (X]

T ) ,

Λ]
t = E

(
∇xLt(X]

t ,U
]
t ,Wt+1) +∇x ft(X]

t ,U
]
t ,Wt+1)Λ]

t+1

∣∣∣ Ft

)
.
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Optimality conditions in the Markovian case

Assuming that the random variables W0, . . . ,WT are independent
over time (white noise), one can prove that the optimal control U]

t

is X]
t-measurable, hence a third set of optimality conditions.

If U] is a solution of the problem, then

E
(
∇uLt(X]

t ,U
]
t ,Wt+1) +∇uft(X]

t ,U
]
t ,Wt+1)Λ]

t+1

∣∣∣ X]
t

)
∈ −∂χUas

t
(U]

t) ,

where X] and Λ] are given by

X]
0 = f-1(W0) ,

X]
t+1 = ft(X]

t ,U
]
t ,Wt+1) ,

Λ]
T = ∇K (X]

T ) ,

Λ]
t = E

(
∇xLt(X]

t ,U
]
t ,Wt+1) +∇x ft(X]

t ,U
]
t ,Wt+1)Λ]

t+1

∣∣∣ X]
t

)
.
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Optimality conditions: functional point of view

U]
t and Λ]

t being X]
t-measurable, there exist measurable mappings

U]
t and Λ]

t such that U]
t = U]

t (X]
t) and Λ]

t = Λ]
t(X]

t). Using them
in the expression of the co-state equation, we obtain: 2

Λ]
t(X]

t) = E
(
∇xLt

(
X]

t ,U
]
t (X]

t),Wt+1

)
+∇x ft

(
X]

t ,U
]
t (X]

t),Wt+1

)
Λ]
t+1

(
ft(X]

t ,U
]
t (X]

t),Wt+1)
) ∣∣∣ X]

t

)
,

which only involves the two independent r.v. X]
t and Wt+1.

The conditional expectation reduces to an expectation over the
distribution of Wt+1, and hence a functional condition:

Λ]
t(·) = E

(
∇xLt

(
·,U]

t (·),Wt+1

)
+∇x ft

(
·,U]

t (·),Wt+1

)
Λ]
t+1

(
ft(·,U]

t (·),Wt+1)
))

.

2The same reasoning holds true for the condition involving the gradients.
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Numerical implementation

We now consider the numerical implementation of the functional
optimality conditions obtained in the Markovian case.

Since we have expressions of the gradient of function J, we aim at
implementing methods akin to the projected gradient algorithm.

We face two concerns:

expectations must be evaluated:
 Monte Carlo,

discrete representation of functions must be obtained:
 interpolation-regression.
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Particle method: noise scenarios

The noise process W is represented using a Monte Carlo
approximation.

We thus obtain a set of N noise scenarios
{

(w i
0, . . . ,w

i
T )
}
i=1,...,N

associated to a N-sample of the noise process W.3

Unlike the scenario tree technique, there is no need to derive a tree
structure: the noise scenarios are used as they are!

3And remember that the noises are independent over time. . .
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Particle method: state dynamics

Optimality conditions

X]
0 = f-1(W0) ,

X]
t+1 = ft(X]

t ,U
]
t ,Wt+1) .

At iteration (k), control scenarios
{

(u
i ,(k)
0 , . . . , u

i ,(k)
T−1)

}
i=1,...,N

are
available, that is, control values along each scenario.

Obtain the state values x
i ,(k)
t along the scenarios by integrating the

state dynamics in forward time:

x
i ,(k)
0 = f-1(w i

0) ,

x
i ,(k)
t+1 = ft

(
x
i ,(k)
t , u

i ,(k)
t ,w i

t+1

)
,

and thus obtain state scenarios
{

(x
i ,(k)
0 , . . . , x

i ,(k)
T )

}
i=1,...,N

P. Carpentier & SOWG Variational approach to SOC problems ICSP 2013 17 / 24



Problem formulation and optimality conditions
Several possible implementations

Numerical algorithm and example

The particle method
A simple benchmark problem
Results and comments

Particle method: co-state dynamics

Optimality conditions

Λ]
T (·) = ∇K(·) ,

Λ]
t (·) = E

(
∇xLt

(
·,U]

t (·),Wt+1

)
+∇x ft

(
·,U]

t (·),Wt+1

)
Λ]
t+1

(
ft(·,U]

t (·),Wt+1)
))
.

Obtain the co-state values `
i ,(k)
t by integrating in backward time:

`
i,(k)
T = ∇K (x

i,(k)
T ) ,

`
i,(k)
t =

1

N

N∑
j=1

(
∇xLt

(
x
i,(k)
t , u

i,(k)
t ,w j

t+1

)
+∇x ft

(
x
i,(k)
t , u

i,(k)
t ,w j

t+1

)
×

Λ
(k)
t+1

(
ft
(
x
i,(k)
t , u

i,(k)
t ,w j

t+1

))
︸ ︷︷ ︸

6= `
j,(k)
t+1 ∀j

)
.

 use an interpolation operator: Λ
(k)
t+1 = RXt+1

(
x

(k)
t+1, `

(k)
t+1

)
.
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Particle method: projected gradient

Optimality conditions

E
(
∇uLt

(
·,U]

t (·),Wt+1

)
+∇uft

(
·,U]

t (·),Wt+1

)
Λ]
t+1

(
ft(·,U]

t (·),Wt+1)
))

∈ −∂χUas
t

(
U]

t (·)
)
.

Compute the gradient values g
i ,(k)
t along the scenarios:

g
i,(k)
t =

1

N

N∑
j=1

(
∇uLt

(
x
i,(k)
t , u

i,(k)
t ,w j

t+1

)
+∇uft

(
x
i,(k)
t , u

i,(k)
t ,w j

t+1

)
×

Λ
(k)
t+1

(
ft
(
x
i,(k)
t , u

i,(k)
t ,w j

t+1

)))
,

update the control values using a projected gradient step:

u
i ,(k+1)
t = projΓt

(
u
i ,(k)
t − ε(k)g

i ,(k)
t

)
,

and obtain new control scenarios
{

(u
i ,(k+1)
0 , . . . , u

i ,(k+1)
T−1 )

}
i=1,...,N

.
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A (very) simple benchmark problem

Production management of an hydro-electric dam.

Horizon: T = 24 (one day with one hour time steps).

Dynamics:

X0 = W0 ,
Xt+1 = min

(
max(Xt −Ut + At+1, x), x

)
.

Cost function:∑
t

ct(Dt+1 − Pt+1) + K (XT ) ,

where Pt+1 = g(Ut ,Xt ,At+1) is the electricity production

Constraints:

measurability: Ut � (W0, . . . ,Wt), with Wt = (At ,Dt).
bounds: Ut ∈ [ u , u ].
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A simple benchmark problem: data
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Figure: Water inflow and electricity demand trajectories
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Results: Dynamic Programming
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Figure: Dynamic Programming: optimal feedback for three time instants
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Results: particle method
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Figure: Particle method: optimal pairs (x , u) at three time instants
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Final comments

The sampling is done once and for all, and that there is no
need to derive a tree structure from these noise trajectories.

The state space discretization is “self-constructive” and
adapted to the optimal solution of the problem: the state
grids are not designed a priori by the user, as in the case of
the DP resolution, but they are automatically produced by the
algorithm itself. In fact, the state grids reflect the optimal
state distribution of the problem under consideration.

The fact that the particle method is able to construct a grid
in the state space which is adapted to the optimal state
distribution, as illustrated by our benchmark problem, should
be considered as an advantage (but of course not a definitive
answer) to alleviate the curse of dimensionality.
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Thèse de doctorat, Université Paris Est, 2010.
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