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Decomposition-coordination: divide and conquer

I Spatial decomposition
I Multiple players with their local information
I Network with decision-makers located at nodes

where they control local storage and flows through edges

I Temporal decomposition
I A state is an information summary
I Time coordination realized through dynamic programming,

by value functions
I Hard nonanticipativity constraints

I Scenario decomposition
I Along each scenario, sub-problems are deterministic

(powerful algorithms)
I Scenario coordination realized through Progressive Hedging,

by updating nonanticipativity multipliers
I Soft nonanticipativity constraints



Let us fix problem and notations

min
U,X

”risk-neutral”︷︸︸︷
E

[
N∑
i=1

( T−1∑
t=0

Lit(Xi
t ,U

i
t ,Wt+1) + K i (Xi

T )
)]

subject to dynamics constraints

Xi
t+1︸︷︷︸

state

= f it (Xi
t ,U

i
t , Wt+1︸ ︷︷ ︸

uncertainty

) , Xi
0 = f i-1(W0)

to measurability constraints on the control Ui
t

σ
(
Ui

t

)
⊂ σ(W0, . . . ,Wt) ⇐⇒ Ui

t = E
(

Ui
t

∣∣∣∣ W0, . . . ,Wt

)
and to instantaneous coupling constraints

N∑
i=1

Y i
t (Xi

t ,U
i
t) = 0

(The letter U stands for the Russian word for control: upravlenie)
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Couplings for stochastic problems

unit

time

uncertainty

min
∑
ω

∑
i

∑
t

πωL
i
t

(
Xi

t(ω),Ui
t(ω),Wt+1(ω)

)

s.t. Xi
t+1(ω) = f it

(
Xi

t ,U
i
t ,Wt+1

)
Ui

t = E
(

Ui
t

∣∣∣∣ W0, . . . ,Wt

)
∑
i

Y i
t (Xi

t ,U
i
t) = 0



Couplings for stochastic problems: in time
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Couplings for stochastic problems: in uncertainty
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Couplings for stochastic problems: in space
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Can we decouple stochastic problems?

unit

time

uncertainty

min
∑
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∑
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Sequential decomposition in time

unit

time

uncertainty

min
∑
ω

∑
i

∑
t

πωL
i
t

(
Xi

t(ω),Ui
t(ω),Wt+1(ω)

)

s.t. Xi
t+1 = f it (Xi

t ,U
i
t ,Wt+1)

Ui
t = E

(
Ui

t

∣∣∣∣ W0, . . . ,Wt

)
∑
i

Y i
t (Xi

t ,U
i
t) = 0

Dynamic Programming
Bellman (56)



Parallel decomposition in uncertainty/scearios
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∑
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Progressive Hedging
Rockafellar - Wets (91)



Parallel decomposition in space/units

unit

time
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min
∑
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i
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i
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Price and Quantity
Decompositions with DP
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Non-anticipativity constraints are linear

t=0 t=1 t=2 t=3 t=T t=0 t=1 t=2 t=3 t=T

N scenarios Scenarios tree

I From tree to scenarios (fan)
I Equivalent formulations of

the non-anticipativity
constraints

I pairwise equalities
I all equal to their

mathematical expectation

I Linear structure

Ut = E
(

Ut

∣∣∣∣ W0, . . . ,Wt

)



Progressive Hedging stands as
a scenario decomposition method

We dualize the non-anticipativity constraints

I When the criterion is strongly convex,
we use a Lagrangian relaxation (algorithm “à la Uzawa”)
to obtain a scenario decomposition

I When the criterion is linear, Rockafellar - Wets (91)
propose to use an augmented Lagrangian,
and obtain the Progressive Hedging algorithm



Data: step ρ > 0, initial multipliers
{
λ

(0)
s

}
s∈S and mean first

decision x(0);
Result: optimal first decision x;
repeat

forall scenarios s ∈ S do
Solve the deterministic minimization problem for scenario s,

with a penalization +λ
(k)
s

(
x

(k+1)
s − x(k)

)
,

and obtain optimal first decision x
(k+1)
s ;

Update the mean first decisions

x(k+1) =
∑
s∈S

πsx
(k+1)
s ;

Update the multiplier by

λ
(k+1)
s = λ

(k)
s + ρ

(
x

(k+1)
s − x(k+1)

)
, ∀s ∈ S ;

until x
(k+1)
s −

∑
s′∈S πs′x

(k+1)
s′ = 0 , ∀s ∈ S;
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Suppose you had to manage a day-ahead energy market
You would have to fix reserves by night

and adjust in the morning with recourse energies



From linear to stochastic programming

I The linear program

min
x∈Rn
〈c , x〉
Ax + b ≥ 0 (∈ Rm)

I becomes a stochastic program

min
x∈Rn

∑
s∈S

πs 〈cs , x〉

Asx + bs ≥ 0 , ∀s ∈ S

I We observe that there are as many (vector) inequalities
as there are possible scenarios s ∈ S

Asx + bs ≥ 0 , ∀s ∈ S

and these inequality constraints can delineate
an empty domain for optimization



Recourse variables need be introduced for feasability issues

I We denote by s ∈ S any possible value of the random
variable ξ,
with corresponding probability πs

I and we introduce a recourse variable y = (ys)s∈S and the
program

min
x ,(ys)s∈S

∑
s∈S

πs

(
〈cs , x〉+ 〈ps , ys〉

)
ys ≥ 0 , ∀s ∈ S

Asx + bs + ys ≥ 0 , ∀s ∈ S

I so that the inequality Asx + bs + ys ≥ 0 is now possible,
at (unitary recourse) price vector p = (ps , s ∈ S)

I Observe that such stochastic programs are huge problems,
with solution

(
x , (ys)s∈S

)
, but remain linear



Minimizing the Tail Value at Risk of costs:
linear programming formulation

I The risk-averse stochastic linear program with recourse

min
x ,(ys)s∈S

min
r∈R

{
r +

1

1− λ
∑
s∈S

πs

(
〈cs , x〉+ 〈ps , ys〉

)
+

}

I can be written as the linear program

min
x ,(ys)s∈S

min
r

min
(vs)s∈S

r +
1

1− λ
∑
s∈S

πsvs

vs − 〈cs , x〉 − 〈ps , ys〉 ≥ 0 , ∀s ∈ S
vs ≥ 0 , ∀s ∈ S
ys ≥ 0 , ∀s ∈ S

Asx + bs + ys ≥ 0 , ∀s ∈ S



Minimizing a mixture:
linear programming formulation

I The risk-averse stochastic linear program with recourse

min
x ,(ys)s∈S

min
r∈R

{
θ
∑
s∈S

πs

(
〈cs , x〉+ 〈ps , ys〉

)
+ (1− θ)r +

1− θ
1− λ

∑
s∈S

πs

(
〈cs , x〉+ 〈ps , ys〉

)
+

}
I can be written as the linear program

min
x ,(ys)s∈S

min
r

min
(us ,vs)s∈S

∑
s∈S

πs

{
θus + (1− θ)r +

1− θ
1− λ

vs

}
us − 〈cs , x〉 − 〈ps , ys〉 ≥ 0 , ∀s ∈ S

vs − us + r ≥ 0 , ∀s ∈ S
vs ≥ 0 , ∀s ∈ S
ys ≥ 0 , ∀s ∈ S

Asx + bs + ys ≥ 0 , ∀s ∈ S
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Decomposition and coordination

Unit 1 Unit N

Unit 2 Unit 3

Interconnected
units

I The system to be optimized consists
of interconnected subsystems

I We want to use this structure
to formulate optimization subproblems
of reasonable complexity

I But the presence of interactions
requires a level of coordination

I Coordination iteratively provides
a local model of the interactions
for each subproblem

I We expect to obtain the solution of
the overall problem by concatenation
of the solutions of the subproblems



Example: the “flower model”

Unit 2

Unit 1 Unit N

Unit 3

Coupling

constraint

min
u

N∑
i=1

Ji (ui )

s.t.
N∑
i=1

θi (ui ) = 0

Unit Commitment Problem



Intuition of spatial decomposition

Unit
1

Unit
2

Unit
3

Coordinator

I Purpose: satisfy a demand
with N production units,
at minimal cost

I Price decomposition

I the coordinator sets a price λ
I the units send their optimal

decision ui

I the coordinator compares
total production

∑N
i=1 θi (ui )

and demand, and then
updates the price accordingly

I and so on...
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Intuition of spatial decomposition
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Intuition of spatial decomposition

Unit
1

Unit
2

Unit
3

Coordinator

u
(2)
1

u
(2)
2 u

(2)
3

I Purpose: satisfy a demand
with N production units,
at minimal cost

I Price decomposition
I the coordinator sets a price λ
I the units send their optimal

decision ui

I the coordinator compares
total production
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Price decomposition relies on dualization

min
ui∈Ui ,i=1...N

N∑
i=1

Ji (ui ) subject to
N∑
i=1

θi (ui ) = 0

1. Form the Lagrangian and assume that a saddle point exists

max
λ∈V

min
ui∈Ui ,i=1...N

N∑
i=1

(
Ji (ui ) +

〈
λ , θi (ui )

〉)
2. Solve this problem by the dual gradient algorithm “à la

Uzawa”

u
(k+1)
i ∈ arg min

ui∈Ui
Ji (ui ) +

〈
λ(k) , θi (ui )

〉
, i = 1 . . . ,N

λ(k+1) = λ(k) + ρ

N∑
i=1

θi (u
(k+1)
i )



Remarks on decomposition methods

I The theory is available for infinite dimensional Hilbert spaces,
and thus applies in the stochastic framework, that is,
when the Ui are spaces of random variables

I The minimization algorithm used for solving the subproblems
is not specified in the decomposition process

I New variables λ(k) appear in the subproblems
arising at iteration k of the optimization process

min
ui∈Ui

Ji (ui ) +
〈
λ(k) , θi (ui )

〉
I These variables are fixed when solving the subproblems,

and do not cause any difficulty,
at least in the deterministic case



Price decomposition applies to various couplings

DECOMPOSITION
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Stochastic optimal control (SOC) problem formulation

Consider the following SOC problem

min
U,X

E
( N∑

i=1

( T−1∑
t=0

Lit(Xi
t ,U

i
t ,Wt+1) + K i (Xi

T )
))

subject to the constraints

Xi
0 = f i-1(W0) , i = 1 . . .N

Xi
t+1 = f it

(
Xi

t ,U
i
t ,Wt+1

)
, t = 0 . . .T−1 , i = 1 . . .N

σ
(
Ui

t

)
⊂ σ

(
W0, . . . ,Wt

)
, t = 0 . . .T−1 , i = 1 . . .N

N∑
i=1

θit(Xi
t ,U

i
t) = 0 , t = 0 . . .T−1



Stochastic optimal control (SOC) problem formulation

Consider the following SOC problem

min
U,X

N∑
i=1

(
E
( T−1∑

t=0

Lit(Xi
t ,U

i
t ,Wt+1) + K i (Xi

T )
))

subject to the constraints

Xi
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, t = 0 . . .T−1 , i = 1 . . .N

σ
(
Ui

t

)
⊂ σ

(
W0, . . . ,Wt

)
, t = 0 . . .T−1 , i = 1 . . .N

N∑
i=1

θit(Xi
t ,U

i
t) = 0 , t = 0 . . .T−1



Dynamic programming yields centralized controls

I As we want to solve this SOC problem using
dynamic programming (DP), we suppose to be in the
Markovian setting, that is, W0, . . . ,WT are a white noise

I The system is made of N interconnected subsystems,
with the control Ui

t and the state Xi
t of subsystem i at time t

I The optimal control Ui
t of subsystem i is a function

of the whole system state
(
X1

t , . . . ,X
N
t

)
Ui

t = λit
(
X1

t , . . . ,X
N
t

)

Naive decomposition should lead to decentralized feedbacks

Ui
t = λ̂it(Xi

t)

which are, in most cases, far from being optimal. . .



Straightforward decomposition of dynamic programming?

The crucial point is that the optimal feedback of a subsystem a
priori depends on the state of all other subsystems, so that using a
decomposition scheme by subsystems is not obvious. . .

As far as we have to deal with dynamic programming, the central
concern for decomposition/coordination purpose boils down to

?

?

?

?

??

I how to decompose a feedback λt w.r.t.
its domain Xt rather than its range Ut?

And the answer is

I impossible in the general case!



Price decomposition and dynamic programming

When applying price decomposition to the problem by dualizing
the (almost sure) coupling constraint

∑
i θ

i
t(Xi

t ,U
i
t) = 0,

multipliers Λ
(k)
t appear in the subproblems arising at iteration k

min
Ui ,Xi

E
[∑

t

Lit(Xi
t ,U

i
t ,Wt+1) + Λ

(k)
t · θit(Xi

t ,U
i
t)
]

I The variables Λ
(k)
t are fixed random variables, so that the

random process Λ(k) acts as an additional input noise in the
subproblems

I But this process may be correlated in time, so that
the white noise assumption has no reason to be fulfilled

I DP cannot be applied in a straightforward manner!

Question: how to handle the coordination instruments Λ
(k)
t

to obtain (an approximation of) the overall optimum?
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Let us move to broader stochastic optimization challenges

I Stochastic optimization requires to make
risk attitudes explicit

I robust, worst case, risk measures, in probability, almost surely

I Stochastic dynamic optimization requires to make
online information explicit

I State-based functional approach
I Scenario-based measurability approach

Numerical walls

I in dynamic programming,
the bottleneck is the dimension of the state

I in stochastic programming,
the bottleneck is the number of stages



Here is our research agenda for stochastic decomposition

I Designing risk criteria compatible with decomposition
I thèse d’Adrien Le Franc (2018—)

I Combining different decomposition methods
I time: dynamic programming
I scenario: Progressive Hedging
I space: decomposition by prices or by quantities

I into blends
I time + space: Pierre Carpentier talk

nodal decomposition by prices or by quantities
+ dynamic programming within node

I time + scenario: Jean-Philippe Chancelier talk
dynamic programming accross time blocks
+ Progressive Hedging within time blocks
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