Decomposition/Coordination Methods for Multistage Stochastic Optimization Problems

> P. Carpentier, J-Ph. Chancelier, <u>M. De Lara</u>, V. Leclère

École des Ponts ParisTech and ENSTA ParisTech

PGMO Days, 21 novembre 2018

Lecture outline

Decomposition and coordination

The three dimensions of stochastic optimization problems A bird's eye view of decomposition methods: the cube

A brief insight into scenario decomposition methods Scenario decomposition methods "à la Progressive Hedging" Handling risk with scenario decomposition methods

A brief insight into spatial decomposition methods Spatial decomposition methods in the deterministic case The stochastic case raises specific obstacles

Decomposition and coordination

A brief insight into scenario decomposition methods

A brief insight into spatial decomposition methods

A long-term effort in our group (I)

- 1976 A. Benveniste, P. Bernhard, G. Cohen, "On the decomposition of stochastic control problems", *IRIA-Laboria research report* No. 187, 1976
- 1996 P. Carpentier, G. Cohen, J.-C. Culioli, A. Renaud, "Stochastic optimization of unit commitment: a new decomposition framework" *IEEE Transactions on Power Systems*, Vol. 11, No. 2, 1996
- **2006** C. Strugarek, "Approches variationnelles et autres contributions en optimisation stochastique", *Thèse de l'ENPC*, mai 2006

2010 K. Barty, P. Carpentier, P. Girardeau, "Decomposition of large-scale stochastic optimal control problems" *RAIRO Operations Research*, Vol. 44, No. 3, 2010 A long-term effort in our group (II)

2013 J.-C. Alais, "Risque et optimisation pour le management d'énergies", *Thèse de l'Université Paris-Est*, décembre 2013

- **2014** V. Leclère, "Contributions to decomposition methods in stochastic optimization", *Thèse de l'Université Paris-Est*, juin 2014.
- 2014 M. De Lara, P. Carpentier, J.-P. Chancelier, V. Leclère, "Optimization Methods for the Smart Grid", *report commissioned by Conseil Français de l'Energie*, octobre 2014
- 2017 P. Carpentier, G. Cohen, "Décomposition-coordination en optimisation déterministe et stochastique", *Springer*, 2017
- **2018** F. Pacaud, "Optimisation décentralisée pour l'efficacité énergétique", *Thèse de l'Université Paris-Est*, octobre 2018

A long-term effort in our group (III)

- 2016 M. De Lara, V. Leclère, "Building Up Time-Consistency for Risk Measures and Dynamic Optimization", *European Journal of Operations Research*, Volume 249, Issue 1, pp 177–187, 2016
- 2017 J.-C. Alais, P. Carpentier, M. De Lara, "Multi-usage hydropower single dam management: chance-constrained optimization and stochastic viability", *Energy Systems* Volume 8, Issue 1, pp 7–30, February 2017

(日) (同) (三) (三) (三) (○) (○)

2018 H. Gérard, "Décomposition de problèmes d'optimisation stochastique de grande dimension, avec mesure de risque", *Thèse de l'Université Paris-Est*, octobre 2018

Decomposition and coordination

The three dimensions of stochastic optimization problems A bird's eye view of decomposition methods: the cube

A brief insight into scenario decomposition methods Scenario decomposition methods "à la Progressive Hedging" Handling risk with scenario decomposition methods

A brief insight into spatial decomposition methods Spatial decomposition methods in the deterministic case The stochastic case raises specific obstacles

Decomposition-coordination: divide and conquer

Spatial decomposition

- Multiple players with their local information
- Network with decision-makers located at nodes where they control local storage and flows through edges

Temporal decomposition

- A state is an information summary
- Time coordination realized through dynamic programming, by value functions
- Hard nonanticipativity constraints
- Scenario decomposition
 - Along each scenario, sub-problems are deterministic (powerful algorithms)
 - Scenario coordination realized through Progressive Hedging, by updating nonanticipativity multipliers
 - Soft nonanticipativity constraints

Let us fix problem and notations

$$\min_{\mathbf{U},\mathbf{X}} \overset{\text{``risk-neutral''}}{\mathbb{E}} \left[\sum_{i=1}^{N} \left(\sum_{t=0}^{T-1} L_t^i(\mathbf{X}_t^i, \mathbf{U}_t^i, \mathbf{W}_{t+1}) + K^i(\mathbf{X}_T^i) \right) \right]$$

subject to dynamics constraints

$$\underbrace{\mathbf{X}_{t+1}^{i}}_{\text{state}} = f_{t}^{i}(\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \underbrace{\mathbf{W}_{t+1}}_{\text{uncertainty}}), \quad \mathbf{X}_{0}^{i} = f_{-1}^{i}(\mathbf{W}_{0})$$

to measurability constraints on the control U_t^i

$$\sigma(\mathbf{U}_t^i) \subset \sigma(\mathbf{W}_0, \dots, \mathbf{W}_t) \iff \mathbf{U}_t^i = \mathbb{E}\left(\mathbf{U}_t^i \mid \mathbf{W}_0, \dots, \mathbf{W}_t\right)$$

and to instantaneous coupling constraints

$$\sum_{i=1}^N Y_t^i(\mathbf{X}_t^i,\mathbf{U}_t^i)=0$$

(The letter *U* stands for the Russian word for control: *upravlenie*)

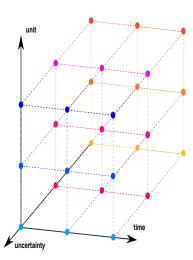
Decomposition and coordination

The three dimensions of stochastic optimization problems A bird's eye view of decomposition methods: the cube

A brief insight into scenario decomposition methods Scenario decomposition methods "à la Progressive Hedging" Handling risk with scenario decomposition methods

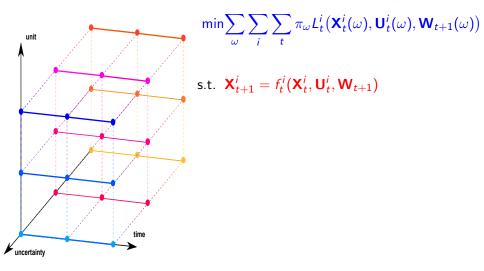
A brief insight into spatial decomposition methods Spatial decomposition methods in the deterministic case The stochastic case raises specific obstacles

Couplings for stochastic problems

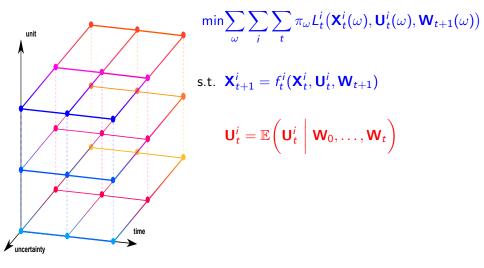


 $\min\sum_{\omega}\sum_{i}\sum_{t}\pi_{\omega}L_{t}^{i}(\mathbf{X}_{t}^{i}(\omega),\mathbf{U}_{t}^{i}(\omega),\mathbf{W}_{t+1}(\omega))$

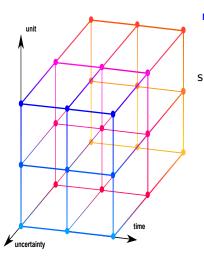
Couplings for stochastic problems: in time



Couplings for stochastic problems: in uncertainty



Couplings for stochastic problems: in space

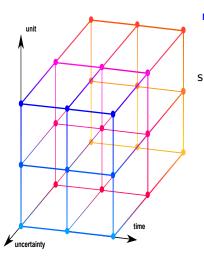


$$\min \sum_{\omega} \sum_{i} \sum_{t} \pi_{\omega} L_{t}^{i} (\mathbf{X}_{t}^{i}(\omega), \mathbf{U}_{t}^{i}(\omega), \mathbf{W}_{t+1}(\omega))$$

i.t. $\mathbf{X}_{t+1}^{i} = f_{t}^{i} (\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{W}_{t+1})$
 $\mathbf{U}_{t}^{i} = \mathbb{E} \left(\mathbf{U}_{t}^{i} \mid \mathbf{W}_{0}, \dots, \mathbf{W}_{t} \right)$
 $\sum \mathbf{Y}_{t}^{i} (\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}) = 0$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Can we decouple stochastic problems?

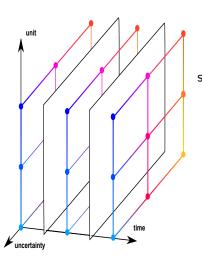


$$\min \sum_{\omega} \sum_{i} \sum_{t} \pi_{\omega} L_{t}^{i} (\mathbf{X}_{t}^{i}(\omega), \mathbf{U}_{t}^{i}(\omega), \mathbf{W}_{t+1}(\omega))$$

s.t. $\mathbf{X}_{t+1}^{i} = f_{t}^{i} (\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{W}_{t+1})$
 $\mathbf{U}_{t}^{i} = \mathbb{E} \left(\mathbf{U}_{t}^{i} \mid \mathbf{W}_{0}, \dots, \mathbf{W}_{t} \right)$
 $\sum Y_{t}^{i} (\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}) = 0$

(ロ)、(型)、(E)、(E)、 E) のQの

Sequential decomposition in time



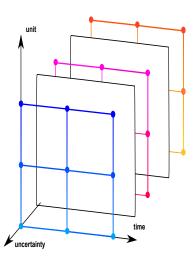
$$\min \sum_{\omega} \sum_{i} \sum_{t} \pi_{\omega} L_{t}^{i} (\mathbf{X}_{t}^{i}(\omega), \mathbf{U}_{t}^{i}(\omega), \mathbf{W}_{t+1}(\omega))$$

i.t. $\mathbf{X}_{t+1}^{i} = f_{t}^{i} (\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{W}_{t+1})$
 $\mathbf{U}_{t}^{i} = \mathbb{E} \left(\mathbf{U}_{t}^{i} \mid \mathbf{W}_{0}, \dots, \mathbf{W}_{t} \right)$
 $\sum_{i} Y_{t}^{i} (\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}) = 0$
Dynamic Programming

Bellman (56)

◆□▶ ◆圖▶ ◆필▶ ◆필▶ - ヨー のへで

Parallel decomposition in uncertainty/scearios



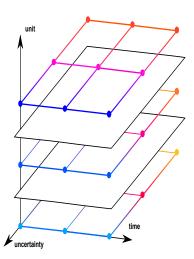
$$\begin{split} \min \sum_{\omega} \sum_{i} \sum_{t} \pi_{\omega} L_{t}^{i}(\mathbf{X}_{t}^{i}(\omega), \mathbf{U}_{t}^{i}(\omega), \mathbf{W}_{t+1}(\omega)) \\ \text{s.t. } \mathbf{X}_{t+1}^{i} &= f_{t}^{i}(\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{W}_{t+1}) \\ \mathbf{U}_{t}^{i} &= \mathbb{E}\left(\mathbf{U}_{t}^{i} \mid \mathbf{W}_{0}, \dots, \mathbf{W}_{t}\right) \\ \sum_{i} Y_{t}^{i}(\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}) &= 0 \\ \begin{aligned} \mathbf{Progressive \ Hedging} \\ \text{Rockafellar - Wets (91)} \end{aligned}$$

イロト 不得 トイヨト イヨト

æ

Parallel decomposition in space/units

r



$$\min \sum_{\omega} \sum_{i} \sum_{t} \pi_{\omega} L_{t}^{i}(\mathbf{X}_{t}^{i}(\omega), \mathbf{U}_{t}^{i}(\omega), \mathbf{W}_{t+1}(\omega))$$

s.t. $\mathbf{X}_{t+1}^{i} = f_{t}^{i}(\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{W}_{t+1})$
 $\mathbf{U}_{t}^{i} = \mathbb{E}\left(\mathbf{U}_{t}^{i} \mid \mathbf{W}_{0}, \dots, \mathbf{W}_{t}\right)$
 $\sum_{i} Y_{t}^{i}(\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}) = 0$
Price and Quantity

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Decompositions with DP

Decomposition and coordination

A brief insight into scenario decomposition methods

A brief insight into spatial decomposition methods

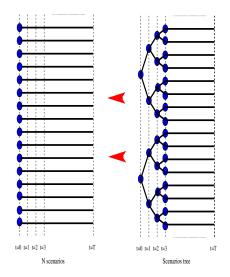
Decomposition and coordination

The three dimensions of stochastic optimization problems A bird's eye view of decomposition methods: the cube

A brief insight into scenario decomposition methods Scenario decomposition methods "à la Progressive Hedging" Handling risk with scenario decomposition methods

A brief insight into spatial decomposition methods Spatial decomposition methods in the deterministic case The stochastic case raises specific obstacles

Non-anticipativity constraints are linear



- From tree to scenarios (fan)
- Equivalent formulations of the non-anticipativity constraints
 - pairwise equalities
 - all equal to their mathematical expectation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Linear structure

$$\mathbf{U}_t = \mathbb{E}\left(\mathbf{U}_t \mid \mathbf{W}_0, \dots, \mathbf{W}_t\right)$$

Progressive Hedging stands as a scenario decomposition method

We dualize the non-anticipativity constraints

 When the criterion is strongly convex, we use a Lagrangian relaxation (algorithm "à la Uzawa") to obtain a scenario decomposition

 When the criterion is linear, Rockafellar - Wets (91) propose to use an augmented Lagrangian, and obtain the Progressive Hedging algorithm

Data: step
$$\rho > 0$$
, initial multipliers $\{\lambda_s^{(0)}\}_{s \in \mathbb{S}}$ and mean first decision $\overline{\mathbf{x}}^{(0)}$;
Result: optimal first decision \mathbf{x} ;
repeat
forall scenarios $s \in \mathbb{S}$ do
Solve the deterministic minimization problem for scenario s ,
with a penalization $+\lambda_s^{(k)} \left(\mathbf{x}_s^{(k+1)} - \overline{\mathbf{x}}^{(k)} \right)$,
and obtain optimal first decision $\mathbf{x}_s^{(k+1)}$;
Update the mean first decisions
 $\overline{\mathbf{x}}^{(k+1)} = \sum_{s \in \mathbb{S}} \pi_s \mathbf{x}_s^{(k+1)}$;
Update the multiplier by
 $\lambda_s^{(k+1)} = \lambda_s^{(k)} + \rho(\mathbf{x}_s^{(k+1)} - \overline{\mathbf{x}}^{(k+1)})$, $\forall s \in \mathbb{S}$;
until $\mathbf{x}_s^{(k+1)} - \sum_{s' \in \mathbb{S}} \pi_{s'} \mathbf{x}_{s'}^{(k+1)} = 0$, $\forall s \in \mathbb{S}$;

◆□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶

Decomposition and coordination

The three dimensions of stochastic optimization problems A bird's eye view of decomposition methods: the cube

A brief insight into scenario decomposition methods Scenario decomposition methods "à la Progressive Hedging" Handling risk with scenario decomposition methods

A brief insight into spatial decomposition methods Spatial decomposition methods in the deterministic case The stochastic case raises specific obstacles

Suppose you had to manage a day-ahead energy market You would have to fix reserves by night and adjust in the morning with recourse energies

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

From linear to stochastic programming

The linear program

$$\min_{x\in\mathbb{R}^n} \left\langle c \; , x
ight
angle \ Ax+b \; \geq 0 \; \; (\in\mathbb{R}^m)$$

becomes a stochastic program

$$egin{aligned} \min_{x\in\mathbb{R}^n}\sum_{s\in\mathbb{S}}\pi_s\left\langle c_s\,,x
ight
angle\ A_sx+b_s&\geq0\;,\;\;orall s\in\mathbb{S} \end{aligned}$$

We observe that there are as many (vector) inequalities as there are possible scenarios s ∈ S

$$A_s x + b_s \ge 0$$
, $\forall s \in \mathbb{S}$

and these inequality constraints can delineate an empty domain for optimization

Recourse variables need be introduced for feasability issues

- We denote by s ∈ S any possible value of the random variable ξ, with corresponding probability π_s
- and we introduce a recourse variable y = (y_s)_{s∈S} and the program

$$\min_{x,(y_s)_{s\in\mathbb{S}}} \sum_{s\in\mathbb{S}} \pi_s \Big(\langle c_s , x \rangle + \langle p_s , y_s \rangle \Big)$$
$$\begin{array}{c} y_s & \geq 0 , \ \forall s \in \mathbb{S} \\ A_s x + b_s + y_s & \geq 0 , \ \forall s \in \mathbb{S} \end{array}$$

- So that the inequality A_sx + b_s + y_s ≥ 0 is now possible, at (unitary recourse) price vector p = (p_s, s ∈ S)
- Observe that such stochastic programs are huge problems, with solution (x, (y_s)_{s∈S}), but remain linear

Minimizing the Tail Value at Risk of costs: linear programming formulation

The risk-averse stochastic linear program with recourse

$$\min_{x,(y_{s})_{s\in\mathbb{S}}}\min_{r\in\mathbb{R}}\left\{r+\frac{1}{1-\lambda}\sum_{s\in\mathbb{S}}\pi_{s}\left(\langle c_{s},x\rangle+\langle p_{s},y_{s}\rangle\right)_{+}\right\}$$

can be written as the linear program

$$\begin{array}{ll} \min_{x,(y_s)_{s\in\mathbb{S}}} \min_{r} \min_{(v_s)_{s\in\mathbb{S}}} & r + \frac{1}{1-\lambda} \sum_{s\in\mathbb{S}} \pi_s v_s \\ v_s - \langle c_s \,, x \rangle - \langle p_s \,, y_s \rangle &\geq 0 \;, \; \forall s \in \mathbb{S} \\ & v_s \; \geq 0 \;, \; \forall s \in \mathbb{S} \\ & y_s \; \geq 0 \;, \; \forall s \in \mathbb{S} \\ A_s x + b_s + y_s \; \geq 0 \;, \; \forall s \in \mathbb{S} \end{array}$$

Minimizing a mixture: linear programming formulation

The risk-averse stochastic linear program with recourse

$$\min_{x,(y_{s})_{s\in\mathbb{S}}} \min_{r\in\mathbb{R}} \left\{ \theta \sum_{s\in\mathbb{S}} \pi_{s} \Big(\langle c_{s}, x \rangle + \langle p_{s}, y_{s} \rangle \Big) + (1-\theta)r + \frac{1-\theta}{1-\lambda} \sum_{s\in\mathbb{S}} \pi_{s} \Big(\langle c_{s}, x \rangle + \langle p_{s}, y_{s} \rangle \Big)_{+} \right\}$$

can be written as the linear program

$$\min_{\substack{x,(y_s)_{s\in\mathbb{S}} \\ r}} \min_{\substack{u_s,v_s)_{s\in\mathbb{S}} \\ r}} \sum_{s\in\mathbb{S}} \pi_s \left\{ \theta u_s + (1-\theta)r + \frac{1-\theta}{1-\lambda}v_s \right\}$$

$$u_s - \langle c_s, x \rangle - \langle p_s, y_s \rangle \ge 0, \quad \forall s \in \mathbb{S}$$

$$v_s - u_s + r \ge 0, \quad \forall s \in \mathbb{S}$$

$$v_s \ge 0, \quad \forall s \in \mathbb{S}$$

$$y_s \ge 0, \quad \forall s \in \mathbb{S}$$

$$A_s x + b_s + y_s \ge 0, \quad \forall s \in \mathbb{S}$$

Decomposition and coordination

A brief insight into scenario decomposition methods

A brief insight into spatial decomposition methods

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

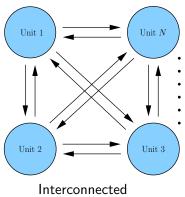
Decomposition and coordination

The three dimensions of stochastic optimization problems A bird's eye view of decomposition methods: the cube

A brief insight into scenario decomposition methods Scenario decomposition methods "à la Progressive Hedging" Handling risk with scenario decomposition methods

A brief insight into spatial decomposition methods Spatial decomposition methods in the deterministic case The stochastic case raises specific obstacles

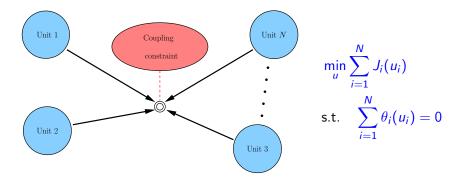
Decomposition and coordination



units

- The system to be optimized consists of interconnected subsystems
- We want to use this structure to formulate optimization subproblems of reasonable complexity
- But the presence of interactions
 - requires a level of coordination
 - Coordination iteratively provides a local model of the interactions for each subproblem
 - We expect to obtain the solution of the overall problem by concatenation of the solutions of the subproblems

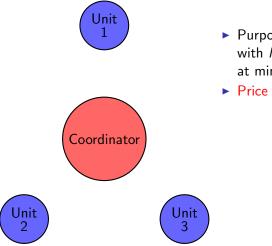
Example: the "flower model"



Unit Commitment Problem

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Intuition of spatial decomposition

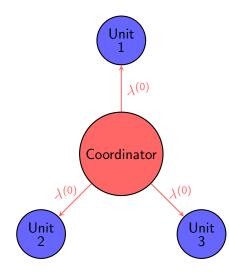


 Purpose: satisfy a demand with N production units, at minimal cost

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Price decomposition

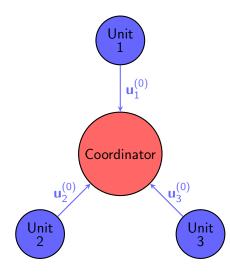
Intuition of spatial decomposition



- Purpose: satisfy a demand with N production units, at minimal cost
- Price decomposition
 - the coordinator sets a price λ

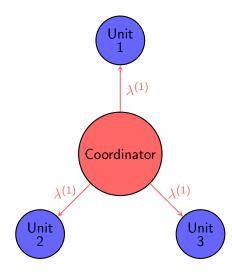
▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Intuition of spatial decomposition



- Purpose: satisfy a demand with N production units, at minimal cost
- Price decomposition
 - the coordinator sets a price λ

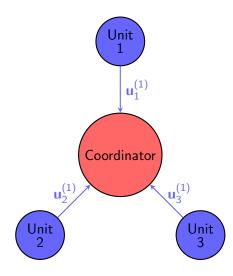
the units send their optimal decision u_i



 Purpose: satisfy a demand with N production units, at minimal cost

Price decomposition

- the coordinator sets a price λ
- the units send their optimal decision u_i
- the coordinator compares total production $\sum_{i=1}^{N} \theta_i(u_i)$ and demand, and then updates the price accordingly

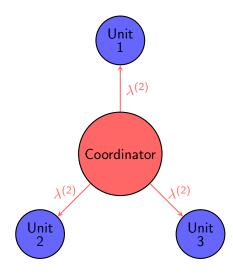


 Purpose: satisfy a demand with N production units, at minimal cost

Price decomposition

- the coordinator sets a price λ
- the units send their optimal decision u_i
- the coordinator compares total production $\sum_{i=1}^{N} \theta_i(u_i)$ and demand, and then updates the price accordingly

and so on...

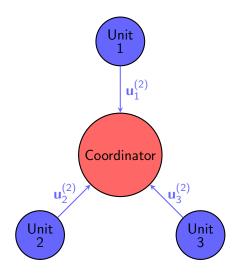


 Purpose: satisfy a demand with N production units, at minimal cost

Price decomposition

- the coordinator sets a price λ
- the units send their optimal decision u_i
- the coordinator compares total production $\sum_{i=1}^{N} \theta_i(u_i)$ and demand, and then updates the price accordingly

and so on...



 Purpose: satisfy a demand with N production units, at minimal cost

Price decomposition

- the coordinator sets a price λ
- the units send their optimal decision u_i
- the coordinator compares total production $\sum_{i=1}^{N} \theta_i(u_i)$ and demand, and then updates the price accordingly

and so on...

Price decomposition relies on dualization

$$\min_{u_i \in \mathcal{U}_i, i=1...N} \sum_{i=1}^N J_i(u_i) \text{ subject to } \sum_{i=1}^N \theta_i(u_i) = 0$$

1. Form the Lagrangian and assume that a saddle point exists

$$\max_{\lambda \in \mathcal{V}} \min_{u_i \in \mathcal{U}_i, i=1...N} \sum_{i=1}^{N} \left(J_i(u_i) + \langle \lambda, \theta_i(u_i) \rangle \right)$$

Solve this problem by the dual gradient algorithm "à la Uzawa"

$$u_i^{(k+1)} \in \underset{u_i \in \mathcal{U}_i}{\arg\min} J_i(u_i) + \left\langle \lambda^{(k)}, \theta_i(u_i) \right\rangle, \quad i = 1..., N$$
$$\lambda^{(k+1)} = \lambda^{(k)} + \rho \sum_{i=1}^N \theta_i(u_i^{(k+1)})$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

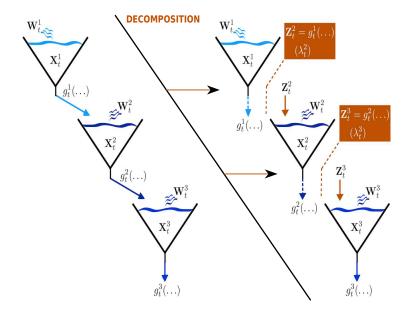
Remarks on decomposition methods

- The theory is available for infinite dimensional Hilbert spaces, and thus applies in the stochastic framework, that is, when the U_i are spaces of random variables
- The minimization algorithm used for solving the subproblems is not specified in the decomposition process
- New variables λ^(k) appear in the subproblems arising at iteration k of the optimization process

 $\min_{u_i\in\mathcal{U}_i}J_i(u_i)+\left<\lambda^{(k)},\theta_i(u_i)\right>$

 These variables are fixed when solving the subproblems, and do not cause any difficulty, at least in the deterministic case

Price decomposition applies to various couplings



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Outline of the presentation

Decomposition and coordination

The three dimensions of stochastic optimization problems A bird's eye view of decomposition methods: the cube

A brief insight into scenario decomposition methods Scenario decomposition methods "à la Progressive Hedging" Handling risk with scenario decomposition methods

A brief insight into spatial decomposition methods Spatial decomposition methods in the deterministic case The stochastic case raises specific obstacles

Summary and research agenda

Stochastic optimal control (SOC) problem formulation

Consider the following SOC problem

$$\min_{\mathbf{U},\mathbf{X}} \mathbb{E}\bigg(\sum_{i=1}^{N} \bigg(\sum_{t=0}^{T-1} L_t^i(\mathbf{X}_t^i, \mathbf{U}_t^i, \mathbf{W}_{t+1}) + \mathcal{K}^i(\mathbf{X}_T^i)\bigg)\bigg)$$

subject to the constraints

$$\begin{aligned} \mathbf{X}_{0}^{i} &= f_{-1}^{i}(\mathbf{W}_{0}), & i = 1 \dots N \\ \mathbf{X}_{t+1}^{i} &= f_{t}^{i}(\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{W}_{t+1}), & t = 0 \dots T - 1, \ i = 1 \dots N \\ \sigma(\mathbf{U}_{t}^{i}) &\subset \sigma(\mathbf{W}_{0}, \dots, \mathbf{W}_{t}), \ t = 0 \dots T - 1, \ i = 1 \dots N \end{aligned}$$

 $\sum_{i=1}^{N} \theta_t^i(\mathbf{X}_t^i, \mathbf{U}_t^i) = 0 , \qquad t = 0 \dots T - 1$

Stochastic optimal control (SOC) problem formulation

Consider the following SOC problem

$$\min_{\mathbf{U},\mathbf{X}} \sum_{i=1}^{N} \left(\mathbb{E} \Big(\sum_{t=0}^{T-1} L_t^i(\mathbf{X}_t^i, \mathbf{U}_t^i, \mathbf{W}_{t+1}) + K^i(\mathbf{X}_T^i) \Big) \right)$$

subject to the constraints

 $\sigma(\mathbf{U}_t^i) \subset \sigma(\mathbf{W}_0,\ldots,\mathbf{W}_t), \ t=0\ldots T-1, \ i=1\ldots N$

 $\sum_{i=1}^{N} \theta_t^i(\mathbf{X}_t^i, \mathbf{U}_t^i) = 0 , \qquad t = 0 \dots T - 1$

Dynamic programming yields centralized controls

- ► As we want to solve this SOC problem using dynamic programming (DP), we suppose to be in the Markovian setting, that is, W₀,..., W_T are a white noise
- The system is made of N interconnected subsystems, with the control Uⁱ_t and the state Xⁱ_t of subsystem i at time t
- ► The optimal control Uⁱ_t of subsystem i is a function of the whole system state (X¹_t,...,X^N_t) Uⁱ_t = λⁱ_t(X¹_t,...,X^N_t)

Naive decomposition should lead to decentralized feedbacks

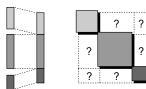
$$\mathbf{U}_t^i = \widehat{\lambda}_t^i(\mathbf{X}_t^i)$$

which are, in most cases, far from being optimal...

Straightforward decomposition of dynamic programming?

The crucial point is that the optimal feedback of a subsystem a priori depends on the state of all other subsystems, so that using a decomposition scheme by subsystems is not obvious...

As far as we have to deal with dynamic programming, the central concern for decomposition/coordination purpose boils down to



 how to decompose a feedback λ_t w.r.t. its domain X_t rather than its range U_t?
 And the answer is

impossible in the general case!

Price decomposition and dynamic programming

When applying price decomposition to the problem by dualizing the (almost sure) coupling constraint $\sum_i \theta_t^i(\mathbf{X}_t^i, \mathbf{U}_t^i) = 0$, multipliers $\mathbf{\Lambda}_t^{(k)}$ appear in the subproblems arising at iteration k

$$\min_{\mathbf{U}^{i},\mathbf{X}^{i}} \mathbb{E}\Big[\sum_{t} L_{t}^{i}(\mathbf{X}_{t}^{i},\mathbf{U}_{t}^{i},\mathbf{W}_{t+1}) + \mathbf{\Lambda}_{t}^{(k)} \cdot \theta_{t}^{i}(\mathbf{X}_{t}^{i},\mathbf{U}_{t}^{i})\Big]$$

- ► The variables A^(k)_t are fixed random variables, so that the random process A^(k) acts as an additional input noise in the subproblems
- But this process may be correlated in time, so that the white noise assumption has no reason to be fulfilled
- DP cannot be applied in a straightforward manner!

Question: how to handle the coordination instruments $\Lambda_t^{(k)}$ to obtain (an approximation of) the overall optimum?

Outline of the presentation

Decomposition and coordination

A brief insight into scenario decomposition methods

A brief insight into spatial decomposition methods

Summary and research agenda

Let us move to broader stochastic optimization challenges

- Stochastic optimization requires to make risk attitudes explicit
 - ▶ robust, worst case, risk measures, in probability, almost surely

- Stochastic dynamic optimization requires to make online information explicit
 - State-based functional approach
 - Scenario-based measurability approach

Numerical walls

- in dynamic programming, the bottleneck is the dimension of the state
- in stochastic programming, the bottleneck is the number of stages

Here is our research agenda for stochastic decomposition

- Designing risk criteria compatible with decomposition
 - thèse d'Adrien Le Franc (2018—)
- Combining different decomposition methods
 - time: dynamic programming
 - scenario: Progressive Hedging
 - space: decomposition by prices or by quantities
- into blends
 - time + space: Pierre Carpentier talk
 nodal decomposition by prices or by quantities
 + dynamic programming within node
 - time + scenario: Jean-Philippe Chancelier talk dynamic programming accross time blocks
 + Progressive Hedging within time blocks